AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

102
AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao
  • date post

    21-Dec-2015
  • Category

    Documents

  • view

    221
  • download

    0

Transcript of AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

Page 1: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 1

Gravitational Dynamics: An Introduction

HongSheng Zhao

Page 2: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 2

C1.1.1 Our Galaxy and Neighbours

• How structure in universe form/evolve?

• Galaxy Dynamics Link together early universe & future.

Page 3: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 3

Our Neighbours

• M31 (now at 500 kpc) separated from MW a Hubble time ago

• Large Magellanic Cloud has circulated our Galaxy for about 5 times at 50 kpc– argue both neighbours move with a typical

100-200km/s velocity relative to us.

Page 4: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 4

Outer Satellites on weak-g orbits around Milky Way

~ 50 globulars on weak-g (R<150 kpc)~100 globulars on strong-g (R< 10 kpc)

R>10kpc: Magellanic/Sgr/Canis streamsR>50kpc: Draco/Ursa/Sextans/Fornax…

Page 5: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 5

C1.1.2 Milky Way as Gravity Lab

• Sun has circulated the galaxy for 30 times– velocity vector changes direction +/- 200km/s

twice each circle ( R = 8 kpc )– ArgueArgue that the MW is a nano-earth-gravity Lab– Argue that the gravity due to 1010 stars only

within 8 kpc is barely enough. Might need to add Dark Matter.

Page 6: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 6

Sun escapes unless our Galaxy has Dark Matter

Page 7: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 7

C1.1.3 Dynamics as a tool

• Infer additional/dark matter– E.g., Weakly Interacting Massive Particles

• proton mass, but much less interactive

• Suggested by Super-Symmetry, but undetected

– A $billion$ industry to find them. • What if they don’t exist?

Page 8: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 8

• Test the law of gravity: – valid in nano-gravity regime?– Uncertain outside solar system:

• GM/r2 or cst/r ?

Page 9: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 9

Outer solar system

• The Pioneer experiences an anomalous non-Keplerian acceleration of 10-8 cm s-2

• What is the expected acceleration at 10 AU?

• What could cause the anomaly?

Page 10: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 10

Gravitational Dynamics can be applied to:

• Two body systems:binary stars

• Planetary Systems, Solar system

• Stellar Clusters:open & globular

• Galactic Structure:nuclei/bulge/disk/halo

• Clusters of Galaxies

• The universe:large scale structure

Page 11: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 11

Topics• Phase Space Fluid f(x,v)

– Eqn of motion– Poisson’s equation

• Stellar Orbits– Integrals of motion (E,J)– Jeans Theorem

• Spherical Equilibrium– Virial Theorem– Jeans Equation

• Interacting Systems– TidesSatellitesStreams– Relaxationcollisions

• MOND

Page 12: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 12

C2.1 How to model motions of 1010stars in a galaxy?

• Direct N-body approach (as in simulations)– At time t particles have (mi,xi,yi,zi,vxi,vyi,vzi),

i=1,2,...,N (feasible for N<<106 ).

• Statistical or fluid approach (N very large)– At time t particles have a spatial density

distribution n(x,y,z)*m, e.g., uniform, – at each point have a velocity distribution

G(vx,vy,vz), e.g., a 3D Gaussian.

Page 13: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 13

C2.2 N-body Potential and Force

• In N-body system with mass m1…mN, the gravitational acceleration g(r) and potential φ(r) at position r is given by:

r12

Ri

r mi ∑

=

=

−⋅⋅

−==Φ

∇−=−

⋅⋅⋅−==

N

i i

i

N

ir

i

i

Rr

mmGrm

mRr

rmmGrgmF

1

12

12

)(

ˆ)(

vv

rvv

rr

φ

φ

Page 14: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 14

Example: Force field of two-body system in Cartesian coordinates

0?force is positionsat what lines. fieldsketch

?)()(

),,()(),,()(

?),,(

contours potential equalsketch ion,configurat Sketch the

,),0,0( where,)(

222

2

1

=

=++=

∂∂

−∂∂

−∂∂

−=−∇==

=

=∗−=−⋅

−= ∑=

zyx

zyx

iii i

i

gggrg

zyxrgggrg

zyx

mmaiRRrmG

r

vr

vvr

vvv

vo

φφφφ

φ

φ

Page 15: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 15

C2.3 A fluid element: Potential & Gravity

• For large N or a continuous fluid, the gravity dg and potential dφ due to a small mass element dM is calculated by replacing mi with dM:

r12

Rr

dM

d3RRr

dMGd vv−

⋅−=φ

212ˆ

iRr

rdMGgd vvr

⋅⋅−=

Page 16: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 16

Lec 2 (Friday, 10 Feb): Why Potential φ(r) ?

• Potential per unit mass φ(r) is scalar,– function of r only,– Related to but easier to work with than force

(vector, 3 components) – Simply relates to orbital energy E= φ(r) + ½ v2

Page 17: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 17

C2.4 Poisson’s Equation

• PE relates the potential to the density of matter generating the potential by:

• [BT2.1]

)(4 rGg ρπφ =⋅∇−=∇⋅∇rr

Page 18: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 18

C2.5 Eq. of Motion in N-body

• Newton’s law: a point mass m at position r moving with a velocity dr/dt with Potential energy Φ(r) =mφ(r) experiences a Force F=mg , accelerates with following Eq. of Motion:

m

r

m

F

dt

trd

dt

d r )()( Φ∇−==⎥⎦

⎤⎢⎣

⎡ rrvv

Page 19: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 19

Example 1: trajectories when G=0

• Solve Poisson’s Eq. with G=0 – F=0, Φ(r)=cst,

• Solve EoM for particle i initially at (Xi,0, V0,i)– dVi/dt = Fi/mi = 0 Vi = cst = V0,i – dXi/dt = Vi = Vi,0 Xi(t) = Vi,0 t + Xi,0, – where X, V are vectors,

straight line trajectories • E.g., photons in universe go straight

– occasionally deflected by electrons,– Or bent by gravitational lenses

Page 20: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 20

What have we learned?

• Implications on gravity law and DM.

• Poisson’s eq. and how to calculate gravity

• Equation of motion

Page 21: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 21

How N-body system evolves

• Start with initial positions and velocities of all N particles.

• Calculate the mutual gravity on each particle– Update velocity of each particle for a small time step dt

with EoM

– Update position of each particle for a small time step dt

• Repeat previous for next time step. N-body system fully described

Page 22: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 22

C2.6 Phase Space of Galactic Skiers • Nskiers identical particles moving in a small bundle

in phase space (Vol =Δx Δ v),

• phase space deforms but maintains its area.

• Gap widens between faster & slower skiers– but the phase volume & No. of skiers are constants.

+x front

vx

x

+Vx Fast

Page 23: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 23

“Liouvilles Theorem on the piste”

• Phase space density of a group of skiers is const. f = m Nskiers / Δx Δvx = const

Where m is mass of each skier,

[ BT4.1]

Page 24: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 24

C2.7 density of phase space fluid: Analogy with air molecules

• air with uniform density n=1023 cm-3

Gaussian velocity rms velocity σ =0.3km/s in x,y,z directions:

• Estimate f(0,0,0,0,0,0) in pc-3 (km/s)-3

3

2

222

o

)2(

2expnm

v)f(x,σπ

σ ⎟⎟⎠

⎞⎜⎜⎝

⎛ ++−×

=

xyx vvv

Page 25: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 25

Lec 3 (Valentine Tuesday)C2.8 Phase Space Distribution Function (DF)

PHASE SPACE DENSITY: No. of sun-like stars per unit volume per velocity volume f(x,v)

sun sun3 3

sun3 1 3

m number of suns mf(x,v)

space volume velocity volume

1 m

pc (100kms )

dN

dx dv

× ×= =

××

×:

Page 26: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 26

C2.9 add up stars: integrate over phase space

• star mass density: integrate velocity volume

• The total mass : integrate over phase space

xdvdvxfxdxM total

vvvv 333 ),()( ∫∫ == ρ

Page 27: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 27

• define spatial density of stars n(x)

• and the mean stellar velocity v(x)

• E.g., Conservation of flux (without proof)( ) ( ) ( )

3

3

2 31

1 2 3

flux in i-direction

0

i i

n fd v

nv fv d v

nv nv nvn

t x x x

∂ ∂ ∂∂

∂ ∂ ∂ ∂

≡ =

+ + + =

Page 28: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 28

C3.0 Star clusters differ from air:

• Stars collide far less frequently– size of stars<<distance between them– Velocity distribution not isotropic

• Inhomogeneous density ρ(r) in a Grav. Potential φ(r)

Page 29: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 29

Example 2: A 4-body problem

• Four point masses with G m = 1 at rest (x,y,z)=(0,1,0),(0,-1,0),(-1,0,0),(1,0,0). Show the initial total energy

Einit = 4 * ( ½ + 2-1/2 + 2-1/2) /2 = 3.8

• Integrate EoM by brutal force for one time step =1 to find the positions/velocities at time t=1.– Use V=V0 + g t = g = (u, u, 0) ; u = 21/2/4 + 21/2/4 + ¼ = 0.95

– Use x= x0 + V0 t = x0 = (0, 1, 0).

• How much does the new total energy differ from initial? E - Einit = ½ (u2 +u2) * 4 = 2 u2 = 1.8

Page 30: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 30

Often-made Mistakes

• Specific energy or specific force confused with the usual energy or force

• Double-counting potential energy between any pair of mass elements, kinetic energy with v2

• Velocity vector V confused with speed, • 1/|r| confused with 1/|x|+1/|y|+1/|z|

Page 31: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 31

What have we learned?

Potential to Gravity

Potential to density

Density to potential

Motion to gravity

g φ=−∇

∫ ′−

′−=

rr

rdGr vv

vv 3

)(ρ

φ

/g dv dt=

Page 32: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 32

Concepts

• Phase space density– incompressible– Dimension Mass/[ Length3 Velocity3 ]

– Show a pair of non-relativistic Fermionic particle occupy minimal phase space (x*v)3 > (h/m)3 , hence has a maximum phase density =2m (h/m)-3

Page 33: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 33

Where are we heading to?Lec 4, Friday 17 Feb

• potential and eqs. of motion – in general geometry– Axisymmetric– spherical

Page 34: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 34

Link phase space quantities

r

J(r,v)

Ek(v)

(r)

Vt

E(r,v)dθ/dt

vr

Page 35: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 35

C 3.1: Laplacian in various coordinates

2

2

2222

22

2

2

2

2

22

2

2

2

2

2

22

sin

1sin

sin

11

:Spherical

11

:lCylindrica

:Cartesians

φθθθ

θθ

φ

∂∂

+⎟⎠

⎞⎜⎝

⎛∂∂

∂∂

+⎟⎠

⎞⎜⎝

⎛∂∂

∂∂

=∇

∂∂

+∂∂

+⎟⎠

⎞⎜⎝

⎛∂∂

∂∂

=∇

∂∂

+∂∂

+∂∂

=∇

rrrr

rr

zRRR

RR

zyx

Page 36: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 36

Example 3: Energy is conserved in STATIC potential

• The orbital energy of a star is given by:

),(2

1 2 trvEvφ+=

0dE dv dr

vdt dt dt t t

φ φφ ∂ ∂= + ∇ + = +

∂ ∂

v vv

0 since

and

φ−∇=dt

vdv

vdt

rd vv=

0 for static potential.

So orbital Energy is Conserved dE/dt=0 only in “time-independent” potential.

Page 37: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 37

Example 4: Static Axisymmetric density Static Axisymmetric potential

• We employ a cylindrical coordinate system (R,,z) e.g., centred on the galaxy and align the z axis with the galaxy axis of symmetry.

• Here the potential is of the form (R,z).• Density and Potential are Static and Axisymmetric

– independent of time and azimuthal angle

zg

Rg

zRR

RR

GzRzR

zr ∂∂

−=∂∂

−=

⎥⎦

⎤⎢⎣

∂∂

+⎟⎠

⎞⎜⎝

⎛∂∂

∂∂

=⇒

φφ

φφπ

ρφ 2

2

41

),(),(

Page 38: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 38

C3.2: Orbits in an axisymmetric potential

• Let the potential which we assume to be symmetric about the plane z=0, be (R,z).

• The general equation of motion of the star is

• Eqs. of motion in cylindrical coordinates

),(2

2

zRdt

rd φ−∇=v

Eq. of Motion

Page 39: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 39

Conservation of angular momentum z-component Jz if axisymmetric

• The component of angular momentum about the z-axis is conserved.

• If (R,z) has no dependence on θ then the azimuthal angular momentum is conserved– or because z-component of the torque rF=0. (Show it)

2 2( ) 0Z

d dJ R Jz R

dt dtθ θ= ⇒ = =& &

Page 40: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 40

C4.1: Spherical Static System

• Density, potential function of radius |r| only

• Conservation of – energy E, – angular momentum J (all 3-components)– Argue that a star moves orbit which confined to

a plane perpendicular to J vector.

Page 41: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 41

C 4.1.0: Spherical Cow Theorem

• Most astronomical objects can be approximated as spherical.

• Anyway non-spherical systems are too difficult to model, almost all models are spherical.

Page 42: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 42

Globular: A nearly spherical static system

Page 43: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 43

C4.2: From Spherical Density to Mass

M(r)

M(r+dr)

∫ ⎟⎠

⎞⎜⎝

⎛=

=⎟⎠⎞

⎜⎝⎛

=

=⎟⎠

⎞⎜⎝

⎛=

+=+

3

23

23

3

4)(

434

)(

(r)43

4(r)ddM

dMM(R)dr)M(R

rdRM

drr

dM

rd

dMr

drrr

πρ

ππ

ρ

ρππρ

Page 44: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 44

C4.3: Theorems on Spherical Systems

• NEWTONS 1st THEOREM:A body that is inside a spherical shell of matter experiences no net gravitational force from that shell

• NEWTONS 2nd THEOREM:The gravitational force on a body that lies outside a closed spherical shell of matter is the same as it would be if all the matter were concentrated at its centre. [BT 2.1]

Page 45: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 45

C4.4: Poisson’s eq. in Spherical systems

• Poisson’s eq. in a spherical potential with no θ or Φ dependences is:

• BT2.1.2

)(41 2

22 rG

rr

rrρπ =⎟

⎞⎜⎝

⎛∂∂

∂∂

=∇

Page 46: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 46

Example 5: Interpretation of Poissons Equation

• Consider a spherical distribution of mass of density ρ(r).

r

g

drrr

drr

rGM

drrg

r

rGMg

r

r

r

)(4Enclosed Mass

)(

rat 0 is andat0 since)(

)(

2

2

2

ρπ

φφ

=

−=

<∞==

−=

Page 47: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 47

• Take d/dr and multiply r2

• Take d/dr and divide r2

( )∫==−= drrrGrGMgrdr

dr )(4)( 222 ρπ

φ

( ) ( )

ρπφ

ρπ

Gg

rGGMrr

grrrr

rrr

4.

)(4111

2

22

22

2

=∇−=∇→

=∂

∂=−

∂=⎟

⎞⎜⎝

⎛∂

v

Page 48: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 48

C4.5: Escape Velocity• ESCAPE VELOCITY= velocity required in

order for an object to escape from a gravitational potential well and arrive at with zero KE.

21( ) ( )

2

( ) 2 ( ) 2 ( )

esc

esc

r v

v r r

φ φ

φ φ

= ∞ −

→ = ∞ −

=0 often

Page 49: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 49

Example 6: Plummer Model for star cluster

• A spherically symmetric potential of the form:

• Show corresponding to a density (use Poisson’s eq): 2

5

2

2

31

4

3−

⎟⎟⎠

⎞⎜⎜⎝

⎛+=

ar

aMπ

ρ

e.g., for a globular cluster a=1pc, M=105 Sun Mass show Vesc(0)=30km/s

Page 50: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 50

What have we learned?

• Conditions for conservation of orbital energy, angular momentum of a test particle

• Meaning of escape velocity

• How Poisson’s equation simplifies in cylindrical and spherical symmetries

Page 51: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 51

Lec 5, (Tue 21 Feb)Links of quantities in spheres

g(r)

(r) ρ(r)

M(r)

Page 52: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 52

A worked-out example 7: Hernquist Potential for stars in a galaxy

• E.g., a=1000pc, M0=1010 solar, show central escape velocity Vesc(0)=300km/s,

• Show M0 has the meaning of total mass

– Potential at large r is like that of a point mass M0

– Integrate the density from r=0 to inifnity also gives M0

0*

1 2

0* 3

( ) , use Poisson eq. show

( ) 12

GMr

a r

M r rr

a a a

φ

ρπ

− −

=−+

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

Page 53: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 53

Potential of globular clusters and galaxies looks like this:

r

a

GM o−

-1

(0) (finite well at centre)

( ) r (Kepler for large r)

is the minimum of potential with escape velocity

2(0) o

esc

const

r

Centre

GMv

a

φφ

=−

∝→

=

Page 54: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 54

C4.6: Circular Velocity

• CIRCULAR VELOCITY= the speed of a test particle in a circular orbit at radius r.

G

rvrM

r

rGM

r

vg

cir

cir

2

2

2

)(

)(

=⇒

=∇== φ

For a point mass M: Show in a uniform density sphere

r

GMrvc =)( ρπρπ 3

3

4M(r)since

3

4)( rr

Grvc ==

Page 55: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 55

What have we learned?

• How to apply Poisson’s eq.

• How to relate – Vesc with potential and – Vcir with gravity

• The meanings of – the potential at very large radius,– The enclosed mass

Page 56: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 56

Lec 6, (Fri, 24 Feb)Links of quantities in spheres

g(r)

(r) ρ(r)

vesc

M(r)

Vcir

Page 57: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 57

C4.7: Motions in spherical potential [BT3.1]

If spherical

0

rg r

φ

φθ

∂=−

∂∂

=− =∂

φ−∇==

=

gvdtddtd

motion ofEquation

v

vx

0

00

)(

)(

gravity no If

vv

xvx

=+=

ttt 2

Conserved if spherical static

1E ( )

2ˆt

v r

L J rv n

φ= +

= = ⊗ = ⋅x v

Page 58: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 58

Another Proof: Angular Momentum is Conserved if spherical

vrLvvv

×=( )

0d r vdL dr dv

v r r gdt dt dt dt

×= = × + × = + ×

v v v v vrv v v

Since 0=∂∂θφ

then the spherical force g is in the r direction, no torque

both cross products on the RHS = 0.

So Angular Momentum L is Conserved

0dL

dt=

v

Page 59: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 59

C4.8: Star moves in a plane (r,θ) perpendicular to L

• Direction of angular momentum

• equations of motion are– radial acceleration:– tangential acceleration:

2

2

2

( )

2 0

constant

r r L

r r g r

r r

r L

θθ θθ

× =

− =

+ =

= =

&

&&&& &&&&

Page 60: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 60

C4.8.1: Orbits in Spherical Potentials

• The motion of a star in a centrally directed field of force is greatly simplified by the familiar law of conservation (WHY?) of angular momentum.

unit time

sweptarea2r

const

2 ==

=×=

dtddtrd

rL

θ

vvv

Keplers 3rd law

Page 61: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 61

C 4.9: Radial part of motion• Energy Conservation (WHY?)

2

2

2

22

2

1

2)(

2

1

2

1)(

⎟⎠

⎞⎜⎝

⎛++=

⎟⎠

⎞⎜⎝

⎛+⎟⎠

⎞⎜⎝

⎛+=

dtrd

rL

r

dtd

rdtrd

rE

v

v

φ

θφ

eff

)(22 rEdt

dreffφ−±=

Page 62: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 62

C5.0: Orbit in the z=0 plane of a disk potential (R,z).

• Energy/angular momentum of star (per unit mass)

• orbit bound within

( )2212

221

2 2

21eff2

eff

( ,0)

[ ( ,0)] 2

(R,0)

( ,0)

z

E R R R

JR R

R

R

E R

θ⎡ ⎤= + + Φ⎢ ⎥⎣ ⎦

⎡ ⎤= + + Φ⎣ ⎦

⎡ ⎤= + Φ⎣ ⎦

⇒ ≥ Φ

&&

&

&

Page 63: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 63

C5.1: Radial Oscillation• An orbit is bound between two radii: a loop• Lower energy E means thinner loop (nearly

circular closed) orbit

R

eff

E

2

2

2R

J z

Rcir

Page 64: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 64

C5.2: Eq of Motion for planar orbits

• EoM:

eff

eff

; z=0

If circular orbit R=cst, 0 => 0 at c

RR

z R RR

∂∂

∂∂

Φ=−

Φ= = =

&&

Page 65: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 65

Apocenter

Pericenter

Page 66: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 66

Apocenter

Peri

Apo

Page 67: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 67

C5.3: Apocenter and pericenter

• No radial motion at these turn-around radii– dr/dt =Vr =0 at apo and peri

• Hence• Jz = R Vt

= RaVa = RpVp

• E = ½ (Vr2 + Vt

2 ) + Φ (R,0) = ½ Vr2 + Φeff (R,0)

= ½ Va2 + Φ (Ra,0)

= ½ Vp2 + Φ (Rp,0)

Page 68: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 68

Lec7: Orbit in axisymmetric disk potential (R,z).

• Energy/angular momentum of star (per unit mass)

• orbit bound within

( )22 212

22 21

2 2

2 21eff2

eff

2

(R,z)

( , )

z

E R R z

JR z

R

R z

E R z

θ⎡ ⎤= + + + Φ⎢ ⎥⎣ ⎦

⎡ ⎤= + + + Φ⎣ ⎦

⎡ ⎤= + + Φ⎣ ⎦

⇒ ≥ Φ

&& &

& &

& &

Page 69: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 69

C5.4 EoM for nearly circular orbits

• EoM:

• Taylor expand

– x=R-Rg

eff eff

eff eff

2 22 2eff eff1 1

eff 2 22 2

( ,0) ( ,0)

2 2 2 2

;

0 at , 0

/ 2 / 2 ...

g g

g

R R

R zR z

R R zR z

x zR z

x z

∂ ∂∂ ∂

∂ ∂∂ ∂

∂ ∂∂ ∂

κ ν

Φ Φ=− =−

Φ Φ= = = =

⎛ ⎞ ⎛ ⎞Φ ΦΦ = + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= + +

&& &&

K

Page 70: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 70

Sun’s Vertical and radial epicycles

• harmonic oscillator +/-10pc every 108 yr – epicyclic frequency :– vertical frequency :

2 2 R , and

R z zκ ν=− =−&& &&

κ

ν

Page 71: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 71

Lec 8, C7.0: Stars are not enough: add Dark Matter in galaxies [BT10.4]

NGC 3198 (Begeman 1987)

Page 72: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 72

Bekenstein & Milgrom (1984) Bekenstein (2004), Zhao & Famaey (2006)

• Modify gravity g, – Analogy to E-field in medium of varying Dielectric

• Gradient of Conservative potential

*

0 0

0

0 0

g( )

4 G

G(g/a ) = (1+ a /g) G

~ G if g= | |

~ G a / > G if g <a

r

a

g

ρπ

φ

⎛ ⎞−∇• =⎜ ⎟⎝ ⎠

∇ >

Not Standard Belief!

Page 73: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 73

Researches of Read & Moore (2005)

MOND and DM similar in potential, rotation curves and orbits... Personal view!

Page 74: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 74

Explained: Fall/Rise/wiggles in Ellip/Spiral/Dwarf galaxies

Views of Milgrom & Sanders, Sanders & McGaugh

Page 75: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 75

What have we learned?

• Orbits in a spherical potential or in the mid-plane of a disk potential

• How to relate Pericentre, Apocentre through energy and angular momentum conservation.

• Rotation curves of galaxies– Need for Dark Matter or a boosted gravity

Page 76: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 76

Tutorial: Singular Isothermal Sphere

• Has Potential Beyond ro:

• And Inside r<r0

• Prove that the potential AND gravity is continuous at r=ro if

• Prove density drops sharply to 0 beyond r0, and inside r0

• Integrate density to prove total mass=M0

• What is circular and escape velocities at r=r0?

• Draw diagrams of M(r), Vesc(r), Vcir(r), |Phi(r)|, rho(r), |g(r)| vs. r (assume V0=200km/s, r0=100kpc).

r

GMr 0)( −=φ

oor

rvr φφ += ln)( 20

20000 / vrGM −=−=φ

2

20

4)(

Gr

Vr

πρ =

Page 77: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 77

Another Singular Isothermal Sphere• Consider a potential Φ(r)=V0

2ln(r). • Use Jeans eq. to show the velocity dispersion σ (assume isotropic) is

constant V02/n for a spherical tracer population of density A*r-n ; Show

we required constants A = V02/(4*Pi*G). and n=2 in order for the tracer

to become a self-gravitating population. Justify why this model is called Singular Isothermal Sphere.

• Show stars with a phase space density f(E)= exp(-E/σ2) inside this potential well will have no net motion <V>=0, and a constant rms velocity σ in all directions.

• Consider a black hole of mass m on a rosette orbit bound between pericenter r0 and apocenter 2r0 . Suppose the black hole decays its orbit due to dynamical friction to a circular orbit r0/2 after time t0. How much orbital energy and angular momentum have been dissipated? By what percentage has the tidal radius of the BH reduced? How long would the orbital decay take for a smaller black hole of mass m/2 in a small galaxy of potential Φ(r)=0.25V0

2ln(r). ? Argue it would take less time to decay from r0 to r0 /2 then from r0/2 to 0.

Page 78: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 78

Lec 9: C8.0: Incompressible df/dt=0• Nstar identical particles moving in a small

bundle in phase space (Vol=Δx Δ p), • phase space deforms but maintains its area.

– Likewise for y-py and z-pz.

Phase space density f=Nstars/Δx Δ p ~ const

THEOREM'LIOUVILLES',0,0 ==λλ d

dNstard

dVol

px

x

px

x

Page 79: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 79

C8.1: Stars flow in phase-space[BT4.1]

• Flow of points in phase space ~

stars moving along their orbits.

• phase space coords: ),(),(

),...,,(),( 621

Φ−∇==≡≡

vvxwwwwwvx

&&&

Page 80: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 80

C8.2 Collisionless Boltzmann Equation

• Collisionless df/dt=0:

• Vector form

6

1

3

1

d ( , , ) ( , ) 0

dt

0

0

ii i i i

f x v t w f w tt w

f f fv

t x x v

f fv f

t v

αα α

∂ ∂∂ ∂

∂ ∂ ∂ ∂∂ ∂ ∂ ∂

∂ ∂∂ ∂

=

=

⎛ ⎞= + =⎜ ⎟

⎝ ⎠

⎡ ⎤Φ+ − =⎢ ⎥

⎣ ⎦

+ ⋅∇ −∇Φ⋅ =

&

Page 81: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 81

C8.3 DF & its 0th ,1st , 2nd moments

3 3

3

3 3 3

x

2 2 2 2x y z

( , )( )

( , )

where A( , ) 1, V , ...

e.g., verify V V V V

d Af x v dA

d

d dM d f x v d

ρ

ρ

=

= =

=

= + +

∫∫∫

∫∫∫x y

x vx

x

x x v

x v ,V V

Page 82: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 82

• E.g: rms speed of air particles in a box dx3 :2 2 2

o 2

3

m n exp2

f(x,v)( 2 )

x y zv v v

σ

πσ

⎛ ⎞+ +× −⎜ ⎟⎜ ⎟

⎝ ⎠=

Page 83: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 83

C8.4: CBE Moment/Jeans Equations [BT4.2]

• Phase space incompressible

df(w,t)/dt=0, where w=[x,v]: CBE

• taking moments U=1, vj, vjvk by integrating over all possible velocities

6 3

1 1

3 3 3

0

0

ii i i i

ii i i

f f f f fw v

t w t x x v

f f fUd v v Ud v Ud vt x x v

αα α

∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂∂ ∂ ∂ ∂

= =

⎡ ⎤Φ+ = + − =⎢ ⎥

⎣ ⎦

Φ+ − =

∑ ∑

∫ ∫ ∫

&

Page 84: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 84

C8.5: 0th moment (continuity) eq.

• define spatial density of stars n(x)

• and the mean stellar velocity v(x)

• then the zeroth moment equation becomes( )

3

3

1,2,3

1

0

i i

i

i i

n fd v

v fv d vn

nvn

t x

∂∂

∂ ∂=

+ =

Page 85: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 85

C8.6: 2nd moment Equation

similar to the Euler equation for a fluid flow:– last term of RHS represents pressure force

( ) ( )

( )

2

1,2,3 1,2,3

2

( )( )

1

j ijji

i ii j i

i jij i i j j i j

v nvv

t x x n x

v v v v VV V V

vv v P

t

∂ ∂ σ∂ ∂

∂ ∂ ∂ ∂

σ

∂ ρ

= =

Φ→ + = − −

= − − = −

+ ⋅∇ = −∇Φ − ∇

∑ ∑

( ) Pnx iji

−∇⇔− 2 σ∂

Page 86: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 86

Lec 10, C8.7: Meaning of pressure in star system

• What prevents a non-rotating star cluster collapse into a BH? – No systematic motion as in Milky Way disk.– But random orbital angular momentum of stars!

Page 87: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 87

C8.8: Anisotropic Stress Tensor • describes a pressure which is

– perhaps stronger in some directions than other

• the tensor is symmetric, can be diagonalized– velocity ellipsoid with semi-major axes given

by

σ ij2 = σ ii

2δ ij

σ11 ,σ 22 ,σ 33

2ij ijP nσ=

Page 88: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 88

C8.9: Prove Tensor Virial Theorem (BT4.3)

• Many forms of Viral theorem, E.g.

2 2 2 2

etc

.

Scaler Virial Theorem

2 0

x x x

x y y

x y z

v v x

v v x

v v v v

r

drdr

K W

φφ

φφ

< >=< ∂ >< >=< ∂ >

< >=< > + < > + < >

=< ∇ >

=< >

⇒ + =

v

2 ij ij

vv r

K W

φ⇒< >=< ∇ >=−

vv v

Page 89: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 89

C9.0: Jeans theorem [BT4.4]

• For most stellar systems the DF depends on (x,v) through generally 1,2 or 3 integrals of motion (conserved quantities),

• Ii(x,v), i=1..3 f(x,v) = f(I1(x,v), I2(x,v), I3(x,v))

• E.g., in Spherical Equilibrium, f is a function of energy E(x,v) and ang. mom. vector L(x,v).’s amplitude and z-component

)ˆ||,||,(),( zLLEfvxf ⋅=vv

Page 90: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 90

C9.1: An anisotropic incompressible spherical fluid, e.g, f(E,L) =exp(-E/σ0

2)L2β [BT4.4.4]

• Verify <Vr2> = σ0

2, <Vt2>=2(1-β) σ0

2

• Verify <Vr> = 0

• Verify CBE is satisfied along the orbit or flow:

( , ) ( , ) ( , )0 0

df E L f E L dE f E L dL

dt E dt L dt

∂ ∂= + = +

∂ ∂

0 for static potential, 0 for spherical potential

So f(E,L) indeed constant along orbit or flow

Page 91: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 91

C9.2: Apply JE & PE to measure Dark Matter [BT4.2.1d]

• A bright sub-component of observed density n*(r) and anisotropic velocity dispersions

<Vt2>= 2(1-β)<Vr

2>

• in spherical potential φ(r) from total (+dark) matter density ρ(r)

( )2 2

2

2

02

21JE: - *

*

( )4PE:

t rr

r

v vd dn v

n dr r dr

G r r dr d

r dr

ρ π

− Φ+ =

Φ=

[

Page 92: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 92

C9.3: Measure total Matter density ρr)

Assume anistropic parameter beta, substitute JE for stars of density n* into PE, get

• all quantities on the LHS are, in principle, determinable from observations.

( )222

2

*2 - ( ) ( )

4 *

rr

d n vvd rr

r dr G r n dr

βρ

⎡ ⎤⎢ ⎥+ =⎢ ⎥π⎢ ⎥⎣ ⎦

Page 93: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 93

C9.4: Spherical Isotropic f(E) Equilibriums [BT4.4.3]

• ISOTROPIC β=0:The distribution function f(E) only depends on |V| the modulus of the velocity, same in all velocity directions.

Note:the tangential direction has θ and components

Page 94: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 94

C9.5: subcomponents

• Non-SELF-GRAVITATING: There are additional gravitating matter

• The matter density that creates the potential is NOT equal to the density of stars. – e.g., stars orbiting a black hole is non-self-

gravitating.

Page 95: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 95

C9.6: subcomponents add upto the total gravitational mass

1 2

1 2

Phase density of stars plus dark matter

density of stars plus dark matter

Total density shared total potential

A B A B

f f f

ρ ρ ρ

ρ

+ = +

= +

= +

==>Φ

Page 96: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 96

What have we learned?

• Meaning of anistrpic pressure and dispertion.

• Usage of Jeans theorem [phase space]

• Usage of Jeans eq. (dark matter)

• Link among quantities in sphere.

Page 97: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 97

C10.0: Galactic disk mass density from vertical equilibrium

• Use JE and PE in cylindrical coordinates.

• drop terms 1/R or d/dR ( d/dz terms dominates).– |z|< 1kpc < R~8kpc near Sun

• Combine vertical hydrostatic eq. and gravity eq. :

• RHS are observables

• => JE/PE useful in weighing the galaxy disk.

( )2 ** zn v

n z z

∂ ∂

∂ ∂

Φ≈ −

2

24 G

z

∂ρ∂Φ

π ≈

( )z=1kpc

2

1z=-1kpc

total density in a column 1kpc high

2= dz *

4 * zz kpc

n vGn z

∂ρ

∂ =

⎡ ⎤= ⎢ ⎥π⎣ ⎦∫

Page 98: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 98

A toy galaxy

2 2 2 2 2 2 2 1/ 20 0 ( , ) 0.5 ln( 2 ) (1 ( ) /1 ) ,

0 100 / . Argue 1st & 2nd terms of above

galaxy potential resemble dark halo and stars respectively.

R z v R z v R z kpc

v km s

φ −= + − + +=

Calculate the circular velocity and dark halo density

on equator (R,z) (1kpc,0)

Estimate the total mass of stars and dark matter inside 10kpc.

Estimate the star column density inside |z|<0.1kpc, R=1kpc.

=

If you like challenge…

Learn to analyse

Page 99: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 99

Helpful Math/Approximations(To be shown at AS4021 exam)

• Convenient Units

• Gravitational Constant

• Laplacian operator in various coordinates

• Phase Space Density f(x,v) relation with the mass in a small position cube and velocity cube

3dv3dx),(dM

)(spherical 2sin2r

2

sin2r

)(sin

2r

)2(

al)(cylindric 22-R2)(1-R

ar)(rectangul 222

1-sun

M2(km/s) kpc6104

1-sun

M2(km/s) pc3104

Gyr1

kpc1

1Myr

1pc 1km/s

vxf

rr

r

zRR

R

zyx

G

G

=

∂+

∂∂+

∂∂=

∂+∂+∂∂=

∂+∂+∂=∇•∇

−×≈

−×≈

≈≈

θ

φ

θθθθ

φ

Page 100: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 100

Thinking of a globular cluster …

Page 101: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 101

C10.1: Link phase space quantities

r

J(r,v)

K(v)

(r)

Vt

E(r,v)dθ/dt

vr

Page 102: AS4021 Gravitational Dynamics 1 Gravitational Dynamics: An Introduction HongSheng Zhao.

AS4021 Gravitational Dynamics 102

C10.2: Link quantities in spheres

g(r)

(r) ρ(r)vesc

2(r)

M(r)Vcir2 (r)

σr2(r)

σt2(r)

f(E,L)