article.pdf

download article.pdf

of 16

Transcript of article.pdf

  • Appendix A: Thermodynamic Tables

    Table A.1 Reaction rate coefficients

    Reaction r k0 Eact; J=kmol

    H2 12 O2 ! H2O kH2O2 9:87 108 3:1 107CO 12 O2 ! CO2 kCOO20:25H2O0:5 2:239 1012 1:7 108CO 12 O2 CO2 kCO2 5 108 1:7 108C2H2 52 O2 ! 2CO2 H2O kC2H20:5O21:25 3:655 1010 1:256 108C6H6 152 O2 ! 6CO2 3H2O kC6H60:1O21:85 1:125 109 1:256 108C10H22 312 O2 ! 10CO2 11H2O kC10H220:25O21:5 2:587 109 1:256 108C2H6 72 O2 ! 2CO2 3H2O kC2H60:1O21:65 6:186 109 1:256 108C2H4 3O2 ! 2CO2 2H2O kC2H40:1O21:65 1:125 1010 1:256 108C2H5OH 3O2 ! 2CO2 3H2O kC2H5OH0:15O21:6 8:435 108 1:256 109C19H30 532 O2 ! 19CO2 15H2O kC19H300:25O21:5 2:587 109 1:256 108C16H29 934 O2 ! 16CO2 292 H2O kC16H290:25O21:5 2:587 109 1:256 108C12H23 714 O2 ! 12CO2 232 H2O kC12H230:25O21:5 2:587 109 1:256 108CH4 2O2 ! CO2 2H2O kCH40:2O21:3 2:119 1011 2:027 108CH4 32 O2 ! CO 2H2O kCH40:7O20:8 5:012 1011 2 108CH3OH 32 O2 ! CO2 2H2O kCH3OH0:25O21:5 1:799 1010 1:256 108C4H10 132 O2 ! 4CO2 5H2O kC4H100:15O21:6 4:161 109 1:256 108C7H16 11O2 ! 7CO2 8H2O kC7H160:25O21:5 2:868 109 1:256 108C6H14 192 O2 ! 6CO2 7H2O kC6H140:25O21:5 3:205 109 1:256 108C8H18 252 O2 ! 8CO2 9H2O kC8H180:25O21:5 2:587 109 1:256 108C5H12 8O2 ! 5CO2 6H2O kC5H120:25O21:5 3:599 109 1:256 108C3H8 5O2 ! 3CO2 4H2O kC3H80:1O21:65 4:836 109 1:256 108C3H8 72 O2 ! 3CO2 4H2O kC3H80:1O21:65 5:62 109 1:256 108C3H6 92 O2 ! 3CO2 3H2O kC3H60:1O21:85 2:362 109 1:256 108C7H8 9O2 ! 7CO2 4H2O kC7H80:1O21:85 2:362 109 1:256 108

    201

  • Table A.2 Chemical equilibrium constant coefficients

    Reaction K A eE0RT A E0(kJ/mol)

    H2 12 O2 ! H2O pH2O p1=2refpH2 p

    1=2O2

    1.44103 246

    CO 12 O2 ! CO2 pCO2 p1=2refpCO p1=2O2

    3.13105 282

    C2H2 52 O2 ! 2CO2 H2O p2CO2 pH2O p1=2refpC2H2 p

    5=2O2

    2.99106 1,260

    C6H6 152 O2 ! 6CO2 3H2O p6CO2 p3H2OpC6H6 p

    15=2O2p1=2ref

    5.06103 3,140

    C10H22 312 O2 ! 10CO2 11H2O p10CO2 p11H2OpC10H22 p

    31=2O2p9=2ref

    7.861036 6,300

    C2H6 72 O2 ! 2CO2 3H2O p2CO2 p3H2OpC2H6 p

    7=2O2p1=2ref

    2.79104 1,390

    C2H4 3O2 ! 2CO2 2H2O p2CO2 p2H2OpC2H4 p3O2

    0.289 1,300

    C2H5OH 3O2 ! 2CO2 3H2O p2CO2 p3H2OpC2H5OH p3O2 pref

    1.97106 1,260

    CH4 2O2 ! CO2 2H2O pCO2 p2H2OpCH4 p2O2

    0.912 801

    CH4 32 O2 ! CO 2H2O pCO p2H2OpCH4 p

    3=2O2p1=2ref

    2.77104 519

    CH3OH 32 O2 ! CO2 2H2O pCO2 p2H2OpCH3OH p

    3=2O2p1=2ref

    2760 661

    C4H10 132 O2 ! 4CO2 5H2O p4CO2 p5H2OpC4H10 p

    15=2O2p3=2ref

    5.87109 2,630

    C7H16 11O2 ! 7CO2 8H2O p7CO2 p8H2OpC7H16 p11O2 p

    3ref

    1.771019 4,460

    C6H14 192 O2 ! 6CO2 7H2O p6CO2 p7H2OpC6H14 p

    19=2O2p5=2ref

    9.121016 3,840

    C8H18 252 O2 ! 8CO2 9H2O p8CO2 p9H2OpC8H18 p

    25=2O2p7=2ref

    4.771024 5,040

    C5H12 8O2 ! 5CO2 6H2O p5CO2 p6H2OpC5H12 p8O2 p

    2ref

    5.121012 3,240

    C3H8 5O2 ! 3CO2 4H2O p3CO2 p4H2OpC8H8 p5O2 pref

    7.2106 2,020

    C3H8 72 O2 ! 3CO2 4H2O p3CO2 p4H2OpC3H8 p

    7=2O2p5=2ref

    2.78104 1410

    C3H6 92 O2 ! 3CO2 3H2O p3CO2 p3H2OpC6H6 p

    9=2O2p1=2ref

    133 1,910

    C7H8 9O2 ! 7CO2 4H2O p7CO2 p4H2OpC7H8 p9O2 pref

    3.23105 3,750

    202 Appendix A: Thermodynamic Tables

  • Appendix B: Electrochemical Impedance SpectroscopyExperimental Data

    Fig. B.1 Impedance spectra with temperature and variable fuel utilization (pure H2 fuel)

    Fig. B.2 Impedance spectra with temperature and variable fuel utilization (pure H2 fuel)

    203

  • Fig. B.3 Impedance spectra with temperature and variable fuel utilization (pure H2 fuel)

    Fig. B.4 Impedance spectra with temperature and variable fuel utilization (pure H2 fuel)

    Fig. B.5 Impedance spectra with fuel utilization and variable temperature (pure H2 fuel)

    204 Appendix B: Electrochemical Impedance Spectroscopy Experimental Data

  • Fig. B.6 Impedance spectra with fuel utilization and variable temperature (pure H2 fuel)

    Fig. B.7 Impedance spectra with fuel utilization and variable temperature (pure H2 fuel)

    Fig. B.8 Impedance spectra with fuel utilization and variable temperature (pure H2 fuel)

    Appendix B: Electrochemical Impedance Spectroscopy Experimental Data 205

  • Fig. B.9 Impedance spectra with temperature and variable diluents concentration (H2 fuel)

    Fig. B.10 Impedance spectra with temperature and variable diluents concentration (H2 fuel)

    Fig. B.11 Impedance spectra with temperature and variable diluents concentration (H2 fuel)

    206 Appendix B: Electrochemical Impedance Spectroscopy Experimental Data

  • Fig. B.12 Impedance spectra with temperature and variable diluents concentration (H2 fuel)

    Fig. B.13 Impedance spectra with N2-diluted fuel and variable temperature

    Fig. B.14 Impedance spectra with N2-diluted fuel and variable temperature

    Appendix B: Electrochemical Impedance Spectroscopy Experimental Data 207

  • Fig. B.15 Impedance spectra with N2-diluted fuel and variable temperature

    Fig. B.16 Impedance spectra with N2-diluted fuel and variable temperature

    Fig. B.17 Impedance spectra with He-diluted fuel and constant temperature

    208 Appendix B: Electrochemical Impedance Spectroscopy Experimental Data

  • Fig. B.18 Diluents effect on cell electrochemical performance: comparison between N2/H2 andHe/H2 fuel mixtures

    Fig. B.19 Diluents effect on cell electrochemical performance: comparison between N2/H2 andHe/H2 fuel mixtures

    Fig. B.20 Impedance spectra with temperature and variable oxidant utilization (pure H2 fuel)

    Appendix B: Electrochemical Impedance Spectroscopy Experimental Data 209

  • Fig. B.21 Impedance spectra with temperature and variable oxidant utilization (pure H2 fuel)

    Fig. B.22 Impedance spectra with temperature and variable oxidant utilization (pure H2 fuel)

    Fig. B.23 Impedance spectra with temperature and variable oxidant utilization (pure H2 fuel)

    210 Appendix B: Electrochemical Impedance Spectroscopy Experimental Data

  • Fig. B.24 Impedance spectra with temperature and variable oxidant utilization (pure H2 fuel)

    Fig. B.25 Impedance spectra with temperature and variable oxidant utilization (pure H2 fuel)

    Fig. B.26 Impedance spectra with temperature and variable oxidant utilization (pure H2 fuel)

    Appendix B: Electrochemical Impedance Spectroscopy Experimental Data 211

  • Fig. B.27 Impedance spectra with temperature and variable oxidant utilization (pure H2 fuel)

    212 Appendix B: Electrochemical Impedance Spectroscopy Experimental Data

  • Table C.1 The values of theweights for the ANN basedmodel of SOFC

    Layernumber

    Neuronnumberof k layer

    Neuron number ofk - 1 layer if k = 1,j indicates input

    value j = 0 indicatesa bias

    Weight

    k i j w

    1 1 0 0.824091 1 1 -1.81591 1 2 -0.00312771 1 3 0.0345361 1 4 0.0296321 2 0 -1.21551 2 1 -1.90061 2 2 0.00277591 2 3 0.211061 2 4 0.0103531 3 0 -1.35841 3 1 -0.434811 3 2 0.00379891 3 3 -0.0293621 3 4 0.00857412 1 0 -0.18172 1 1 1.66212 1 2 1.4472 1 3 1.3673

    Appendix C: Weight Values for ANN Models

    213

  • Index

    AActivation

    energy, 33losses, 93

    Area specific internal electronicresistance, 102

    Area specific internal ionicresistance, 102

    Arrheniusequation, 33

    Artificial immunenetwork, 14

    Artificial neuralnetwork, 61, 126

    BBaur, 6Bayesion

    regularization, 118Bruner, 4Butler-Volmer

    equation, 98

    CChiller

    absorption, 175Constant

    chemical equlibrium, 26, 28Cost

    installation, 13maintain, 13

    Current densitymaximum, 103

    Current-voltagecurve, 70, 95

    DDavid Henry, 3Diffusion, 38

    binary coefficient, 41Knudsen, 38molecular, 38

    Dusty model, 39

    EElectrolyte

    material, 10type, 10

    Energyinternal, 21

    Epochstraining, 119

    FFermi

    golden rule, 34Fick

    Adolf, 39laws, 39

    first, 39second, 39

    Fuelbio-fuel, 184

    gasification, 191synthetic, 65

    Fuel utilizationfactor, 70

    Fuzzy logicmethod, 56

    Fuzzy neuralnetwork, 57

    215

  • GGeneration

    centralized, 14distributed, 14triple, 172

    Grove Wiliam, 3

    HHaber, 4Heat

    absorption, 20formation, 22generation, 20

    Hesslaw, 21

    Hessianmatrix, 55

    IImmune

    response, 61Isothermal

    conditions, 20

    JJacques

    William, 3

    KKirchhoff

    equations, 22, 23Kohonen

    network, 58

    LLanger , 2

    Charles, 1, 2Le Chatelier-Braun

    principle, 28Levenberg-Marquardt

    algorithm, 118method, 55

    Lymphocyte, 61

    MModel

    black-box, 114hybrid-artificial neural network, 119

    MondLudwig, 1, 2

    NNernst

    equation, 93lamp, 6mass, 7Wiliam, 4

    Networkweights, 118

    Neuron, 113Newton

    method, 55

    OOff-desing

    operation, 107Office building, 15Ostwald, 3Overfitting, 118

    PPower

    grid, 14Preis, 6

    RRayleigh, 2Reaction

    chemical, 19work, 19

    degree, 34endothermic, 19exothermic, 19half-life, 32heat, 20, 21

    isobaric-isothermal, 21isochoric-

    isothermal, 21heterogeneous, 26homogeneous, 26isotherm, 27order, 32rate

    constant, 32speed, 32work

    maximum, 23Ruka, 9

    216 Index

  • SSingular cell, 97Standard

    enthalpy, 21State

    standard, 21Steady state, 30

    conditions, 31Stefan-Maxwell

    diffusion, 40equation, 38

    Systemheterogeneous, 26homogeneous, 26

    TTafel

    equation, 98Takagi-Sugeno

    inference, 57Thompson, 3

    Vvant Hoff, 23

    chamber, 23isotherm, 27

    Voltagemaximum, 103

    WWeissbart, 9Westinghouse Electric

    Corporation, 9

    Index 217

    Appendix A: Thermodynamic TablesAppendix B: Electrochemical Impedance SpectroscopyExperimental DataAppendix C: Weight Values for ANN ModelsIndex

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 150 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 150 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 600 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile (None) /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False

    /CreateJDFFile false /Description >>> setdistillerparams> setpagedevice