Aspden et al., 1992b.pdf

download Aspden et al., 1992b.pdf

of 20

Transcript of Aspden et al., 1992b.pdf

  • 7/26/2019 Aspden et al., 1992b.pdf

    1/20

    Journal of South American Earth Sciences Vo l . 6 , No . 1 / 2, p p . 7 7 - 9 6 , 1 9 92 P er g am o n P r es s L t d

    P r i n t ed i n Gr ea t Br i t a i n E ar t h S c i en ces Reso u r ces I n s t i tu t e

    N e w g e o c h r o n o l o g i c a l c o n t r o l f o r t h e t e c t o n o - m a g m a t i c

    e v o l u t i o n o f t h e m e t a m o r p h i c b a s e m e n t ,

    C o r d i l le r a R e a l a n d E O r e P r o v in c e o f E c u a d o r

    J . A . A S P D E N I , S . H . H A R R I S O N2 , a n d C . C . R U N D L E 3

    1 M i s i 6n B r i ff m i c a / O D A , F C O ( Q u i t e ) , K i n g C h a r l e s S t r ee t , L o n d o n S W 1 A 2 A H , U K 2 68 G a i m T e r r a ce ,

    A b e r d e e n A B 1 6 A T , U K ; 3 N E R C I s o t o p e G e o s c i e n c e L a b o r a t o r y , K e y w o r t h , N o t t in g h a m , N G 1 2 5 G G , U K

    R e c e i v e d M a y 1 9 9 2 ; R e v i si o n A c c e p t e d J u l y 1 9 9 2 )

    Ab strac t--S om e 150 new isotopic ag e determinations on metamorphic rocks from the Cordillera Real and parts of E1 Ore Pro-

    vin ee in Ecuador, u sing K -At , Rb-Sr, and Sm-N d method s, help to clarify a complex succession of magmatic an d tectonic events.

    Th e earliest regional m etamorphic/plutonic eve nt recognized, from the Tahuin Group in El O1 o, s dated as between c a . 2 2 0 a n d

    200 M a (Late Triassic-Early Jurassic) . Sim ilar but less well constrained ages were also obtained f rom orthogneiases of the

    Sabanilla and Tres Lagtmas subdivisions in the Cordillera Real. Major eale-alkaline granitdids were emplaeed

    c a .

    190-150 Ma

    (M iddle -Late Jurassic) in the eastern part of the Cordillera Real, to the north of 2 S, and throughout the sub-Andean zone.

    Between

    c a .

    140 and 120 M a (Early Cretaceous), the Oriente region w as uplifted and eroded and th e Cordillera was affected by an

    important shearing (dynam othermai) ev ent which resulted in the resetting of older plutonic ages. From

    c a .

    120 to 85 Ma, condi-

    tions w ere relatively stable, but during

    ca .

    85 to 65 Ma (Late Cretaceous), the Cordillera and Oriente were again uplifted. This

    uplift corresponds to a second w idespread thermal overprinting, w hich produced a regional disturbance in the K- Ar isotopic sys-

    tems. Throughout the Co rdillera, a number of generally small, undeformed, dom inantly lowe r Tertiary plutons are also present. A

    few older

    i .e . ,

    pre-Mesozo ic) dates have been obtained but their interpretation remains uncertain.

    R e s u m e n - - U n a s 150 nuevas determinaciones de edades isot6picas de rocas metam6rflcas de la Cordillera Real y parte de la pro-

    vincia de E1 Ore en el Ecuador, usando los m~todos K -Ar, Rb-Sr, Sm-Nd, ayudan en clarif icar una sucosi6n eompleja de eve ntos

    magrn~lticos y tect6nicos. E l evento m etam6rfico/plut6nico regional m ~ temprano reconocido, es el d el grupo Tahufn en E1 Ore;

    est~ entre c a . 220 y 200 Ma (TriMico tardfo-JurMico temprano). Edades similares, pete menos definidas, fueron tambi6n obteni-

    das de los o r togne ises de Saban i l la y T ros Lagunas en la Cord i l le ra Rea l . Los mayores g ran i to ides ea lco -a lca l inos fue ron

    emplazados ca. 190-150 M a (Jur~sico medic a tard(o), en la parte oriental de la Cordillera Real, a l norte de 2 de lati tud S , ye n

    toda la zuna subandina. Entre ca . 140 y 120 Ma (CrelAcico em prano) la regi6n Oriental fue levantada y erosionada; y la cordillera

    rue afectada pe r un eve nto de cizallamiento muy importante (dinamotermal) , q ue result6 en el reajuste d e 1as antiguas eda des

    plut6nicas. Desd e

    c a .

    120-85 Ma las condiciones fueron relativamente estables, pete durante

    c a .

    85-65 Ma (Cretatcico tardfo) la

    cordillera y el Oriente fueron de nuev o levantadas. Este levantamiento corresponde a una segunda sobre impresi6n termal que

    produjo una perturbaci6n regional e n los sistemas isot6picos K -At. Pe r toda la cordillera est,Ln presentes un ndm ero de plutones

    generalmente pequetlos, no deformado s; dom inantemente d el Tereiario temprano. H art side obtenidas pocas edades antiguas (Pre-

    mesozoicas), pe te la interpertaci6n de 6stes permaneee todavfa incierta.

    I N R O D U C T I O N

    T H E C O R D I L L E R A R E A L R e s e a r c h P r o j e c t i s a j o i n t T e c h -

    n i c a l C o o p e r a t i o n P r o g r A m m e u n d e r t a k e n b y t h e O v e r s e a s

    D e v e l o p m e n t A d m i n i s t r a t io n ( O D A ) o f G r ea t B ri ta i n

    t h r o u g h t h e B r i t i s h G e o l o g i c a l S u r v e y ( B G S ) i n c o n j u n c -

    t i on w i t h t h e C o r p o r a c i 6 n d e D e s a r r o l l o e l n v e s t i g a c i 6 n

    G e o l o g i c o - M i m r o M e t a l u r g ic a ( C O D I G E M ) i n E c u a do r .

    ' S i n c e t h e s t a r t o f t h e p r o j e c t i n 1 9 8 6 , a d v a n c e s h a v e

    b e e n m a d e i n t h e u n d e r s t a n d i n ~ o f th e s tr a t i g r a p h y a n d

    s t r u c tu r a l e l e m e n t s i n t h e C o r d i l l e r a R e a l a n d p a r t s o f E l

    0 r e P r o v i n c e i n s o u th w e s t E c u a d o r ( F i g . 1 ). S o m e o f t h e se

    f i n d i n g s h a v e a l r e ad y b e e n p r e s e n t e d e . g . , L i t h e r l a n d e t

    l i b .

    F i g . 1 . P r i n c i p a l g e o m o r p h o l o g i e a l / g e o l o g i e a l z o n e s o f E c u a d o r.

    D o t p a t t e rn i n d i c a te s m e t a m o r p h i c r e e k s o f t h e p r e - C r e t ac e o u s

    b a s e m e n t .

    /

    A d d r e s s a l l c o r r e s p o n d e n c e a n d r e p r i n t r e q u e s t s t o D r . J o h n A . A s p d e a a t B G S I n t e r n a ti o n a l D i v i s i o n , K e y w o r t h , N o t t i n g h a m N G 1 2

    5 G G , U K : t e l e p h o ne 4 4 ] 6 0 2 ) 3 6 3 1 0 0 ; f a x [ 4 4 ] 6 0 2 ) 3 6 3 - 2 0 0 ; r ele nt 7 8 1 7 3 B G S K E Y G .

    1 9 9 2 C r o w n C o p y r i g h t

  • 7/26/2019 Aspden et al., 1992b.pdf

    2/20

    78 J.A . ASPDEN,S. H. HARRISON,and C. C. RUNDLE

    a l . ,

    1990; Aspdo n and Litherland, 1992). In this contribu -

    t ion w e concen t ra t e so le ly on docum ent ing the geochrono-

    logical data that have b een obtained. The isotopic

    analyses

    were carr ied out at the Natural Environment Research

    Counc i l s I so tope Geo logy Cen t re in London - - now re-

    named the Nat ional Isotope G-eosciences Laboratory

    (NIG L) and reloca ted at Ke ywo rth, Nott ingham.

    G e o g r a p h i c a l S e t t i n g

    The Cordi l lera Real i s the eas tern of two parallel m oun-

    tain chains that de fine the Ecuadorian Andes. In the north ,

    the Western Cordi l lera is separated from the Cordi l lera

    Real by a prominent s t ructural val ley, the Inter-Andean

    Depre ss ion, but in the south the And es are represented by a

    s ingle cordil lera. To the eas t of the Ecuadorian A ndes l ies

    the sub-Andean zone and the Oriente, which form part of

    the upper reaches o f the Am azon Bas in . T o the w es t l ies the

    flat , low coastal region o f the Costa (Fig. 1).

    G e o l o g ic a l B a c k g r o u n d

    North o f Guayaqu i l , t he C os ta compr i ses Upper Cre ta -

    ceous to C enozo ic fo re-arc sedimentary rocks f loored by

    Low er Cre taceous ocean ic basa l t s o f the P i flon Format ion

    (Baldock. 1982; Goossens and Rose. 1973). There is no

    e v i d e n c e o f

    c o n t i n e n t a l

    rus t be low these

    r o c k s

    (Feininger

    and Seguin, 1983). This part of Ecua dor is thus thought to

    represent oceanic crust that was accreted to the South

    Am er ican p la te in the La te Cre taceous o r Pa leocene (Bour-

    go i s e t a l . , 1990; Daly, 1989). In contras t, south of Guaya-

    qui l , the rock s of El 0ro Provinc e (Fig. 1) consis t mainly of

    grani t ic plutons and metam orphic rocks , which include am-

    phibol i tes , schism, and gneisses . The Western Cordi l lera

    compr i ses

    a NNF_,-trevdin

    bel t o f Cre taceous to lower Ter -

    t iary volcanic, volcaniclas t ic and sedimentary rocks that

    h a v e b e e n r e p o r t e d o n b y V a n T h o u mo u t a n d Q u e v e d o

    (1990) . Lebra t e t a l . . (1985), and H enderso n (1979).

    The inhospi table nature of the CcediUera Real , wi th i t s

    high al t i tude and abundant

    rainfall,

    together wi th l imi ted

    r o a d a c c e ss , h a s h i n d e r e d

    s tudy o f the geo logy o f

    t h i s e -

    g ion o f Ecuador . The Cord i ll e ra Rea l fo rms a con t inuous

    be l t o f var i ab ly defo rme d and m etamorphosed rocks tha t

    ex tends the l eng th o f the Ecuador i an A ndes

    and

    COnSiSts of

    s c hi s ts , q u a rt z i te s , a l c -s c h is t s , a r b l e s , a n d o r t h o - a n d

    p a r a g n e i ss e s A s p d e n a n d L i t he r l an d , 1 9 9 2 ) . A n u m b e r o f

    l at e, n d e f o r m e d p l u t o n s c u t t h e m e t a m o r p h i c r o c k s , a n d a

    s e r i e s o f m a j o r P l i o - P l e i s t o c e n e s t r a t o v o l c a n o e s d o t t h e

    C o r d i l l e r a .

    O v e r l y i n g t h e b a s e m e n t o f t h e O r i en t e , h i c h c o m p r i s e s

    r o c k s b e l o n g i n g to t h e A m a z m i c c r a t o u A l m e i d a e t a I .

    1 9 8 1 ) , a r e e p i - p l a t f o r m P a l e o z o i c a n d l o w e r M e s o z o i c

    sedimentary s t rata. These are overlain by Upper Jurass ic

    vo lc~n~ and Upper Cre taceous mar ine miogeosyncl ina l

    sedlmantary rOCks. Fol low ing the A ndean upl i f t , back-arc

    sedimantat ion occurre d during the

    C e n o z o i c

    (Jalliard

    e t a l . ,

    1990; Ba ldock, 1982; Tscho pp, 1953).

    P R E V IO U S G E O C H R O N O L O G I C A L S T U D IE S

    The apparent correlation of the predominantly Pale o-

    zoic metamorphic rocks o f the Cordi llera Central of south-

    ern Colombia wi th those of the Cordi l lera Real has

    per s jad ed so me to suggest a s imilar age for the latter e . g . ,

    B a l d o c L

    1982).

    E q u a l l y , i n t h e s o u t h , t h e C o r d i l l e r a e a l

    metamorphic be lt has been correlated li thologically with

    the basemen t rocks of northern Peru (Kennerly . 1980).

    wh ich are overlain

    b y

    Triass ic and possibly Dev onian sedi-

    men tary rocks (JaUiard e t al., 1990; Cobbing e t a l . , 1981).

    M etamorphic Rocks of he Cordi l lera Real

    P r e v i o u s l y p u b l i s h e d g e o c h r o n o l o g i c a l s t u d i e s o f t h e

    C o rd i ll e ra e a l m e t a m o r p h i c r o c k s h a v e r e li e d n t ir e ly n

    t h e K - A t t e ch n iq u e. e s u lt s r o m s o m e o f t h e m o r e i m p o r -

    t a n t o c al i t ie s F i g . ) a r e n o t e d b e l o w :

    a ) H e r b e r t a n d P i c h l e r 1 9 8 3 ) p r e s e nt e d K - A t d a t e s o f 5 9

    + 2 M a f r o m m u s c o v i t e a n d b i o t i te s e p ar a t e s f r o m

    s ch is ts h i c h c r o p o u t a l o n g t h e P a p a l l a c t a - B a e za o a d .

    A ~imilar K-A t b io ti t e da te o f 54 + 2 M a w as recorded

    by F e in ln se r

    and Silberman (1982) from the sam e area,

    and a s l igh t ly o lder age o f 82 + 3 M a was rep or t ed bv

    Ke nne dy (1980) for a mu scovi te sample.

    b ) Be t w e e n Ba f l o s a n d Pu y o . g a r n e t mu s c o v i t e b i o t i t e

    para- and orthogneisses are exposed near Agoy(m. Her-

    ber t and Pich ler (1983) ana lyzed muscov i t e separa t es

    f rom bo th o f these rock types and ob ta ined ages o f 56 .5

    + 2 and 60 + 2 M a, respect ively. Hal l and C al le (1982)

    repor t ed s ix K-A r ages f rom gnei s ses a long th i s road

    sec tion , r an ch S f rom 54 to 79 Ma.

    c) Hal l and Cal le (1982) quo ted K-Ar ages o f be tween 61

    a n d 9 0 Ma ( t h r e e d e t e r mi n a t i o n s ) f o r me t a mo r p h i c

    r o c k s f ro m t h e Cu e n c a a r e a a n d a g e s b e t w e e n 5 1 and

    79 M a ( th ree de te rmina tions ) fo r rocks in the Zam ora

    area . Ba ldock (1982) a l so repor t ed a K-A r b io t i t e age

    of 52 + 2 M a fo r gne i ss co l l ec ted from the Lo ja-Zamora

    road section.

    d ) Kenner ly (1980) recorded two K-A t ages o f 72 + 2 and

    81 3 M a f r o m b i o t it e g n e i s s e s n e a r P a l a n d a a n d

    Zum ba in the ex t reme sou th o f Ecuador.

    Ba sed on these data, Feininser (1982) and Hal l and CaUe

    (1982) interpreted the Cordillera R eal m etam orph ic bel t as

    predominantly of Late Cretaceous to early Tert iary age.

    M etamorph i c Rocks o f E1 ro Prov ince

    The metamorph ic rocks o f E l O ro Prov ince (Figs . 1 and

    2b). which s tr ike E-W , are obl ique to the NN E trend of the

    C o r di l l er a e a l , a n d t h e c on t a c t b e t w e e n t h e t w o b e l t s i s

    h i d d e n b y y o u n g e r s e q ue n c es . T h e r o c k s o f E l O r o P r o v .

    i n c e i n c l u d e a c e n t ra l c o r e o f a m p h l b o li t e , t h e P i e d r a s

    Group r-,eininee.r,1978). dated as Precamb rian by a s ingle

    K-At age obtained from a hornblende separate (743 + 14

    Ma; Kennerly , 1980). However, hornblende determina-

    tkms from similar amphiboli tes in the province have yield-

    ed ages o f 196 + 8 Ma and 74 + 1 Ma r-,einin~,er and

  • 7/26/2019 Aspden et al., 1992b.pdf

    3/20

    N e w

    g e o c h r c m o l o g i c l

    ont rol fox the tectono-mac,m~t ic evolut ion of the metamorphic basement , Ecuado r 79

    a )

    b )

    --OoO0

    . \

    oo w -.COL O~

    Pimompiro . ~ . ~ . ~ 7 j /

    | o u o j i

    ~7 :..:-....-:.- :-f w B a eza

    IqO0 S

    Teno

    Arnobato

    eRiobamba

    M a r e

    e P u y a

    ~ o o w

    ]

    Metamorphic rocks ( f f

    CordHlera Real

    I T : : Lag . . . g ra ni.

    U N D EFO R M ED PLU TO N S

    (~ imampiro

    Condue

    ~) Azuela

    (~ Pungala

    ..

    Fig. 2. L ocation and simplifiedgeological map of the Cordillera Real/sub-Andeanzone: a) between he Colombian frontier and 2 S

    (based on L itherland

    e t a l .

    1990); b) between 2S and the P eruvian frontier (based on L itherland

    e t a l . .

    1990), inset map of E10 ro

    metamorphicprovin ce after Baldock (1982).

    Silberman, 1982), throwing the Precam briau age assigned

    to these rocks in to considerable doubt. Th e Hed ras e0nve-

    l op s t h e R a s pa s b l ~ t c o m p le x ~ i n i n ~ , 1980,

    1978) (Fig. 2b) , fro wh ich a K -A t age of 132 5 M a (phen-

    gi te ) has been obta ined Feininoer and Silbermsn; 1982).

    Both the Pie&as G roup and the Raspas complex a re bound-

    ed to the n or th and south by low- to high-grade semi-pe li fic

    r oc ks a nd va r ia b ly de f o m ~ gr a n it e s o f t he T a hu in Gr oup

    (Fig. 2b) . Fein inge r (1982) has interpreted this grou p to be

    D~ cm isn in age , based on a brac .hiopod foLmd n a weak ly

    metam orphosed quar tz i te in nor thwest Peru. Howev er ,

    F e in in ~ a nd S ilbe ~m an (1982) ob t a ined a n a ge o f 210 + 8

    M a h em biot ite separa ted f rom a pe l i tic gne iss of the

    T a buin Gr oup , whic h t he y c ons ide r e d t o be t he a ge o f up-

    lift.

    SAES 6:1/2-F

    r a n i ti c o c k s

    Three majm NNE- t rendins ekmsate grani toid ba tho-

    l iths occur in the sub-Andean zone a l to 8 the eas te rn tec-

    tonic margin of the C ordil lera Real. F rom n orth to south,

    these a re the Rosa Flor ida , Abi tagua , and Zam~a

    batholiths (Fig. 2).

    The A bitasua batholith h as rece ived the mos t at tenticm.

    Kenn er ly (1980) repor ted a K-Ar age of 87 + 7 M a co a bio-

    r ite separate, w hereas Herbert and Pich ler (1983) record ed

    178 + 7 M a from a bioti te separate at a nea rby locali ty (both

    samples we re collected aloe8 the Bsflos-Pu yo road) 0r18.

    2 a .

    A K- Ar a ge o f 171 6 M a wa s ob t a i n_ by A ly ( 1980)

    f rom the Zamcca ba tholi th , and K-A t da tes of 173 5 M a

  • 7/26/2019 Aspden et al., 1992b.pdf

    4/20

    80 J.A . ASPDEN,S. H. HARRISON,and C. C. RUNDLE

    (hornblende) and 180 + 5 M a (biotite) hav e bee n publishe d

    by Kenn erly (1980) for a s ingle samp le col lected to the eas t

    of Paland a (Fig. 2b). Originally, this intrusion wa s thought

    to be a separate pluton (Baldock, 1982), but more recent

    wo rk has show n that i t form s part of the regional ly exten-

    s ive Zam ora bathol i th (Aspd en and Li therland, 1992).

    Within the eas tern part of the Cordi llera Re al north of

    2S, are the variably deform ed, often gneiss ic, Azafran and

    Chingual batholiths. To the west l ies a distinctive suite of

    general ly fol iate& garnet biot i te + muscovi te grani tes of

    the Tres Lagnnas subdivision. In the southeastern part of

    the Cordillera is the Sabanilla subdivision, a mixed unit

    (Fig. 2) w hich is dom inated by b iot i te + mu scovi te + garnet

    orthogneiss but also includes migmat i tes , paragneisses /

    schists and amphibolites.

    Tw o sam ples from the Tres Lagunas subd iv i sion eas t o f

    Saragnro (Fig. 2b ) gave K- Ar a ges of 76 + 1 M a (bioti te)

    and 173 + 4 M a (plagioclase) (Kennerly , 1980). K-A r dates

    obtained from the Sabanil la subdivis ion west of Zamo ra

    and f rom the Pa landa and Zum ba areas (F ig . 2b ) have been

    referre d to earlier.

    Other sm al ler plutonic bodies in the Cordil lera Rea l ap-

    pear as essent ial ly unde form ed grani toids, ma ny of which

    show int rusive relat ionships wi th the metamorphic rocks .

    Th ey include the Pimam piro, Magtayan, Am aluza, and San

    Lucas plutons (Fig. 2) . Various K-Ar ages . ranging from

    Late Cre taceous to Ter t i a ry , have been p rev ious ly pub-

    l ished for these plutons: 72 + ? Ma from Pimampiro

    (Evemden, 1961); 85 + 3 Ma (hornblende), 75 + 3 Ma

    Oaomblende). and 54 + 2 M a (K-feldspar) from M agtaygm

    (Kenner ly . 1980) ; 34 + 1 M a to 49 + 2 Ma f rom A maluza

    and 70 + 2 M a to 50 + 2 M a f rom San Lucas (Herber t and

    Pichler , 1983; Kennerley, 1980).

    The abo ve suggests that although isotopic data exis t for

    the metam orphic and plutonic rocks of the Cordil lera R eal

    and E l Oro P rov ince , t he ac tua l ages o f the main t ec tono-

    magm at i c even t s remain po or ly def ined . The a im o f thi s in -

    vest igat ion w as thus . f i rs t, to clari fy the age o f metamor-

    phism, us ing a combinat ion o f K-A r (hornblende. biot i te ,

    and mu scovi te) and Sm -Nd (garnet/whole-rock pairs)

    methods , and second , to da te the main p lu tous by the Rb-Sr

    whole- rock i sochron m ethod .

    A N A L Y T IC A L T E C H N I Q U E S

    Sampling and Rock reparat ion

    Sampling wa s res t r icted largely to road cuts and incised

    f iver beds . Wherever poss ib le , s amples were t aken f rom

    in

    situ

    outcrops , but some of the leas t al tered samples were

    from large boulders .

    For the Rb-Sr whole-rock analyses , af ter in i t ial jaw-

    c~ l~ in g _and rol ler mi l ling, representat ive 200 g sub-

    samples were rem oved us ing a r i ff l e sp li tt er and powdered

    in a tungsten carbide Swing-mil l . For samples requir ing

    mineral separation, the roller-milled material was sieved

    and the + 65 to -20 0 mesh f rac tion was w ashed in d i st il led

    water to rem ove any f ree pow der . Som e in it ia l coarse min-

    eral separat ion wa s carr ied out in Ecuado r. us ing heav y

    l iquids , b ut most o f the puri ficat ion was co mp leted in the

    U K, using a super-panner and Frantz m agne tic separator.

    Rb Sr Amllysis

    Rb-S r analyses we re carried out on whole-ro ck pow der

    samples from meta-plutonic rocks and orthogneisses. Rb/

    Sr rat ios were determined by X-ray f luoresce nce using an

    automated Philips spectrometer. Fo r the isotop e ratio deter-

    minations, s trontium was extracted from the samples us ing

    acid dissolut ion and ion exchange methods in a clean-

    chemistry laboratory and analyzed with an automated

    multi-collector VG354 mass spectrometer.

    The Rb/Sr rat ios are quoted wi th a blanket error of

    :L-0.5 (1-sigma). R eplica te analy ses of samp les and stan-

    dards sugg est that a reproducibili ty of _+0,005 s appro-

    pi late for the s trontium isotope measurements. Rep l icate

    analyses o f international standards ind icate that the results

    are accurate w ithin the precision estimates.

    The errors on age and initial ratio (Ri) are quoted as 2-

    s igma (95 confidence level) and refer to the las t s ignifi -

    cant figure. B est-fit l ines on the isochron diagrams we re

    calcu lated using a least-squares fi tt ing program. An

    M SW D (mean square o f weighted deviates) excee ding 3.0

    me ans that the points do no t all fi t the line w ithin the limits

    of analytical error and, fol low ing convent ional pract ice, the

    errors on age and intercept h ave bee n enhanced b y mul t i -

    p ly ing by the square roo t o f the MS WD . Al l ages w ere ca l -

    culated using a dec ay constant for 87R b of 1 .42 10 -11

    a--l.

    Sm Nd Ana lys i s

    This technique was used on whole-rock and garnet

    pairs, relying on the fractionation of the rare earth elem ents

    in garnet relative to the ho st whole-rock.

    Sm and N d were analyzed b y a double isotope di lut ion

    method. Powdered whole-rock and garnet samples were

    d i s so lved in ac id wi th an added m ou nt o f a Sm-Nd mixed

    spike. Both the Sin and the Nd were then exlracted using

    ion exchange methods and separa te ly ana lysed on the mass

    spectrometer.

    Errors in the Sm /Nd and the 143/144 Nd An alyses are

    quo ted as 0.2 and 0.005 (1-sigma), respe ctive ly, again

    bas ed on replicate analy ses of international standards. Th e

    resul ts are presented in the form o f isochron diagrams s imi-

    lar to Rb -Sr, and the techniques use d in calculating the

    b e s t f i t

    l ines, ages. an d errors are the sam e.

    K Ar Analys is

    K- At analyses were carr ied out predominantly on bio-

    ti te, mu scov ite, and hornblende separates an d only rarely

    ou whole-rock samples . This technique was used on al l

    suite, colle cted wh ere the appropriate unaltere d minerals

    were p resen t to suppor t e ither the Rb-Sr o r the S m-N d re-

    suits.

  • 7/26/2019 Aspden et al., 1992b.pdf

    5/20

    Ne w geoch rono log ica l contro l for the tec tono-m agm at ic evo lut ion o f the m etam orphic basem ent , Ecuad or 81

    P otas s ium was de term inod, a t l eas t in dupl icate, u s ing

    an Instrumentation Laboratories IL543 f lame photometer

    wi th l i th ium as interna l s tandard. Argon w as extrac ted by

    fus io n under vac uu m us ing externa l radio - frequency indue-

    t ion heat ing and ana lyzed by the i s o tope d i lut ion m ethod in

    a V G I s o t o p e s M M 1 2 0 0 m a s s s p ec tr o m et er .

    Repl ica te de term inations o f in -hou s e s tandards s ugg es t

    that an overa l l prec i s ion o f +1 (1 -s igm a ) is rea li st ic for

    the potass ium analyses . The error in the radiogenic argon

    determ ination i s par tly dependen t on the am ount o f con-

    taminating atmospheric argon, whic h often reflects the de-

    g r e e o f d e u t e r i alteration and hence varies considerably

    be tween s am ples . The argon s pike s ys tem was ca l ibrated

    against international s tandards , so the results can be ex-

    pected t o be accurate within th e l imits o f a n a l y t i c a l e r r o r

    The ages were ca lcula te~ l us ing the cons tants recom -

    m en ded by Ste iger and Jaeger (1977) , and the error on the

    age i s quoted a t the 95 conf id ence l eve l .

    R E S U L T S

    The s am ples co l l ec ted for dat ing axe l is ted in Table 1 .

    The Rb-Sr and Sm -N d analyses are g iven in Tables 2 and

    3, respectively, and the K -Ar data. with the calculated a ges .

    are presented in Table 4 . T hes e re s ul ts are d i s cus s ed be lo w.

    and the loca l i t i e s m ent ioned in the text are s how n in F ig . 2 .

    T a b l e 1 . L o c a t i o n a n d d e s c r i p t i o n o f s a m p l e s c o ll e c t e d f o r i s o t o p i c a n a l y s is .

    G r i d

    S a m p l e N o . R o c k t y p e s ) A r e a M a p S h e e t * R e f e r e n c e

    Garnet Gnetsses, Agoydn

    CCR/87/11A-E Garnet biotite mu s co v i t e s eh i s t s / g n e i s s e s

    Bafios-Puyo road Batios (e) 7939-8458/

    7918-8457

    Garnet Gneisses/Amphibolite, Papal lac ta

    CCR/87/4 Biotitic amphibolite

    CRSH/89/1A Garnet amphibolite

    CRSH/89/1B-C Garnet biotite 4-

    mu s co v i t e g n e i s s e s

    Sabant l la Subdiv i s ion Garnet Gnetsses/Amphtboli te, Valladolid

    CCR/87/24A

    CCR/87/24B

    CCR/87/24C

    CCR/87/24D

    CRSH/89/10A-D

    Amphibolite

    M u s c o v i t e p e ~ a a t i t e

    Muscovite p eg ma t i t e

    Biotite p eg ma t i t e

    Garnet-bearing g n e i s s e s / mi g ma t i t e s

    Saba nt l la Subdiv i s ion Or thogne t s se s Lo]a-Zamora Road

    CCR/87/23A-H Biotitic o r th o g n e i s s e s

    Papallacta village

    Float block, Rio Chalpi Grande

    Float blocks, Rto Chalpi Grande

    Papallacta (c) 818 4-9 9596

    Papallacta (c) 824 6-9 960 8

    Papallacta (c) 824 6-9 960 8

    North of Valladolid Valladolid 7079-94983

    North of Valladolid Valladolid 7079-94984

    S o u th of Valladolid Valladolid 7075-94935

    Near Palanda Valladolid 7074-94868

    Float blocks, Rio Va ll ad ol id Val la do lid 7075-94976

    CRSH/89/12A-C Biotite o r th o g n e i s s e s

    CRSH/89/12D-J Migmatitic biotite

    orLhogneisses

    FV57/FV58 Biotitic

    o r th o g n e i s s e s

    Tres a g u n a s S u b d i v i s io n Orthogneisses, South f S i g s i

    CCR/87/14A-D Biotite orthogneisses +

    i g n eo u s x en o l i th

    (14C)

    East of Sabanilla

    East of Sabanilla

    East of Sabanilla

    East of SabaniHa

    Float blocks, Rfo Santa B/u bara,

    Peggy Mine

    Tres a g u n a s S u b d i v i s io n Orthognetsses, Nor th Edge of Malaeatus Basin

    CRSH/89/11A-F Biotite + muscovite tourmaline granitic Qda. La Pieota

    o r th o g n e i s s e s

    CRSH/89/11G-J Biotite muscovite + tourmaline granitic Qda. Cobalera

    o r th o g n e i s s e s

    Tres a g u n a s S u b d i v i s io n Orthogneisses, Tree agunas, East of Saraguro

    CRSH/89/14A-K Biotite 4-mu s co v i t e o r th o g n e i s s e s + a p l i t ie R fo Negro

    variant (14K)

    Loja Norte 7199-9562/

    7199-95588

    Loja Notre 71 99 -9 55 87

    Loja Norte 71 97 -9 56 00

    Loja Norte 71 94 -9 56 14

    Sigsig 7476-96578

    Nambacola 6917-95396

    Nambacola 6914-95399

    Saraguro ca. 712-9604

    * 1:50,000 Topographic Sheet, published by Instimto Ge ogr~co MAlitarQuito;

    (c) ind icates uncontrol led topographic base m ap wi thout contours (censal).

    continued)

  • 7/26/2019 Aspden et al., 1992b.pdf

    6/20

    82 J. A . ASPDEN, S. H. HARRISON, and C. C. RUNDLE

    T a b l e 1 c o n t i n u e d )

    G r i d

    S a m p l e N o . R o c k t y p e s ) A r e a M a p S h e e t* R e f e r e n ce

    Pte dras Group Are nUlaz Amphtbot i t

    C R S H / 8 9 / 5 A - B A m p h i b o l i t e s

    P t e d r a s G r o u p P o r t o v el o A m p M b o U t e

    C R S H / 8 9 / S A - B A m p h i b o l i t e s

    T a h u i n G r o u p G a r n e t G n e i n e s

    C R S H / 8 9 / 6 A - E G a r n e t b i o t i te 8 n e i s s e s a n d f e l s ic p e E m a t i te s

    T a h u i n G r o u p P e s m a ~ t ~ G n c l ss e s

    C R S H / 8 9 / T A - B B i o t i t e m u s c o v i t e g r a n i t e a n d m u s c o v i t e

    tourm a l ine pe grna t i t e

    C R S H / 8 9 / 1 9 M u s c o v i t e t o u r m a l i n e p e g m a t i t e

    T a h u i n G r o u p M a r c a b eU P l u t o n

    C R S H / 8 9 / 4 A - E

    C R S H / 8 9 / 4 F - J

    Z a m o r a B a t h o l l t h

    C C R / g T / 1 6 A - H

    C C R / 8 7 / 1 7

    B i o t i t e m u s c o v i t e g r a n i t es

    Bio t i t e m us c ov i te g ra n i te s

    H o r n b l e n d e g r a n o d i o r i te s / h o m b l e n d e d i o r -

    i r e s + f e l s ic ve in (16 D)

    H o r n b l e n d e d i o r it e

    C C R / 8 7 / 1 8 P o r p h y r i t i c h o r n b l e n d e f e l d s p a r a n d e s i te

    C C R / 8 7 / 1 9

    H o r n b l e n d e g r a n o d i o d t e

    C C R / 8 7 / 2 0

    C C R ] 8 7 / 2 1 A - J

    C C R / 8 7 / 2 2 A - F

    C C R / 8 7 / 2 5

    C C R / 8 7 / 2 6 A - E

    Hornb le nde b io t i t e g ra nod io r i t e

    Hor nb le n de b io t i t e g ra nod io r i t e s + f e l s ic

    ve in (21C) + pa r t i a l ly d ige s te d xe no l i th

    (21D)

    P i n k p o r p h y r i t i c b i o t it e h o r n b l e n d e

    ( ? ) m o n z o g r a n i te s + h o r n b l e n d e m i c r o g r a n o -

    d io r i t e (22F)

    Porphy r i t i c ho rnb le nde a nde s i te d ike

    Hor nb le n de b io t i t e g ra nod io r i t e s /d io r i t e s

    C R S H / 8 9 / 1 3 A - B

    F V 6 0

    H o r n b l e n d e d i o r i t e s

    P o r p h y r i t i c h o r n b l e n d e g r a n o d i o r it e / d i o d te

    R M 1

    F V 6 8 1

    F V 4 8 5

    H o r n b l e n d e b i o t it e g r a n o d i o r i t e

    H o r n b l e n d e b i o t i te g r a n o d i ro i t e

    Hornb le nde b io t i t e g ra nod io r i t e

    A b i t a g u a B a t h o l t l k

    C C R / 8 7 / 5 A - I

    C C R / 8 7 / 6 A , B , D ,

    G - K

    C C R / 8 7 / 6 C , E , F

    C C R / 8 7 / 7

    A D M L 5

    Ho rnb le n de b io t i t e g ra nod io r i t e + f e l s ic ve in

    m a te r ia l

    Ho rnb le n de b io t i t e g ra nod io r i t e s + f e l s ic

    ve in m a te r ia l

    P ink porph yr i t i c ho rnb le nde b io t i t e g ra no-

    d io r i t e s

    H o r n b l e n d e a n d e s i t e d i k e

    H o r n b l e n d e g r a n o d i o r it e

    Are n i l l a s b r idge Are n i l l a s 6049-96072

    W e s t o f P o c t o v el a Z a m m a 8 5 1 9 - 9 58 8 2

    Rio P i e d r a s n o r t h o f L a B o c a n a L a A v a n z a d a 6 2 1 3 - 95 9 5 5

    Rfo E l N e g r o s o u t h o f L a B o c a n a M a r c a be f i

    Floa t block , Rio Pie .Areas a t La Maro abe li

    B o c a n a

    6218-95911

    6219-95927

    Ba ls a s qua r ry Ma rc a be l i 6308-95837

    Sou thw e s t o f Ma rc a be l i Ma rc a be l i 6188-95775

    L a Pa x a re a Ya n tz a xa 7362-95864 /

    7369-95845

    F loa t b loc k , Qda . Cur i s hp , s ou th Ya n tz a xa 7368-95845

    o f L a P a x

    F loa t b loc k , Qda . Cur i s hpe , s ou th Ya n tz a xa 7368-95845

    o f L a P a z

    Qda . Ma yc un a n tz a , s ou th o f L a Ya n tz a xa 7351-95830

    Pa z

    Sou th o f L a Pa x Ya n tz axa 7340-95783

    S o u t h o f Q d a . C h a p i n t z a, G u a y s i m i 7 6 6 0 - 9 5 5 3 0 /

    Pa qu is ha a re a 7652-95540

    R i o P i t u c a a r e a a n d R i o J a m b u e Z a m o r a 7 2 9 4 - 9 5 4 28

    7288-95432

    (22F)

    P a l a n d a - Z u m b a r o a d R i o M a y o 7 0 7 4 - 9 48 0 4

    P a l a a d a - Z u m b a r o a d R f o M a y o 7 0 7 4 - 9 4 8 0 9 /

    7075-94781

    Rfo Chic a na e a s t o f L a Pa x Ya n tz a z a 7432-95930

    F loa t b loc k f rom Gua ys im i s ou th Gua ys im i 7575-95527

    o f P a q u i s h a

    Rio M a y o Z u m b a 7 1 4 4 - 9 45 3 6

    E a s t o f pa la nda Va ilado lid 7218-94880

    Qda . de L oa De r rum be s e a s t o f Va l la do l id 7175-94972

    Valladolid

    Cos a nga - ' l~na roa d ca. 5 5 k m C o s a n g a ( c )

    n o r t h o f T e n a )

    Ba f ioa -Puyo roa d Me ra ( c )

    Ba f loa -Puyo roa d Me ra ( c )

    Ba f loa -Puyo m a d Me ra ( c )

    F loa t b loc k ,

    Rio Zuflag,

    Ba f los - Me ra

    c)

    P u y o r o a d

    8131-98442 /

    812 98444

    8148-98405/

    812 98444

    8147-98404

    8127-98444

    * 1 :50 ,000 T opogra ph ic She e t , pub l i s he d by Ins t i tu to Ge og r~ ic o M i l i t ar Qu i to ;

    ( c ) ind ic a te s unc on t ro l le d topogra ph ic ba s e m a p wi thou t c on tour s ( c e ns a l) .

  • 7/26/2019 Aspden et al., 1992b.pdf

    7/20

    N ew geochronological control for the tectono-magm atic evolution of the metam orphic basement, Ecuador 83

    T ab l e 1 c on t i n u e d )

    G r i d

    S a m p l e N o . R o c k t y p e s ) A r e a M a p S h e e t* R e f e r en c e

    A z a f l ~ n B a t h o l l t h

    CCR/87/SA-I Leucogranites + aplite vein SD + quartz- Baflca-Puyo road Baflos c) 8058-98448/

    feldspar pegmatite 8C) 8039-98449

    CCR/87/9 Biotite granodiorite Baflos-Puyo road Baflos c) 80~9-98450

    CCR/87/IOA-B Hornblende biotite diorites Bafios-Puyo road Baflos c) 8009-8452

    ADMIA Hornblende biotite diorite Float block in Rio Verde, Baf los - Baf ios c) 8009-8452

    Puyo road

    C I i i a g u a l B a t h o l i t h , S a n ~ B d r b a r a . L a B o n i t a R o a d

    CCR/87/2A-J Biotite orthogneisses

    Northwest of Pimampiro Huaca c) 88 69 -1 00 60 5/

    8871 - 100595

    S a c h a P l u t o n

    CCR/87/3

    P l m a m p b o P l u t o n

    CCR/87/1A

    CCR/87/1C

    M a ~ t a y d n P l u t o n

    CCR/87/13A-C

    Hornblende biotite diorite

    Hornblende granodiorite

    Hornblende granodiorite

    Hornblende biotite diorites and hornblende

    gabbro 13B)

    Un named Pluton Cuenca-Ltm6n Road

    FV83

    S a n L u e a s P l u t o n

    CCR/87/28A-C

    FVI1

    FV15

    FV34

    Biotite granodiorite

    Pink porphyritic biotite granediorites

    Hornblende granodiorite

    Hornblende biotite granodiorite

    Biotite granodiorite

    T a m p a n c h i M a r i e l g n e o u s C o m p l e x

    CRSH/89/17A-C Hornblende gabbro, pegmatitic horn-

    blendites and hornblende basalt

    a t a m a y o P l u t on

    CCR/87/29A-B Biotite granodiorite

    Qda. Tungurahua Huaca c) 88 34 -1 00 69 0

    Near Mataqui Pimampiro 1744-00420

    Qda. Manzanal Pimampiro 1785-00438

    Osogochi area Totoras 7678-97580/

    7621-97520

    Principal c) 7650 -96663

    Qda. Tunttln Santiago 6933-95849

    Qda. Bucashi Santiago 6928-95857

    Juntas 6948-95785

    Qda. E1Gallo Loja Norte 69 85 -9 57 40

    P t c M n a l P l u t o n

    CRSH/89/15

    P u n g a l d P l u t o n

    CCR/87/12A-C

    Biotite granodiorite

    Hornblende biotite granodiorites

    Cola de San Pablo 7625-97080

    Loja-La Toma road Catamayo

    La Toma)

    Rfo Pinchinal Saraguro 7045-95999

    P o r ~ h u e l a B a t h o lt .~ , T r a ck . fr o m J t m b u ra t o Z u m b a

    CCR/87]27A-B Biotitic felsic porphyry .. .. .. .. ..

    CCR/87/27C-G Hornblende biotite granodiofites and diorites .. .. .. .. ..

    Guamote and 7680-97965/

    Riobamba 7680-98000

    Laguna Cox 677 3-9 472 3

    Laguna Cox 6755-94744/

    6745-94765

    * 1:50,000 Topographic Sheet, published by Instituto Geogrifico Mllitar Quito;

    ) indicates uncontrolled topographic base map without contours censal).

    M etamorph ic Rocks o f he o rd i l l er a Rea l

    Metam orphic rocks fro m the C ordil lera Real were col-

    lected from four separate local it ies: Papallacta on the road

    betwee n Qui to and Baeza) . Aso y~n between Baf ios and

    Puy o) , eas t of Sabani ila between Loja and Zamoxa) , and

    t h e V a l l a d o l i d a r e a i n s o u t h e r n E c u a d o r . A l t h o u g h a c o m -

    b i n at i o n o f K - A t R b - S r a n d S m - N d d a t a h a s b e e n o h -

    m i n e d f r o w n h e s e o c k s t h e r e s u lt s r e f a r r o m c o n c l u s i v e .

    T w o s ui te s f o r t h o g m i s s f r o m t h e S a b an i l la a n d V a U a -

    d o l id a r e a s w e r e d a t e d b y t h e R b - S r m e t h o d b u t bo t h d a t a

    s e ts s h o w a w i d e s c a tt e x n t h e i s o c h r c m d i a g r a m s . N e v e r -

  • 7/26/2019 Aspden et al., 1992b.pdf

    8/20

    84 I.A. ASPDEN, S. H. HARRISON and C. C. RUNDLE

    Table 2 . Rb Sr analyt i ca l data .

    Sample N o. R b Sr

    gTRb

    ~ S r

    S a b a n i l l a S u b d i v i s i o n O r t h o g n e i ss es n e a r Z am o r a

    7Sr

    S6Sr

    CRSH/89/12A 106.2 188.7 1.6714 0.7180 1

    CRSH/89/12B 97.8 207.8 139 73 0.716 90

    CRSH/89/12C 83.7 182.5 13628 0.71686

    CRSH/89/12D 82.8 178.6 13 767 0.71671

    CRSH/89/12E 104.0 204.9 1.5065 0.71717

    CRSH/89/12F 100.3 191.3 1.5575 0.7174 0

    CRSH/89/12G 117.5 209.9 1.6629 0.7174 2

    CRSH/89/12H 87.9 188.6 13 848 0.71671

    CRSH/89/ I 2I 82.7 176.2 13946 0.7167 0

    CRSH/89/12J 73.5 214.5 1.0175 0.715 96

    CCR/87/23A 123 204 1.747 0.7178 8

    CCR/87/23B 110 197 1. 60 1 0.717 74

    CCR/87,r23c 45.2 201 0.6521 0.71436

    CCR/87/23D 128 208 1.7 68 0.71776

    CCR/87/23E 119 210 1.63 3 0.71682

    CCR/87/23F 128 192 1. 931 0.71 716

    CCR/87/23G 96.3 231 1.2 05 0.71546

    CCR/87/23H 121 124 2.833 0.7 217 3

    T r e s L a g u n a s S u b d i v i s i o n O r t h o g n e i s s es

    CRSH/89/11A 124.5 142.0 2.6054 0.7192 2

    CRSH/89/ I 1B 124.6 138.3 26795 0.7199 4

    CRSH/89/11C 129.5 133.8 2.8755 0.7196 7

    CRSH/89/11D 117.5 144.6 2.415 0 0.71883

    CRSH/89/11E 126.1 137.1 27307 0.71975

    CRSH/89/11F 131.9 168.0 23324 0.71871

    CRSH/89/11G 138.7 99.5 4.1415 0.721 56

    CRSH/89/11H 134.3 131.1 3 )438 0.72 075

    CRSH/89/11I 135.1 129.4 3.0908 0.720 82

    CRSH/89/14A 189.7 95.0 5.9439 0.72867

    CRSH/89/14B 174.8 106.9 4.8(~6 0.72590

    CRSH/89/14C 186.7 93.3 5.9499 0.72893

    CRSH/B9/14D 182.7 102.0 53283 0.7283 9

    CRSH/89/14E 175.1 97.3 53507 0.72 684

    CRSH/89/14G 186.3 97.7 5.6710 0.72905

    CRSH/89/14H 197.0 85.8 6.8323 0.73043

    CRSH/89/14I 173.7 103.2 5.0067 0.725 79

    CRSH/89/14J 169.8 109.9 4.5905 0.7252 0

    CRSH/89/14K 144.7 102.1 4.19 89 0.7237 9

    A d t a g u a B a t h o l t t h

    CCR/87/SA 159 22.7 20.42 0.7 518 3

    CCR/87/5B 85.9 285 0.871 7 0.7065 2

    CCRhl7/5C 156 26.3 17.29 0.7 441 0

    CCR/87/5D 87.0 259 0.9730 0.70677

    Sample N o. R b

    A b i t a f u a B a t h o H Ot c o n t i n u e d )

    CCR/87/5E

    CCR/87/5F

    CCR/87/5G

    CCR/87/SH

    CCR/87/5I

    CCR/87/6B

    CCR/87/6D

    CCR/87/6G

    CCR/87/6H

    CCR/87/61

    CCR/87/6J

    CCR/87/6K

    8/Rb gTSr

    Sr S6Sr SeSr

    160 23.4 19. 85 0. 74 96 3

    66.5 421 0.45 74 0.705 60

    92.3 389 0.68 68 0.706 20

    103 327 0.904 4 0.706 64

    150 54.1 8.016 0.7 229 8

    132 428 0.8886 0.70667

    130 98.5 3.821 0.7 1348

    225 15.2 43.31 0.80 39 4

    102 355 0.83 19 0.706 70

    93.1 382 0.7041 0.706 15

    235 10.3 67.85 0. 86 17 0

    54.9 959 0.1659 0.70494

    Z am o r a B a t h o l i th L a P a z A r e a

    CCR/87/16D

    CCR/87/16E

    CCRf87/16F

    CCR/87/16G

    CCR/87/16H

    82.6 46.2 5.190 0.71 840

    46.7 247 0.54 69 0.706 09

    51.1 238 0.6231 0.70 622

    14.9 374 0.1 160 0.704 99

    26.1 270 0.2 802 0.705 30

    Z am o r a B a t h o l tt h P a q u t sh a A r e a

    CCR/87~1A

    CCR/87/'21B

    CCR/87/21D

    CCR/87/21E

    CCR/87/21F

    CCR/87/21G

    66.2 391 0.490 4 0.70631

    70.7 367 0.55 82 0.7066 5

    63.9 432 0.4281 0.70 629

    79.1 391 0.5844 0. ~

    96.7 339 0.827 5 0.7073 4

    62.8 364 0.49 92 0.70635

    Z am o r a B a t h o l i t h R o P i t u c a A r e a

    CCR/87/22A 105 373 0.8 170 0.7 066 0

    CCR/87/22B 71.8 181 1.139 0.70770

    CCR/87/22C 103 387 0.7701 0.70645

    CCR/87/22D 107 385 0.805 4 0.70649

    CCR/87/22E 96.8 388 0.7213 0.7 064 0

    CCR/87/22F 59.2 674 0.254 5 0.70 460

    Z am o r a B a th o l i t h P a l a n d a A r e a

    58.6 329 0.5161 0.706 17

    56.0 335 0.484 8 0.706 12

    53.5 325 0.476 3 0.705 99

    47.3 359 0.3821 0.705 92

    42.4 353 0.3 476 0.705 78

    CCR/87/26A

    CCR/87/26B

    CCR/87/26C

    CCR/87/'26D

    CCR/87/26E

    zafranB a t h o l i t h

    CCR/87/8A

    C C R 8 7 S B

    C t I { 8 7 S D

    C C R 8 7 S E

    100 86.5 3.345 0.710 29

    127 70.8 4.817 0.71 291

    109 77.1 4.074 0.7 11 60

    110 75.5 4.229 0.71 171

  • 7/26/2019 Aspden et al., 1992b.pdf

    9/20

    New geochrono log ica l con t ro l fo r the tec tono-magm at ic evo lu t ion o f the metamorphic basement , Ecuador 85

    Table 2 continued)

    S a m p l e N o .

    R b S r

    Table 3 . Sm -Nd analyt ical data for the Tahuin G roup

    garnet orthogneiss 219 + 22 Ma)

    A z a f r a n B a O t o l i O t c o n t i n u e d)

    87R b STSr 147Sm 143Nd

    S S S r S 6S r S m N d

    S a m p l e N o . p p m ) p p m ) 1 44 N d 1 4 4N d

    CC R/ 87 / S F 111 71 . 0 4 . 495 0 . 71223

    CC R/ 8 7 / 8G 111 80 . 5 3 . 984 0 . 71147

    CC R/ 87 / S H 104 60 . 3 5 . 004 0 . 71309

    Chingual atholith

    C C R / 8 7 / 2 B 3 8 . 2 4 6 7 0 . 2 3 6 8 0 .7 0 41 4

    C C R / 8 7 / 2 C 4 4 . 4 3 5 3 0 . 3 6 4 0 0 .7 0 45 0

    C C R / 8 7 / 2 D 4 6 . 3 3 3 5 0 . 3 9 9 9 0 .7 0 46 0

    C C R / 8 7 / 2 E 3 1 . 6 5 1 7 0 . 1 7 6 6 0 .7 0 40 6

    CCR , t 87 / 2F 30 . 6 507 0 . 174 8 0 . 70402

    C C R / 8 7 / 2 G 3 1 . 2 5 0 7 0 . 1 7 7 9 0 .7 0 41 3

    C C R / 8 7 / 2 I 4 4 . 7 4 1 7 0 . 3 1 0 6 0 .7 0 42 8

    C C R / 8 7 / 2 J 4 6 . 6 4 0 5 0 . 3 3 2 6 0 .7 0 43 3

    San Lucas Pluton

    CC R/ 8 7 / 28 A 130 123 3 . 049 0 . 70703

    CC R/ 87 / 28B 154 79 . 9 5 . 561 0 .70887

    CCR / 87 , r 28c 82 . 2 263 0 . 9165 0 . 70536

    theless , data from the Sabani l la orthogneiss yield the best

    l inear correlat ion and are cons idered to give the mo re reli -

    ab le age o f 224 + 37 M a (M SW D = 108 ; F ig . 3a). The re la -

    tively high initial

    8 7 S r 8 6 S r

    rat io of 0 .7123, together wi th

    the s t rongly gne issose character o f the rocks , suggests that

    this i s proba bly the age o f metamorphism; thus i t i s postu-

    lated that this took plac e in La te Triassic-Early Jurassic

    t imes. The Val ladol id orthogneiss sui te , which is more

    mass ive in t ex tu re bu t no tab ly w eathered , gave a very poor -

    ly cons t ra ined age o f 359 + 99 Ma, wi th an MSWD of

    1877. The wide scat ter o f these data indicates considerable

    dis turbance o f the isotopic systems, and l i t tle rel iance can

    be place d on this age.

    K-Ar da ta f rom amphibo l i t es and gne i s ses f rom the

    Papal lacta area hav e given extrem ely variable ages . Biot i te

    f rom one sample o f garne t b io t it e gne i ss y i e lded a l a te Pre-

    cambr ian age

    c a .

    850 M a) , whereas musco v i t e f rom an ad -

    jace nt bloc k of s imilar material recorde d a Late Cretaceous

    eve nt (74:1:3 Ma). In contras t, two samp les of hornblende

    from amphibol i t ic material gave poorly reproducible re-

    sults , wi th a m ean of 345 : t: 29 M a, suggesting Devo nian to

    Carboniferous act ivi ty . Due to the pauci ty of exposure,

    however , mos t o f these ana lyses were car r i ed ou t on

    samp les from relat ively smal l, rounded, loose blocks from

    a river bed, w hich y ielded confl ict ing data. I t i s thus di ff i -

    cul t to extract any usefu l informat ion from these. M ore de-

    tai led geolog ical map ping an d more spe cif ic sampling are

    requ i red b efo re the p resence o f p re-M esozo ic rocks in th is

    area can be conf i rmed .

    Al l t he K-A r da ta f rom para- and o r tho-gne is ses o f the

    Sabani l la subdivis ion near Zamora and VaUadol id gave

    Late Cretace ous ages , ranging from 85 :l: 2 to 65 + 2 M a.

    How ever , i n v i ew of the Rb-S r da ta d i scussed above , which

    C R S H / 8 9 / 6 A w r ) 5 . 5 9 3 0 . 6 3 0 . 1 1 0 2 0 . 5 1 2 0 7 5

    C R S H / 8 9 / t A g t ) 4 . 5 6 1 4 . 52 0 . 1 8 9 8 0 . 5 1 2 2 2 0

    C R S H / 8 9 / 6 B w r ) 7 . 6 3 3 7 .4 1 0 . 1 2 3 2 0 . 5 1 2 1 3 2

    C R S H / 8 9 / t B g t ) 6 . 6 2 2 3 . 5 4 0 . 1 7 0 0 0 . 5 1 2 1 7 0

    C R S H / 8 9 / 6 C w r ) 6 . 3 3 3 4 . 6 4 0 . 1 1 0 5 0 . 5 1 2 0 7 4

    C R S H / 8 9 / 6 C g t ) 4 . 2 2 1 0 .7 3 0 . 2 3 7 7 0 . 5 1 2 2 8 0

    C R S H / 8 9 / 6 D w r ) 7 . 9 2 4 0 . 1 3 0 . 1 1 9 3 0 . 5 1 2 1 1 1

    C R S H / 8 9 / 6 D g t ) 5 . 5 3 1 6 . 74 0 . 1 9 9 7 0 . 5 1 2 2 4 5

    C R S H / 8 9 / 6 E w r ) 7 . 2 3 3 8 . 8 3 0 . 1 1 2 6 0 . 5 1 2 0 9 9

    C R S H / 8 9 / 6 E g t ) 4 . 8 3 1 4 .9 3 0 . 1 9 5 6 0 . 5 1 2 2 3 7

    K e y : w r , w ho l e r oc k ; g t , ga r ne t .

    sugge st a Late Triassic-Early Jurass ic metamorphism,

    these are al l considered to reflect a ma jor isotopic even t ,

    significantly later than the m ain gneissification. Th is inter-

    pretat ion is supported by K -A t data from h ornblende from

    an amphibolite dike cutting the garnet gneiss at Valladolid,

    which has p reserved an age o f 132 + 5 Ma, p resumably re -

    flecting on ly partial resetting during th e La te Cretac eou s

    event. Furthermore, whe re coexis t ing pairs o f micas w ere

    da ted ( samples CR SH /89 /10A, /10C , /12A, /12C ) , t he mus-

    covi tes (average ag e 69 + 3 M a) consis tent ly gave s isni f i -

    cant ly younge r ages thnn the biot ites (average age 84 + 2

    Ma) and also had s ionif icantly lower K-con tents ( the re-

    verse of what i s normal ly expected). This pat tern may sug-

    gest that the muscovi tes formed at a later s tage than the

    bioti tes , but th is w ould imp ly that the eve nt did no t resul t

    in sit,nif'tcant argon loss from the biotites. Alternatively,

    and possibly m ote l ikely , i t may b e that these low-K mu s-

    covi tes have an abnormal ly low blocking temperature to

    argon diffusion; this suggestion is supported by the signif-

    icant ly older age (77 + 3 M a) given by the musc ovi te from

    sample CC R/87/24B, which has a m ore norm al K-content.

    K-A r dating of garnet gneiss from Agoya n was a lso

    rather unsatisfactory. The whi te mica separated from these

    rocks p roved to be an unusua l ly low-K var i e ty (p robab ly

    Na-rich paragonite), and hence there are relatively high

    errors on individual age determinations. Ne verthe less,

    three samples ga ve concordant resul ts , w i th a mean of 76 +

    3 Ma, in goo d agreement w i th the data from the Sabani lla

    subdivis ion and presumably reflecting the sam e Late C re-

    taceous event .

    Garnet was separated from samples col lected from the

    Papallacta area and from the Sabanilla su bdiv ision gam eti-

    ferous gneisses for Sm-N d analysis . Ho we ver, in all eight

    analyzed sam ples there wa s li t tle or no fractionatiou of the

    rare earth isotopes between the garnet and associated

    whole-rock, and hence the data w ere of no va lue for dat ing

    pm'lXX~s.

  • 7/26/2019 Aspden et al., 1992b.pdf

    10/20

    8 6 J . A .

    A S P D E N

    S. H . HARRISON and C. C. RUNDLE

    O. 7 2 5

    O. 7 2 0

    O. 7 t 5

    0 . 7 1 0

    O. 7 0 5

    0 . 7 3 5

    0 . 7 2 5

    0 . 7 t 5

    0 . 7 0 5

    0 . 7 2 0

    0 . 715

    0 . 7 1 0

    0 . 7 0 5

    O. 709

    O . 7 0 7

    O . 705

    O . 703

    0 . 701

    I I

    8 7 S r / 8 6 S r

    I T I I

    o)

    . . . . . ? ~ , . . . . . '

    . . . . . , . . .

    .....

    AGE 224 + -. 37 Ma (2 s )

    I n t e r c e p t 0 . 7 4 . 2 3 4- 0 . 0 0 0 8

    MSWD 108.6 Enhanced E r r o rs

    87R b / 86S r

    J L I I I

    4.. 0 2 . 0 5 . 0

    I [ l l [ I l

    8 7 S r / 8 6 S r

    ( C ) ~ ..........

    ....., e ~ : ~ : ~ .......

    ' ' ' t

    AGE 20 0 _+ 12 Ma 12s )

    Z n t e r c e p t 0 . 7 t 2 0 + 0 . 0 0 0 7

    MSWD |69.1 Enhanced Erro rs

    8 7 R b / 8 6 S r

    L I J I I I I

    t 3 5 7

    I I I

    8 7 S r / 8 6 S r

    e )

    I I

    . . - -

    . , . - 1 '

    . . . .

    . . , . '

    . . . . '

    . . .

    . . . '

    . . -

    AGE 187 + 2 Ma 12s )

    I n t e r c e p t 0 . 7 0 4 6 0 . 0 0 0 0

    M S W D 2 . 9

    8 7 b / 8 6 S r

    1 J I i

    2 :5 4 5

    8 7 S r / 8 6 S r

    ] 1 I I

    I

    0 . 2

    c j )

    . ~ . . , p ~ . . . . . . . . . . . . . . . . . . . . . . . J P

    . . . . . . , '

    . , . . '

    . . . . . , '

    AGE 24 6 +- 17 Ma (2s )

    I n t e r c e p t

    0 . 7 0 3 7

    * 0 - 0 0 0 2

    M SW D 4 . 4 E n h a n c e d E r r o r s

    8 7 R b / 8 6 S r

    I I 1 J

    0 . 4 0 . 6 0 . 8 1 .0

    O.

    5 1 4

    0 . 5 t 2

    0 5i0

    O. 50 8

    0 . 5 0 6

    0 . 8 5 0

    0 . 8 0 0

    ~ . 750

    0 . 7 0 8

    0 . 7 0 6

    0 . 7 0 4

    0 7 0 2

    0 . 7 0 7

    0 705

    0 . 7 0 3

    O. 701

    ] I I

    ~ 3 N d / 144Nd

    b )

    . . . . .. . . . .. 4 - . . - - H l - - l - . . . .. . . .. . . .. . .

    I

    0 . 4 ,

    A GE 2 t 9 22 M e ( 2s )

    I n t e r c e p t 0 . 5 1 i 9

    0 . 0 0 0 0

    M S W D 0 . 4

    t47Sm/144N(

    I J i

    0 5

    0 . 5

    I I

    87 S r / 86 S r

    . , 'tF ' " In t e rcept

    . : , + : .... MSW D 2. 5

    I [ I I

    40 3O

    I [ I I I

    d ) . . . . . . . .

    . . . . . . , . . . . . ' *

    . . .

    " " ' A GE t 6 2 ~ t M a l 2 s )

    0 . 7 0 4 6 -+ 0 . 0 0 0 0

    8 7 R b / 8 6 S r

    I I I

    5 0 7 0

    I I [ I I

    8 7 S r / 8 6 S r

    f ) . . . . . . + . . . . . . .. . . . . . .

    1

    0.1

    AGE 198 + 34 Ma (2s )

    I n t e r c e p t 0 . 7 0 5 0 _+ 0 . 0 0 0 3

    M SW D 4 . 2 E n h a nc e d E r r o r s

    8 7 R b / 8 6 S r

    I L L I

    0 . 3 0 . 5 0 . 7 0 . 9

    [

    8 7 S r / 8 6 S r

    [ I I

    ( h )

    . . . . . . . - ~ . . .. .. . .. .. , ~ . e . .. .. . .. .. .

    I

    0.1

    AGE 144 +_ 35 Ma (2 s)

    ~ n t e r c e p t 0 . 7 0 5 1 + 0 . 0 0 0 2

    M S W D 2 . 7

    8 7 R b / 8 6 S r

    0 . 2 0 . 3 0 . 4 0 . 5

  • 7/26/2019 Aspden et al., 1992b.pdf

    11/20

    New geochronological conlrol for the tectono-magmatic evolution of the metamorphic basement, Ecuador 87

    O . 714

    O . 710

    O . 7 0 6

    O . 7 0 2

    0 . 7 0 8

    0 . 7 0 6

    0 . 7 0 4

    I

    8 7 S r / 8 6 S r

    I I I I I . .

    . . .

    i ) ....

    . . . ~ . 4 . . . . .

    . . . '

    . .

    . , '

    . , . '

    I

    I 2

    I

    8 7 S r / 8 6 S r

    . . . . .

    . . . -

    AGE 120 * - 5 Mo 25 )

    I n t e r c e p t 0 . 7 0 4 6 _* 0 . 0 0 0 3

    M S W D 2 . 4

    8 7 R b / 8 6 S r

    I I I I I

    3 4 5 6 7

    k )

    . . .

    . . , . - -

    . o . - '

    . . ,

    . . . o

    , , . . ~ '

    . . . -

    . . . ,

    G E 53 -~ 2 Mo 2s )

    I n t e r c e p t 0 . 7 0 4 7 +_ 0 . 0 0 0 1

    M S W D I 6

    8 7 R b / 8 6 S r

    i I I I I

    2

    3

    4 5 6

    O . 7 0 5

    0 . 7 0 4

    0 . 7 0 3

    0 . 7 0 2

    0 , 701

    I 1 I 1

    8 7 S r / 8 6 S r

    J )

    . # .. . . . . . .. . . .. . . ~ ,v . . ~ '4 .. . .. . . .. . . .. . .

    I

    O I

    AGE 156 -~ 21 M o I s )

    I n t e r c e p t 0 . 7 0 3 7 *_ O , O 0 0 l

    M S W D 2 . 8

    8 7 R b / 8 6 S r

    I I I

    0 . 2

    0 3

    0 . 4

    Fig. 3. Isochron diagrams for the Cordillera Real and E10ro

    Province: a) Sabanilla subdivision orthogneiss. Cordillera Real;

    b) Tahuin Group garnet orthogneiss, El Oro Province; c) Tres

    Lagunas granitic subdivision, Cordillera Real; d) Abitagua

    batholith, sub-Andean zone; e) Zamora batholith, La Paz area,

    sub-Andean zone; f) Zamora batholith, Paquisha area, sub-

    Andean zone; g) Zamora batholith, Rio Pituca area, sub-Andean

    zone; h) Zamora batholith, Palanda area, sub-Andean zone;

    i) Azafran batholith, Ba~os road, Cordillera Real; j) Chingual

    batholith, near the Colombian border, Cordillera Real; k) San

    Lucas pluton south of Saraguro, CordilleraReal.

    Metam orphic Roc ks fro m l Oro Province

    The data from the metamorphic rocks of El Oro Prov-

    ince proved to be more rewarding. Sm-Nd analysis on gar-

    net/whole-rock pairs was carried out on samples of the

    Tahuin Group collected from localities near La Bocana.

    These rocks included garnetiferous pelitic gneisses and

    felsic pegmatites. The combined data from these two litho-

    logics form a well-defined isochron with an age of 219 + 22

    Ma (Fig. 3b). indicating the date of the garnet growth,

    which would have been at the height of metamorphism

    within these rocks.

    K-At dating of the Tahuin Group gneisses was also

    highly successful, with three samples of muscovite and two

    of biotite giving concordant ages with a mean of 213 + 5

    Ma. in remarkably close agreement with the Sm-Nd age.

    Furthermore, these ages are also in good agreement with

    the age of 210 Ma reported by Felnlnger and Silberman

    (1982). Only one sample (CRSH/89/19 (rose)) gave a sig-

    nificantly younger age (189 + 5Ma). but this was from a

    late pegmatitic facies from a loose fiver boulder and may

    not be so closely related as the other samples, or, alterna-

    tively, the coarse muscovite may have been more suscepti-

    ble to subsequent argon loss. Thus, the T ahuin Group

    gneisses probably formed at around 220-210 Ma (Late Tri-

    assic), cooled relatively rapidly after this event, and were

    largely unaffected by the subsequent Late Cretaceous re-

    setting.

    Amphibolite samples from the Piedras Group, however,

    do appear to have been reset during the Late Cretaceous, as

    two hornblende separates from the Arenillas area have

    given a mean K-Ar age of 74 + 2 Ma. which agrees with

    that of 74 + 1 Ma (K-Ar biotite) obtained by Feininger and

    Silberman (1982) from the same area.

    Other samples from the Piedras Group are more per-

    plexing. Two amphibole separates from the same locality

    near Portovelo have extremely low K contents (0.07% and

    0.05%). yielding very different ages: 224 + 34 and 647 : : 37

    Ma. respectively. These may be compared with the widely

    quoted Precambrian date o f 743 :t: 14 Ma reported by Ken-

    nerly (1980) for a similar amphibole from Portovelo which

    also had a very low K-content (0,084%). Clearly these are

    not normal hombtendes and may not be reliable geochro-

    nometers. Moreover. with such low K-contents, they are

    likely to be extremely susceptible to the presence o f excess

    argon, which would cause the calculated ages to be spuri-

    ously old. Hence, none of these ages can be considered re-

    liable, and the presence of Precambrian rocks in this area

    cannot be confu'med.

    A relatively undeformed granodiofitic intrusion, the

    Marcabeli phiton, is exposed within the Tahuin Group of El

    Oro Province. K-Ar ages obtained from co-existing biotite

    and muscovite separates from this intrusion range from 221

    + 6 to 193 + 13 Ma, with no systematic difference between

    the two minerals. The mean age of 207 + 13 Ma is in good

    agreement with that of 214 + 7 Ma (biotite) published by

    Feininger and Silberman (1982). The Rb-Sr data for this

  • 7/26/2019 Aspden et al., 1992b.pdf

    12/20

    T

    a

    e

    4

    K

    A

    r

    a

    y

    c

    d

    a

    a

    a

    c

    c

    a

    a

    o o

    S

    m

    p

    e

    N

    o

    K

    (

    )

    A

    r

    m

    (

    )

    4

    O

    m

    d

    A

    g

    K

    4

    A

    r

    (

    h

    g

    (

    M

    a

    (

    )

    (

    S

    m

    p

    e

    N

    o

    G

    a

    G

    A

    C

    8

    1

    B

    m

    i

    c

    0

    1

    C

    8

    D

    m

    i

    c

    0

    1

    C

    8

    1

    m

    i

    c

    0

    4

    G

    G

    A

    b

    e

    P

    a

    a

    9

    3

    9

    6

    7

    1

    C

    8

    4

    h

    0

    6

    1

    3

    :

    ~

    3

    0

    C

    H

    /

    g

    A

    C

    0

    2

    7

    5

    ~

    0

    2

    4

    8

    C

    H

    8

    B

    C

    5

    8

    2

    1

    .

    [

    5

    7

    9

    2

    C

    H

    8

    1

    C

    o

    6

    9

    5

    9

    S

    a

    S

    v

    o

    G

    G

    V

    a

    d

    C

    8

    2

    A

    h

    C

    8

    2

    A

    C

    C

    8

    2

    B

    m

    s

    C

    8

    2

    C

    o

    C

    8

    2

    D

    C

    C

    H

    8

    1

    A

    m

    s

    C

    H

    8

    1

    A

    C

    C

    H

    8

    1

    C

    m

    s

    C

    H

    8

    1

    C

    C

    C

    H

    8

    O

    C

    S

    a

    S

    v

    o

    O

    h

    L

    a

    Z

    m

    R

    0

    4

    7

    +

    3

    C

    8

    2

    D

    C

    7

    8

    2

    7

    0

    4

    7

    +

    2

    C

    8

    2

    C

    7

    6

    2

    9

    1

    4

    7

    +

    7

    C

    8

    2

    C

    7

    5

    3

    3

    C

    H

    8

    1

    A

    m

    s

    6

    0

    3

    1

    9

    5

    3

    +

    9

    C

    H

    g

    1

    A

    C

    7

    8

    3

    6

    9

    7

    3

    +

    1

    C

    H

    8

    1

    C

    o

    5

    7

    5

    4

    4

    3

    3

    +

    2

    C

    H

    8

    1

    C

    C

    7

    7

    1

    2

    3

    8

    3

    +

    1

    F

    V

    C

    5

    9

    2

    3

    2

    1

    8

    +

    2

    F

    V

    C

    6

    4

    2

    6

    2

    5

    8

    +

    4

    2

    3

    7

    +

    3

    4

    A

    d

    (

    n

    g

    A

    g

    O

    a

    T

    L

    S

    v

    o

    O

    h

    S

    h

    o

    S

    g

    g

    C

    8

    1

    A

    C

    6

    0

    4

    6

    C

    g

    1

    D

    C

    6

    1

    5

    0

    0

    5

    6

    6

    3

    0

    1

    :

    6

    T

    L

    S

    d

    o

    O

    h

    M

    a

    a

    u

    B

    n

    7

    4

    3

    1

    1

    +

    8

    C

    H

    8

    1

    A

    o

    7

    4

    4

    8

    5

    3

    4

    8

    1

    3

    7

    _

    3

    C

    H

    /

    8

    A

    C

    7

    4

    8

    8

    8

    3

    5

    8

    2

    4

    7

    +

    3

    C

    H

    /

    8

    B

    m

    s

    7

    3

    1

    0

    7

    3

    5

    4

    2

    6

    6

    _

    2

    C

    H

    8

    1

    B

    C

    7

    4

    6

    5

    70

    1

    6

    2

    3

    7

    +

    2

    C

    H

    8

    F

    m

    s

    7

    7

    3

    5

    65

    4

    8

    1

    8

    6

    +

    2

    C

    H

    8

    1

    F

    C

    7

    2

    4

    3

    70

    2

    5

    2

    6

    8

    +

    2

    T

    L

    S

    v

    o

    T

    L

    S

    6

    5

    5

    2

    1

    9

    7

    +

    3

    C

    H

    8

    1

    D

    o

    6

    2

    6

    0

    7

    2

    2

    5

    2

    2

    8

    +

    2

    C

    H

    8

    1

    D

    C

    7

    2

    2

    9

    7

    4

    3

    8

    2

    0

    8

    -

    +

    2

    C

    H

    8

    1

    o

    8

    1

    3

    1

    2

    4

    2

    9

    2

    6

    1

    8

    2

    3

    1

    8

    2

    7

    1

    7

    2

    9

    1

    5

    2

    8

    2

    6

    1

    9

    2

    7

    1

    5

    3

    6

    1

    8

    1

    8

    1

    6

    2

    5

    8

    +

    8

    +

    8

    -

    +

    6

    +

    8

    _

    6

    +

    8

    +

    8

    +

    9

    +

    8

    -

    8

    +

    1

    +

    6

    +

    9

    +

    6

    -

    9

    +

    6

    :

    6

    +

    6

    +

    7

    +

    .

    >

    . O

    .

    z

    :

    ~

    D

    c

    e

    a

    y

    K

    a

    m

    ,

    a

    m

    o

    c

    b

    b

    o

    e

    h

    h

    n

    e

    m

    s

    m

    u

    e

    o

    c

    w

    w

    e

    o

  • 7/26/2019 Aspden et al., 1992b.pdf

    13/20

    T

    e

    4

    c

    n

    d

    S

    m

    p

    e

    N

    o

    K

    4

    A

    n

    4

    A

    r

    A

    g

    (

    )

    (

    )

    (

    n

    g

    (

    M

    a

    r

    e

    L

    S

    v

    o

    L

    S

    n

    C

    H

    8

    1

    b

    7

    0

    3

    2

    1

    1

    5

    _

    2

    C

    H

    8

    1

    m

    s

    7

    7

    4

    3

    2

    1

    6

    _

    2

    C

    H

    8

    1

    b

    7

    2

    4

    4

    1

    7

    6

    +

    2

    T

    n

    G

    A

    a

    A

    b

    e

    C

    8

    5

    A

    a

    0

    3

    9

    2

    1

    0

    7

    +

    1

    C

    H

    8

    5

    B

    h

    0

    3

    7

    1

    1

    0

    7

    +

    6

    :

    0

    3

    8

    3

    1

    0

    7

    +

    7

    P

    e

    G

    P

    o

    o

    A

    b

    e

    C

    H

    8

    S

    A

    h

    0

    0

    8

    7

    0

    6

    2

    +

    3

    C

    H

    8

    S

    h

    0

    0

    7

    4

    1

    3

    6

    _

    +

    3

    P

    e

    G

    G

    G

    C

    H

    8

    6

    B

    b

    6

    2

    2

    2

    5

    3

    2

    +

    6

    C

    8

    6

    C

    m

    s

    7

    0

    1

    0

    6

    8

    2

    6

    C

    8

    6

    D

    m

    s

    5

    6

    1

    8

    4

    4

    2

    _

    6

    T

    n

    G

    P

    m

    c

    G

    C

    H

    g

    7

    A

    m

    s

    8

    4

    3

    9

    7

    9

    2

    6

    C

    H

    8

    T

    b

    7

    4

    8

    6

    6

    5

    2

    6

    C

    H

    8

    1

    m

    s

    8

    5

    1

    3

    6

    9

    1

    5

    T

    n

    G

    M

    P

    u

    o

    C

    8

    4

    A

    m

    s

    8

    4

    9

    7

    7

    3

    2

    +

    6

    C

    H

    8

    4

    A

    b

    7

    4

    7

    0

    6

    7

    2

    1

    C

    H

    g

    4

    H

    m

    s

    6

    9

    7

    9

    5

    4

    1

    +

    1

    C

    H

    8

    4

    H

    b

    7

    6

    7

    0

    7

    0

    2

    +

    6

    S

    m

    p

    e

    N

    o

    K

    4

    A

    r

    4

    A

    r

    (

    )

    (

    )

    (

    n

    g

    A

    g

    M

    a

    1

    +

    2

    1

    +

    1

    1

    +

    1

    2

    +

    1

    1

    +

    6

    1

    +

    4

    1

    +

    5

    1

    -

    +

    1

    1

    +

    4

    1

    +

    1

    1

    +

    5

    1

    +

    5

    1

    +

    1

    1

    -

    +

    7

    1

    1

    1

    +

    5

    1

    1

    1

    +

    6

    1

    1

    1

    +

    5

    1

    :

    9

    1

    +

    1

    1

    +

    5

    Z

    m

    B

    h

    U

    h

    C

    8

    1

    C

    h

    0

    3

    8

    5

    2

    0

    C

    8

    1

    H

    h

    0

    2

    7

    8

    2

    1

    C

    8

    1

    h

    0

    2

    4

    6

    1

    7

    C

    8

    1

    h

    0

    1

    7

    9

    1

    6

    C

    8

    1

    h

    0

    2

    5

    2

    1

    5

    C

    8

    2

    h

    0

    5

    4

    1

    4

    3

    C

    8

    2

    b

    2

    3

    3

    3

    1

    7

    C

    8

    2

    A

    a

    0

    9

    6

    0

    6

    1

    C

    8

    2

    A

    b

    3

    9

    2

    7

    2

    3

    C

    8

    2

    G

    h

    0

    9

    4

    6

    6

    0

    C

    8

    2

    G

    b

    5

    1

    2

    3

    3

    7

    C

    8

    2

    B

    b

    4

    7

    2

    8

    3

    2

    C

    8

    2

    h

    0

    3

    6

    2

    2

    3

    C

    8

    2

    h

    0

    3

    3

    7

    2

    2

    C

    8

    2

    B

    h

    0

    4

    7

    8

    3

    5

    C

    8

    2

    B

    b

    4

    1

    2

    1

    2

    3

    C

    8

    2

    C

    h

    0

    5

    7

    6

    4

    1

    C

    8

    2

    C

    b

    5

    2

    3

    7

    3

    8

    C

    8

    2

    h

    0

    3

    7

    2

    6

    C

    8

    2

    b

    2

    1

    3

    1

    1

    5

    C

    H

    8

    1

    A

    h

    0

    1

    6

    9

    1

    3

    C

    H

    8

    1

    B

    a

    0

    1

    8

    9

    1

    2

    F

    V

    h

    0

    5

    3

    7

    3

    4

    :

    D

    c

    e

    a

    y

    K

    a

    m

    ,

    a

    m

    o

    c

    b

    b

    o

    e

    h

    h

    n

    e

    m

    s

    m

    u

    e

    o

    c

    w

    w

    e

    o

    ~

    n

    O~

    D

  • 7/26/2019 Aspden et al., 1992b.pdf

    14/20

    T

    e

    4

    c

    n

    d

    S

    a

    m

    p

    l

    e

    N

    o

    K

    g

    e

    A

    r

    ~

    A

    r

    m

    d

    A

    g

    e

    K

    4

    e

    A

    r

    a

    h

    (

    )

    (

    h

    i

    g

    )

    (

    M

    a

    S

    m

    p

    e

    N

    o

    (

    )

    (

    )

    Z

    m

    B

    k

    h

    R

    M

    1

    C

    R

    M

    I

    C

    F

    V

    6

    h

    F

    V

    6

    1

    C

    F

    V

    4

    C

    F

    V

    4

    8

    5

    C

    A

    ~

    B

    U

    ~

    C

    8

    G

    h

    C

    C

    R

    /

    g

    6

    A

    h

    C

    R

    B

    6

    A

    b

    C

    g

    7

    C

    A

    V

    L

    C

    ,

    L

    m

    t

    B

    a

    k

    C

    S

    S

    C

    C

    C

    R

    /

    8

    9

    C

    C

    g

    O

    A

    C

    C

    8

    1

    A

    C

    C

    8

    O

    B

    h

    C

    8

    1

    B

    C

    A

    D

    M

    I

    A

    C

    0

    5

    4

    6

    0

    9

    5

    6

    0

    4

    4

    0

    0

    8

    0

    5

    0

    5

    0

    3

    0

    7

    2

    5

    5

    9

    0

    9

    5

    0

    0

    8

    5

    2

    0

    7

    C

    n

    B

    h

    ~

    5

    3

    3

    1

    1

    5

    C

    8

    2

    C

    C

    6

    9

    6

    5

    1

    9

    1

    2

    1

    3

    C

    8

    2

    C

    7

    8

    5

    1

    2

    5

    5

    7

    1

    5

    t

    6

    4

    6

    1

    2

    5

    3

    5

    1

    4

    S

    u

    o

    3

    6

    3

    2

    1

    +

    5

    C

    8

    3

    h

    0

    6

    7

    4

    5

    0

    2

    7

    1

    6

    -

    6

    8

    C

    8

    3

    C

    6

    6

    6

    4

    5

    9

    4

    6

    1

    8

    P

    m

    m

    u

    o

    5

    6

    3

    5

    1

    7

    C

    C

    R

    /

    8

    A

    C

    0

    3

    5

    8

    6

    3

    3

    8

    1

    1

    :

    ~

    7

    8

    7

    1

    2

    7

    1

    1

    C

    C

    R

    /

    8

    A

    C

    4

    2

    4

    9

    5

    8

    2

    2

    1

    8

    C

    C

    R

    /

    8

    C

    C

    0

    3

    5

    4

    5

    8

    2

    2

    1

    8

    :

    1

    6

    3

    4

    6

    5

    2

    1

    6

    C

    C

    R

    /

    8

    C

    C

    4

    7

    2

    6

    5

    2

    5

    5

    4

    7

    4

    2

    M

    a

    a

    P

    u

    o

    3

    2

    1

    7

    5

    2

    C

    8

    1

    A

    C

    1

    0

    5

    2

    5

    3

    1

    3

    4

    2

    C

    g

    1

    A

    C

    4

    0

    7

    8

    6

    9

    5

    1

    1

    +

    7

    C

    g

    1

    B

    h

    0

    4

    6

    1

    2

    9

    2

    9

    1

    4

    :

    ~

    6

    5

    4

    0

    5

    7

    1

    5

    C

    8

    1

    C

    h

    0

    9

    4

    3

    1

    5

    3

    0

    1

    5

    U

    m

    u

    o

    C

    L

    m

    R

    2

    9

    5

    2

    1

    5

    F

    V

    8

    C

    2

    3

    4

    4

    e

    A

    r

    m

    d

    h

    U

    g

    )

    g

    M

    a

    5

    3

    5

    6

    4

    8

    0

    9

    0

    8

    6

    5

    1

    1

    1

    1

    1

    1

    1

    3

    1

    3

    1

    7

    1

    7

    3

    0

    1

    9

    1

    3

    1

    4

    3

    1

    3

    5

    2

    O

    1

    1

    +

    3

    3

    +

    2

    +

    8

    7

    +

    8

    +

    9

    +

    9

    +

    7

    +

    7

    +

    7

    +

    6

    8

    +

    8

    7

    3

    ~

    D

    u

    c

    e

    a

    y

    K

    e

    a

    m

    ,

    a

    m

    o

    c

    b

    b

    o

    e

    h

    h

    n

    e

    m

    s

    m

    u

    e

    o

    c

    w

    r

    w

    h

    e

    o

    l 1

    1

    4

    3

    1

    3

    6

    3

    3

    4

    2 4

    3 5

    5 4 3 4

    >

    O

    O

  • 7/26/2019 Aspden et al., 1992b.pdf

    15/20

    T

    e

    4

    n

    d

    t

    S

    m

    p

    e

    N

    K

    4

    m

    A

    r

    m

    O

    A

    r

    m

    d

    g

    b

    )

    ~

    )

    h

    i

    /

    g

    )

    A

    g

    K

    ~

    A

    r

    a

    m

    ~

    A

    r

    m

    d

    M

    a

    )

    9

    1

    )

    ~

    )

    n

    V

    g

    )

    S

    a

    m

    p

    l

    e

    N

    o

    .

    $

    m

    L

    ~

    P

    u

    o

    C

    C

    R

    /

    g

    2

    A

    b

    C

    C

    P

    S

    2

    b

    F

    V

    l

    b

    F

    h

    F

    V

    ~

    C

    O

    7

    1

    1

    7

    1

    0

    7

    6

    3

    9

    1

    5

    4

    8

    3

    0

    9

    8

    3

    7

    9

    7

    0

    7

    6

    8

    1

    8

    6

    8

    1

    7

    6

    8

    3

    8

    1

    8

    T

    m

    M

    M

    e

    ~

    o

    C

    m

    e

    P

    ~

    n

    P

    u

    o

    5

    +

    2

    C

    R

    S

    H

    /

    8

    1

    C

    o

    7

    1

    2

    9

    5

    4

    2

    P

    a

    P

    u

    5

    +

    2

    C

    C

    R

    /

    8

    1

    A

    h

    b

    0

    2

    7

    3

    5

    4

    2

    C

    C

    R

    /

    8

    1

    B

    h

    o

    1

    9

    5

    9

    6

    4

    4

    C

    C

    R

    /

    8

    1

    C

    h

    1

    2

    5

    2

    6

    +

    4

    C

    C

    R

    /

    8

    1

    C

    b

    5

    0

    3

    2

    5

    2

    P

    o

    r

    ~

    k

    u

    s

    a

    a

    o

    L

    ~

    C

    C

    R

    /

    8

    2

    A

    C

    o

    6

    5

    8

    2

    6

    4

    3

    6

    3

    6

    4

    4

    C

    C

    R

    /

    8

    2

    C

    h

    0

    8

    9

    3

    6

    4

    1

    C

    C

    R

    /

    8

    2

    C

    b

    6

    2

    7

    7

    C

    C

    R

    /

    8

    2

    h

    0

    5

    9

    9

    5

    +

    2

    C

    C

    R

    /

    8

    2

    C

    o

    6

    3

    6

    2

    5

    2

    C

    C

    R

    /

    8

    2

    G

    C

    o

    6

    9

    6

    4

    C

    R

    S

    H

    /

    8

    7

    A

    h

    C

    R

    S

    H

    /

    8

    1

    B

    h

    C

    R

    S

    H

    J

    7

    C

    w

    r

    C

    a

    u

    m

    z

    P

    u

    o

    C

    C

    R

    /

    8

    2

    A

    b

    C

    C

    R

    g

    2

    B

    b

    0

    .

    5

    3

    6

    3

    .

    4

    0

    1

    .

    3

    8

    6

    0

    .

    5

    1

    7

    1

    .

    6

    9

    1

    .

    2

    2

    9

    0

    .

    1

    2

    8

    8

    .

    2

    9

    0

    .

    2

    7

    6

    7

    1

    8

    1

    3

    .

    7

    1

    6

    .

    0

    8

    7

    6

    3

    9

    1

    5

    ~

    M

    a

    1

    2

    0

    4

    3

    2

    2

    0

    8

    2

    3

    1

    3

    1

    0

    6

    4

    0

    0

    4

    4

    6

    4

    8

    5

    4

    4

    5

    4

    -

    4

    4

    2

    4

    -

    2

    4

    2

    4

    -

    2

    4

    2

    4

    -

    1

    1

    2

    4

    -

    I

    1

    2

    4

    -

    I

    2

    O

    4

    -

    7

    1

    7

    4

    -

    I

    2

    4

    4

    -

    5

    1

    9

    4

    -

    I

    1

    8

    4

    -

    1

    .

    u

    p

    l

    i

    c

    a

    t

    e

    a

    n

    a

    l

    y

    s

    i

    s

    .

    e

    y

    :

    a

    i

    m

    ,

    t

    m

    o

    s

    p

    h

    e

    r

    i

    c

    ;

    b

    t

    ,

    i

    o

    t

    i

    t

    e

    ;

    b

    ,

    o

    r

    n

    b

    l

    e

    n

    d

    e

    ;

    m

    s

    c

    ,

    m

    u

    s

    c

    o

    v

    i

    t

    e

    ,

    t

    a

    d

    ,

    a

    d

    i

    o

    g

    e

    n

    i

    c

    ,

    r

    ,

    h

    o

    l

    e

    r

    o

    c

    k

    .

    o

  • 7/26/2019 Aspden et al., 1992b.pdf

    16/20

    92 J.A. ASPDEN, S. H. HARRISON,and C. C. RUNDLE

    phiton, however, scattered widely on the isochron diagram

    and no reliable age could be calculated. Nevertheless, since

    there is little evidence of subsequent metamorphism or de-

    formation in these rocks, it is suggested that the K-Ar ages

    record emplacement and cooling of this pluton at around

    220-190 Ma (Late Triassic-Early Jurassic). These data also

    provide evidence for the lack of any effects from the Late

    Cretaceous event in this area.

    Me ta lgn eous a nd Igneous Roc ks o f the Cordi llera Real

    a n d S u b A n d e a n Z o n e

    In an attempt to date the garnet biotite + muscovite gra-

    nites of the Tres Lagunas subdivision in the Cordillera

    Real, samples were collected from three areas: east of

    Saraguro, north of Malacatus, and south of Sigsig. The

    granite at Sigsig is pervasively net-veined by sulfides and

    other secondary mineral; hence it unlikely to give an age of

    magmatic crystallization. In contrast, the granites from the

    other two localities are relatively fresh. Sm-Nd data from

    garnet/whole-rock pairs from east of Saraguro were unsuit-

    able for dating because there was little variation in isotopic

    ratios between the garnet and whole-rock analyses. The

    Rb-Sr data for these samples are also rather unsatisfactory

    because of the wide scatter on the isochron diagram

    (MSWD = 169). Nevertheless, they provide the most reli-

    able (minimum) age thus far for the emplacement of the

    Tres Lag,mas subdivision at 200 + 12 Ma (MSWD = 169;

    Fig. 3c), similar to the age of metamorphism in El Oro

    Province. The K-Ar data from all localities for the Tres La-

    gunas subdivision give Late Cretaceous and Tertiary ages,

    ranging from 100 + 3 to 51+ 2 Ma, and they are interpreted

    to have been reset as a result of younger Cretaceous epi-

    so~s (see below).

    Rb-Sr data (18 samples) from the Abitagua batholhh,

    l o c a te d i n t h e s u b - A n d e a n z o n e , d e fi n e a n i s o c h r o n w i t h a

    p ar ti cu la rl y e l l c o n s t r ai n e d a g e o f 1 6 1 + I M a M S W D =

    2 . 5, F i g 3 d ) . K - A t f r o m h o r n b l e nd e a n d b io t it e s e p a r a t e d

    f r o m t h e s e s a m p l e s g a v e m o r e v a r i ab l e r es ul ts . w o s a m -

    p l e s C C R / 8 7 / 5 G t ~ b ) a n d C C R / 8 7 / 6 A b 0 ) g a v e y o u n g e r

    ages of 135 + 8 Ma and 126 + 2

    Ma

    which are interpreted

    to be reset, but the rest of the samples gave dates ranging

    from 152 : : 7 to 174 + 8 Ma. The latter ages are in general

    agreement with the Rb-Sr data and confu'm a Middle to

    Late Jurassic age for this intrusion.

    The Rb-Sr results from five separate suites of samples

    from the Zamora batholith all gave reasonably good linear

    correlations with low MSWD. However, the calculated

    ages are variable, normally with high errors due to the gen-

    erally small spread in Rb-Sr ratios and hence are difficult

    to interpret. Probably the most reliable data are from a suite

    of five samples from the La Paz area which define an iso-

    chron with an age of 187 + 2 Ma (MSWD = 2.9; Fig. 3e).

    Six samples from the Paq-isha area gave an age of 198 : :

    34 Ma (MSWD = 4.2; Fig. 3f), and mother suite of a dis-

    tinctive pink, p(xphyritic, K-feldspar, hornblende-biotite

    granite (six samples) from the Rio Pituca area yielded an

    age of 246 + 17 Ma (MSWD = 4.4; Fig. 3g). A group of five

    hornblende-biotite granodi(xites/diorites, collected from

    the south of Palanda, define an isochron with an age of 144

    - 35 Ma (MSWD = 2.7; Fig. 3h).

    In addition to the Rb-Sr data, a considerable number of

    K-At ages have been determined on minerals separated

    from samples from the Zamora batholith (Fig. 4). These

    have also yielded a wide range of results, several of the

    ) , -

    (D

    Z

    I~1

    0

    tk l

    e,-

    b .

    a .

    7 -

    6 -

    5 -

    4 -

    3 -

    2 -

    I

    0

    R E S E T / D I S T U R B E D A G E S

    ll 1 2 0 1 3 0 1 4 0 1 5 0 lt SO 2 1 0 2 = 0 2 3 0 2 4 0 M 0i 7 l iJ 19

    2

    Fig. 4. Histogramof K-Ar mineral ages listed in Table 4 obtainedfrom the Zamora batholith.

  • 7/26/2019 Aspden et al., 1992b.pdf

    17/20

    Ne w geoch ronologica l control for the tectono-magmatic evolut ion of the metamorphic basem ent . Ecua dor 93

    younges t o f which

    i.e.. < ca.

    140 Ma) a re p robab ly due to

    subseque nt argon loss during al teration and can therefore

    b e d i s r e g a r d e d . N e v e r t h e l e s s , a c a r e f u l appraisal of these

    d a t a c a n h e l p t o m o r e c l o s e l y o n s t r a i n h e r a t h e r m p r e c i s e

    Rb-Sr resul ts and provide extra ins ight in to the develop-

    m ent o f the Zam ora batholi th .

    I n t h e L a P a z a r e a , h r e e o r n b l e n d e s e p a r a t e s C C R / 8 7 /

    1 6 H , 1 7 . a n d 1 9 ) g a v e a g e s o f 1 7 8 :I: 0 , 1 8 8 6 . a n d 1 9 1

    + 10 Ma, in good agreem ent wi th the Rb-S r age (187 :1 :2

    Ma). A f iver boulder of coarse-grained porphyri t ic horn-

    b lende- fe ldspar andes i t e (CCR/87 /18) gave an age o f

    around 230 Ma, sugges t ing the p resence o f o lder e lement s

    within the batholith.

    Nea r Paquisha. two c,o-exis ting pairs of hornblende and

    b io t i t e samples (CCR/87 /21A and G) gave a remarkab ly

    c lose c lus te r o f ages wi th a m ean o f 154 : : 3 M a, which

    mus t record the age o f rap id coo l ing th ro -sh the b lock ing

    tempera tu res fo r these two rn i~ra l s . Th i s cou ld sugges t

    e i ther tha t t he m agm a c oo led su f f i c i en tly to se t the Rb-S r

    clock at ca. 200 M a but then remained above the argon

    b lock in~ t empera tu re fo r som e 45 mi l l ion years befo re f i -

    nal cool ing, or that emplacement and cool ing occurred at

    ca. 200 Ma, fo l lowed by reheat ing to comple te ly rese t t he

    K-At in both hornblende and biot i te at ca. 155 Ma, wi th

    only m inimal dis turbance of the Rb -Sr system. Al ternat ive-

    ly , and pro bably far mo re l ikely , i t m ay suggest that the t rue

    Rb-S r age m us t l i e a t t he lower l imi t o f the e r ro r bar o f the

    isoch ron age (198 -4- 34 M a) a nd that this intrusion is no

    older than

    ca.

    165/via.

    Co ex i s t ing b io t i te and hornb lende f rom samples defm-

    ing the 246 : : 17 Ma R b-S r age at Rio Pi tuca (CC R/87/22B

    and E) gave co ncordan t resu l ts , w i th a mean o f 180 + 8 M a,

    in good agreement w i th bo th the K-Ar and Rb Sr resul ts

    f rom L a Paz . Sam ples from the sou th o f Pa landa (CCR/87 /

    26B, C and E) aga in y ie lded good agreement fo r co -

    exis t ing mineral pai rs , wi th a mea n of 179 + 5 M a for three

    pairs . This a ge is jus t wi thin the error of the rather p o ~ Rb-

    Sr date o f 144:1:35 M a and thus , in th is case, could be in-

    terpreted to suggest that the t rue R b-S r age l ies at the upper

    l imi t o f the e r ro r bars . How ever , t he co inc idence o f th is R b-

    Sr age w i th the K- Ar at Paqu lsha could al ternat ively sug-

    ges t t he fa i r ly com mo n and w el l -documented phenomenon

    of rese t ting o f the Rb -Sr sys t em by co o l hydro thermal c i r -

    culat ions during a

    ca.

    150 Ma e vent that d id not dis turb the

    K-At sys t ems . Severa l o th