Ash Formation and Partitioning in a Cyclone Fired...

41
Ash Formation and Partitioning in a Cyclone Fired Boiler Steven A. Benson, Shuchita Patwardhan, and Art Ruud Microbeam Technologies Inc. Andrew Freidt, Minnkota Power Cooperative Jodey Houn, BNI Coal Ltd Junior Nasah, University of North Dakota, Institute for Energy Studies

Transcript of Ash Formation and Partitioning in a Cyclone Fired...

  • Ash Formation and Partitioning in a Cyclone Fired Boiler

    Steven A. Benson, Shuchita Patwardhan, and Art Ruud Microbeam Technologies Inc.

    Andrew Freidt, Minnkota Power Cooperative

    Jodey Houn, BNI Coal Ltd

    Junior Nasah, University of North Dakota, Institute for Energy Studies

  • Overview Background Project goal Field testing/sampling Coal, slag, entrained ash properties Partitioning of fuel impurities

    between cyclone and fly ash Conclusions

    2

  • Minnkota MRY Plant Unit 1, 250 MW, 1970 Unit 2, 460 MW, 1977 Fired with lignite from ND 95% availability Ranked among lowest cost electricity producer in US

    3

  • Challenges Lignite variability Clay minerals Alkali and alkaline earth elements organically

    associated

    Slag freezing in cyclones Convective pass fouling Fine particulate

    4

  • Ash Behavior Indices

    5

  • Slag Flow Characteristics by Seam

    6

  • CCSEM (Wt% Minerals, Mineral Basis)BNI # 41-132HB 41-144KC 41-144 HA 41-144HB 41-168 KC 41-168 HA 41-168 HB 41-180 KC 41-180 HA 41-180 HB 41-192 KC 41-192 HA

    Total Quartz Content

    3.1 17 18.8 9.8 30.3 8.7 8.8 11.4 20 3.9 15 17.4

    Quartz < 10 microns

    2 10.8 9.7 6.4 24.6 4.4 4 6.8 3.3 2.6 9.7 12.7

    Total Kaolinite Content

    5.8 10.6 16.7 10.8 7.7 6.4 1.7 9.5 4.4 2.4 14.3 28

    Kaolinite Content < 10 microns

    2.6 5.1 8.4 6.3 4.5 2.6 0.9 4.8 1.1 0.9 10.2 20.8

    Total Montmorillonite

    1.8 10.7 6 2.7 6.5 1.7 6.1 7 2.3 2.4 7.6 5.1

    Total Illite 10.2 14.1 0.7 9.3 6.6 0.2 28 19.1 10.2 1.6 6.8 1.9Total Pyrite 45.4 8 28.7 26.7 18.9 67.1 19.7 9.1 10.9 57.2 22.6 32.3

    Pyrite Content < 10 microns

    8.9 4.5 3.5 10.5 2.8 9.8 4.7 2.5 2.5 17 6.6 7

    Gypsum Content 10.6 6.5 0.6 0 1.6 2.7 0.8 5.4 0 16.1 2.2 0

  • Relationship to Slag Freezing

    0

    1

    2

    3

    4

    5

    0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00

    Illite and Montmorillonite, lb/mBTU

    Freezing

    Good flow

    Poor flow

  • Ash Content and Cyclone Performance

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    0818

    98 1

    108

    1898

    13

    0818

    98 1

    508

    1898

    17

    1202

    98 0

    112

    0298

    09

    1202

    98 1

    712

    1598

    07

    1215

    98 0

    712

    1598

    07

    1215

    98 0

    712

    2698

    07

    1226

    98 0

    512

    2798

    19

    1227

    98 1

    712

    2798

    15

    0116

    99 0

    901

    1699

    09

    0116

    99 0

    904

    0699

    09

    0406

    99 1

    504

    0699

    21

    0407

    99 0

    305

    0499

    15

    0506

    99 0

    505

    0599

    07

    0505

    99 0

    905

    0499

    17

    0506

    99 2

    107

    1199

    21

    0710

    99 0

    507

    1299

    09

    0710

    99 1

    107

    1299

    21

    0710

    99 1

    707

    1399

    09

    Date

    Ash

    (moi

    stur

    e fr

    ee)

    5400

    5600

    5800

    6000

    6200

    6400

    6600

    6800

    7000

    7200

    Cyc

    lone

    Per

    form

    nace

    9

  • Base/Acid Ratio and Cyclone Performance

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    1.20

    1.40

    0818

    98 1

    108

    1898

    15

    0818

    98 1

    9

    0818

    98 2

    3

    1202

    98 0

    912

    0298

    19

    1201

    98 2

    3

    1215

    98 2

    1

    1215

    98 2

    312

    1698

    01

    1216

    98 0

    3

    1227

    98 0

    5

    1227

    98 0

    512

    2798

    05

    1227

    98 0

    5

    0116

    99 0

    1

    0116

    99 0

    301

    1699

    05

    0406

    99 0

    7

    0406

    99 1

    5

    0406

    99 2

    304

    0799

    07

    0504

    99 2

    1

    0506

    99 1

    3

    0505

    99 1

    705

    0599

    21

    0505

    99 1

    1

    0710

    99 1

    5

    0713

    99 0

    907

    1199

    01

    0714

    99 0

    5

    0711

    99 1

    7

    0710

    99 0

    507

    1299

    13

    Date

    Base

    /Aci

    d

    5400

    5600

    5800

    6000

    6200

    6400

    6600

    6800

    7000

    7200

    Cycl

    one

    Perfo

    rman

    ce

    10

  • Coal Sorting and Blending Criteria

    Base-Acid RatioB/A= (CaO+MgO+Na2O+FeO+K2O)/(SiO2+Al2O3+TiO2)

    Ash Content

    Optimum coal for maintaining good slag flow Base-to-acid ratio > 0.6 to 0.7 Ash content < ~17 % (mf basis)

    11

  • Variability Challenge - Coal Mining and Blending

    Three Seams

    Upper – Low B/AHigh ash

    Middle – moderate to high B/A,

    moderate ash

    Lower – High B/ALow ash high Na

    PGNAA - elemental analysisAsh and moisture

    meters

    High B/ALow Ash

    Moderate B/AModerate Ash

    Low to ModerateB/A

    High Ash

    Low B/AHigh Ash

    PGNAA - reclaimed coal from building

    Transferred to Silos

    Coal BuildingCoal Mine

    12

  • Goal To determine partitioning process

    between slag and fly ash as a function of the inorganic composition of the lignite enable more accurate prediction of the slag

    flow behavior, entrained ash composition, ash deposition on heat transfer surfaces, and fine particle properties.

    13

  • Plan – Unit 2 Test coals with three different B/A ratios.

    High B/A Medium B/A Low B/A

    Test each coal under 4 different O2 conditions. Sampling of coal, slag, ash and perform boiler

    observations at each set of conditions.

    14

  • FIELD TEST UNIT 2• Coal Sampling• Boiler Operating Parameters• NOx Levels• Particulate Loadings – Dekati Impactor/bulk filter• ESP Hopper samples • Slag samples

    15

  • Field Test Matrix

    Day Conditions Coal –as

    fired

    Slag Fly Ash Dekati

    ESP Hopper

    BoilerObservations

    Day 1 Baseline x x x x x

    Day 2 Med B/A x x x x x

    Day 3 High B/A x x x x x

    Day 4 Low B/A x x x x x

    16

  • Diagram of processes and tools

    Coal Properties Cyclone – Ash partitioning

    Entrained Ash

    Coal Air Vent

    Slag

    Transport to water wall Slagging

    Transport toConvective pass

    surfaces

    High temperature fouling – silicate

    based

    Low temperature fouling – sulfate

    based

    Slag flow

    ESP particle capture –

    resistivity and cohesivity

    Boiler operating parameters – air

    flow

    Over fire air

    Tools

    Inputs/processes

    17

  • Schematic of Sampling Locations

    18

  • Sample AnalysisNo. Sample description Analysis

    1 As-fired coal samples Proximate/Ult analysis, Ash composition, CCSEM

    2 Slag samples Morphology/Composition/SEMPC

    3 ESP Hopper samples Morphology/Composition/CCSEM

    4 Dekati Fly Ash Samples Morphology/Composition

    19

  • Coal Analysis

    20

  • Coal analysis – Prox/Ult resultsDescription Total Moisture

    Ash As Received

    Volatile Matter As Received

    Fixed Carbon As Received

    BTU/lb As Received

    Total Sulfur As Received

    Carbon As Received

    Hydrogen As Received

    Nitrogen As Received

    Coal As-fired D1 27.37 9.84 32.73 30.06 7627 0.95 47.26 6.23 0.73

    Coal As-fired D2 28.65 9.40 32.87 29.08 7488 1.06 46.84 6.33 0.71

    Coal As-fired D3 28.27 9.36 32.95 29.42 7616 1.10 47.53 6.29 0.73

    Coal As-fired D4 27.75 12.12 32.12 28.01 7348 1.08 45.85 6.20 0.72

    21

  • Coal analysis – Ash composition results(Weight percent equivalent oxide)

    Description Silicon DioxideAluminum

    DioxideTitanium Dioxide Iron Oxide

    Calcium Oxide

    Magnesium Oxide

    Potassium Oxide

    Sodium Oxide P2O5

    Coal As fired D1 39.81 14.71 0.63 11.47 16.61 5.44 1.81 8.09 0.12

    Coal As fired D2 40.22 13.18 0.68 12.61 17.63 5.41 1.59 7.13 0.11

    Coal As fired D3 37.65 12.58 0.65 14.28 18.94 5.53 1.41 7.24 0.13

    Coal As fired D4 46.93 14.47 0.75 9.93 13.96 4.53 2.06 5.79 0.13

    22

  • B/A ratio – As fired coal – Unit 2

    Description B/A Ratio Description

    Coal As fired D1 0.79 Baseline operation

    Coal As fired D2 0.82 Med B/A

    Coal As fired D3 0.93 High B/A

    Coal As fired D4 0.58 Low B/A

    0.79 0.82

    0.93

    0.58

    0.000.100.200.300.400.500.600.700.800.901.00

    Coal As fired D1 Coal As fired D2 Coal As fired D3 Coal As fired D4

    B/A Ratio

    23

  • Viscosity temperature – As fired coal

    0.00

    1.00

    2.00

    3.00

    4.00

    5.00

    6.00

    7.00

    1200 1400 1600 1800 2000 2200 2400

    Vis

    cosi

    ty, L

    og1

    0P

    oise

    Temperature, °F

    Coal As fired D1 Coal As fired D2 Coal As fired D3 Coal As fired D4

    T250 - flow begins

    molten liquid

    Day 4 Low B/ADay 3 High B/ADay 2 Med B/A

    24

  • CCSEM – Day 2 Composite Coal

    1.24.6

    2.4 4 1.53.31.4

    6.5

    3

    5

    2.8

    8.6

    0.6

    1.7

    2.2

    4.7

    3.2

    15.3

    0.1

    0.2

    0.1

    0.4

    0.4

    4.3

    2.2

    4.6

    1.8

    2.8

    1.2

    5.3

    0.7

    0.7

    0.3

    0.7

    0.3

    0.9

    0

    5

    10

    15

    20

    25

    30

    35

    40

    1.0 - 2.2 2.2 - 4.6 4.6 - 10.0 10.0 - 22.0 22.0 - 46.0 46.0 - 400

    Wei

    ght

    perc

    ent,

    min

    eral

    bas

    is

    Size Bin, µm

    Others Unclassified Iron Oxide Pyrite/Pyrrhotite/Oxidized Pyrrhotite Silicate Minerals Quartz

    25

  • CCSEM – Day 3 Composite Coal

    2.9

    11.5

    2.7 4.10.9

    3

    4.1

    9.7

    3.94.9

    1.5

    5.60.3

    1.4

    1.3

    2.3

    2.3

    13.5

    0.2

    0

    0.3

    0.9

    0.4

    3.5

    2.3

    3.8

    1.5

    2

    1.1

    2

    0.8

    2.4

    0.4

    0.7

    0.3

    0.8

    0

    5

    10

    15

    20

    25

    30

    35

    1.0 - 2.2 2.2 - 4.6 4.6 - 10.0 10.0 - 22.0 22.0 - 46.0 46.0 - 400

    Wt

    % M

    iner

    al B

    asis

    Size bin, µm

    Others Unclassified Iron oxide Pyrite/Pyrrhotite/Oxidized Pyrrhotite Silicate Minerals Quartz

    26

  • CCSEM Day 4 – Composite Coal

    2.4

    5.83 4.3

    1.2 1.8

    3.5

    7.1

    5.4

    7.7

    3.1

    100.3

    0.4

    1.3

    3.9

    2

    4.6

    0

    0.2

    0.2

    1.4

    0.4

    2.7

    2.5

    3.2

    2.9

    4

    1.4

    4.8

    1.4

    1.9

    1.2

    2.4

    0.7

    0.8

    0

    5

    10

    15

    20

    25

    30

    1.0 - 2.2 2.2 - 4.6 4.6 - 10.0 10.0 - 22.0 22.0 - 46.0 46.0 - 400

    Wt%

    , Min

    eral

    Bas

    is

    Size bin, µm

    Others Unclassified Iron Oxide Pyrite/Pyrrhotite/Oxidized Pyrrhotite Silicate Minerals Quartz

    27

  • Slag Samples Analysis

    28

  • Slag samples analysis resultsWt% equivalent oxide

    Normalized Na2O MgO Al2O3 SiO2 SO3 K2O CaO TiO2 Fe2O3 BaO

    D1C1 4.47 4.61 12.24 42.75 0.25 1.23 21.20 0.66 11.61 0.82

    D2C1 5.15 5.32 12.27 42.03 0.18 0.88 22.73 0.56 9.83 0.88

    D3C1 3.89 4.57 9.51 33.54 0.31 0.68 30.13 0.53 15.32 1.29

    D4C1 3.49 3.65 11.07 46.78 0.23 1.39 19.60 0.62 11.80 1.25

    29

  • Fly Ash Entrained Ash – Dekati Mass Composition by size

    30

  • Dekati data – Total mass loadings

    4.00E+05

    2.76E+05

    3.82E+05 3.85E+05

    5.28E+05

    6.96E+05

    4.62E+05

    5.71E+05

    6.70E+05

    5.93E+05

    4.49E+05

    5.17E+05

    5.65E+05

    4.17E+05

    0.00E+00

    1.00E+05

    2.00E+05

    3.00E+05

    4.00E+05

    5.00E+05

    6.00E+05

    7.00E+05

    8.00E+05

    D1C1 D2C1 D2C2 D2C3 D2C4 D3C1 D3C2 D3C3 D3C4 D3C5 D4C1 D4C2 D4C3 D4C4

    Total Loading (µg/dscm)

    Day 2 Med B/A Day 3 High B/A Day 4 Low B/A

    31

  • Coal-Slag-Fly Ash Comparison

    32

  • Day 4 Coal , Slag, Dekati data comparison (wt% equivalent oxide).

    Na2O MgO Al2O3 SiO2 P2O5 SO3 K2O CaO TiO2 Fe2O3 BaO

    Coal Day 4 5.79 4.53 14.47 46.93 0.13 0.00 2.06 13.96 0.75 9.93 0.98

    D4C1 – Slag 3.49 3.65 11.07 46.78 0.00 0.23 1.39 19.60 0.62 11.80 1.25

    D4C1 – Dekati 17.05 6.52 4.69 12.54 0.97 27.68 3.13 18.10 0.87 6.01 2.44

    33

  • Partitioning

    34

  • Partitioning Calculations Coal flow rate Ash content of coal (as received basis) Air flow rate at the inlet Air flow rate at the outlet Total mass loading

    35

  • Partitioning Between Slag and Fly Ash

    65.6372.80

    44.09

    67.91

    34.3727.20

    55.91

    32.09

    0.00

    10.00

    20.00

    30.00

    40.00

    50.00

    60.00

    70.00

    80.00

    90.00

    100.00

    D1C1 D2C1 D3C1 D4C1

    Per

    cent

    as

    slag

    or

    fly

    ash

    Fly ash

    Slag

    36

  • Cyclone Partitioning – Day 2 Coal

    Cyclone Wall

    Solid Slag

    Moderately thick Liquid Slag Layer

    Twall

    T250=2000 ºF

    Slag – moderate viscosity slag –High ash retention – 73%

    Low Particle Loading - ~27%

    High coal/ash sticking

    Coal particles –moderate B/A, low ash

    Day 2 – B/A 0.82, Ash 9.4

    Vaporization

  • Cyclone Partitioning – Day 3 Coal

    Cyclone Wall

    Solid SlagThin Liquid Slag Layer

    Twall

    T250= 1900 ºF

    Slag – Low viscosity slag –Low ash retention – 44%

    High Particle Loading - ~56%

    Low coal/ash sticking

    Coal particles – high B/A, low ash

    Day 3 – B/A 0.93, Ash 9.4

    Vaporization

  • Cyclone Partitioning – Day 4 Coal

    Cyclone Wall

    Solid Slag

    Moderately thick Liquid Slag Layer

    Twall

    T250=2200 ºF

    Slag – moderate viscosity slag –High ash retention – 50%

    Low to moderate Particle Loading - ~50%

    High coal/ash sticking coefficient – higher rebound – freezing potential

    Coal particles – low B/A, high ash

    Day 3 – B/A 0.58, Ash 12.1

    Vaporization

  • Partitioning Process Transport to cyclone slag

    Gas flow rate Size and density of particle

    Sticking in the slag Viscosity of the slag layer Slag layer thickness

    Volatility of element Association of the element in the coal Element chemical properties

    40

  • Questions Thanks to:

    41

    Ash Formation and Partitioning in a Cyclone Fired Boiler�OverviewMinnkota MRY PlantChallengesAsh Behavior IndicesSlag Flow Characteristics by SeamCCSEM (Wt% Minerals, Mineral Basis)Relationship to Slag FreezingAsh Content and Cyclone PerformanceBase/Acid Ratio and Cyclone PerformanceCoal Sorting and Blending CriteriaVariability Challenge - Coal Mining and BlendingGoalPlan – Unit 2 Field Test Unit 2Field Test MatrixDiagram of processes and toolsSchematic of Sampling LocationsSample AnalysisCoal AnalysisCoal analysis – Prox/Ult resultsCoal analysis – Ash composition results�(Weight percent equivalent oxide)B/A ratio – As fired coal – Unit 2Viscosity temperature – As fired coalCCSEM – Day 2 Composite CoalCCSEM – Day 3 Composite CoalCCSEM Day 4 – Composite CoalSlag Samples AnalysisSlag samples analysis results�Wt% equivalent oxideFly AshDekati data – Total mass loadingsCoal-Slag-Fly Ash ComparisonDay 4 Coal , Slag, Dekati data comparison (wt% equivalent oxide).PartitioningPartitioning CalculationsPartitioning Between Slag and Fly AshCyclone Partitioning – Day 2 CoalCyclone Partitioning – Day 3 CoalCyclone Partitioning – Day 4 CoalPartitioning ProcessQuestions