art%3A10.2478%2Fs11532-014-0558-7

26
1. Introduction In the last few decades considerable attention has been paid to heterometallic clusters, including those of platinum. There are almost one thousand two hundred heterometallic platinum complexes for which structural data are available. Previous reviews have classified and analyzed over five hundred heterobinuclear platinum complexes [1,2], almost four hundred heterotrinuclear [3], over two hundred heterotetranuclear [4] and almost ninety heteropentanuclear clusters [5]. The aim of this review is to discuss the structural parameters of heterohexanuclear platinum clusters, and make comparisons with the heterobi- to heteropentanuclear clusters. 2. Heterohexanuclear Pt clusters There are over seventy heterohexanuclear platinum clusters of metal compositions for which crystallographic and structural parameters are available: Pt 5 M (x2), Pt 4 M 2 (x10), Pt 3 M 3 (x11), Pt 2 M 4 (x24), PtM 5 (x22), Pt 2 Cu 3 Fe, Pt 2 Os 3 M (x2) and Pt 2 M 2 M 2 ´(x2). These parameters are analyzed and classified in the following sections, and their structures are found to be complex. 2.1. Pt 5 M, Pt 4 M 2 and Pt 3 M 3 The structural parameters for the hexanuclear platinum clusters are presented in Table 1. The structure of red brown Pt 5 Fe [6] is seen to differ from that of black Pt 5 Re [7]. In Pt 5 Fe [6], the metal core may be regarded as a Pt 4 Central European Journal of Chemistry Crystallographic and structural characterization of heterometallic platinum complexes Part VI. Heterohexanuclear complexes * E-mail: [email protected] Received 29 October 2013; Accepted 18 January 2014 Abstract: © Versita Sp. z o.o. Keywords: Heterohexanuclear • Platinum • Structure • Analyze • Isomers 1 Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, SK-832 32 Bratislava, Slovak Republic 2 Department of Chemistry, York University, North York, M3J 1P3 Ontario, Canada Milan Melník 1 , Peter Mikuš 1 , Clive E. Holloway 2 Review Article This review classifies and analyzes heterohexanuclear platinum clusters into seven types of metal combinations:Pt 5 M, Pt 4 M 2 , Pt 3 M 3 , Pt 2 M 4 , PtM 5 , Pt 2 M 3 M´, and Pt 2 M 2 M 2 ´. The crystals of these clusters generally belong to six crystal classes: monoclinic, triclinic, orthorhombic, tetragonal, trigonal and cubic. Among the wide range of stereochemistry adopted by these clusters, octahedral and capped square- pyramidal are the most common. Although platinum is classified as a soft metal atom, it bonds to a variety of soft, borderline and hard metals. Nineteen different heterometal ions are involved in hexanuclear platinum clusters. The shortest Pt-M bond distance in the case of M being a non-transition element is 2.395(4) Å for germanium and for M being a transition metal ion it is 2.402(2) Å for Cobalt. The shortest Pt-Pt bond distance observed in these clusters is 2.532 Å. Several relationships between the structural parameters are identified and discussed. Some clusters exist in two isomeric forms and some show crystallographically independent molecules within the same crystal. Such isomers and independent molecules are examples of distortion isomerism. Cent. Eur. J. Chem. • 12(11) • 2014 • 1101-1126 DOI: 10.2478/s11532-014-0558-7 1101

Transcript of art%3A10.2478%2Fs11532-014-0558-7

Page 1: art%3A10.2478%2Fs11532-014-0558-7

1. IntroductionIn the last few decades considerable attention has been paid to heterometallic clusters, including those of platinum. There are almost one thousand two hundred heterometallic platinum complexes for which structural data are available. Previous reviews have classified and analyzed over five hundred heterobinuclear platinum complexes [1,2], almost four hundred heterotrinuclear [3], over two hundred heterotetranuclear [4] and almost ninety heteropentanuclear clusters [5]. The aim of this review is to discuss the structural parameters of heterohexanuclear platinum clusters, and make comparisons with the heterobi- to heteropentanuclear clusters.

2. Heterohexanuclear Pt clustersThere are over seventy heterohexanuclear platinum clusters of metal compositions for which crystallographic and structural parameters are available: Pt5M (x2), Pt4M2 (x10), Pt3M3 (x11), Pt2M4 (x24), PtM5 (x22), Pt2Cu3Fe, Pt2Os3M (x2) and Pt2M2M2´(x2). These parameters are analyzed and classified in the following sections, and their structures are found to be complex.

2.1. Pt5M, Pt4M2 and Pt3M3The structural parameters for the hexanuclear platinum clusters are presented in Table 1. The structure of red brown Pt5Fe [6] is seen to differ from that of black Pt5Re [7]. In Pt5Fe [6], the metal core may be regarded as a Pt4

Central European Journal of Chemistry

Crystallographic and structural characterization of heterometallic platinum complexesPart VI. Heterohexanuclear complexes

* E-mail: [email protected]

Received 29 October 2013; Accepted 18 January 2014

Abstract:

© Versita Sp. z o.o.Keywords: Heterohexanuclear • Platinum • Structure • Analyze • Isomers

1Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, SK-832 32 Bratislava, Slovak Republic

2Department of Chemistry, York University, North York, M3J 1P3 Ontario, Canada

Milan Melník1, Peter Mikuš1, Clive E. Holloway2

Review Article

This review classifies and analyzes heterohexanuclear platinum clusters into  seven types of metal combinations:Pt5M, Pt4M2, Pt3M3, Pt2M4, PtM5, Pt2M3M´, and Pt2M2M2´. The crystals of these clusters generally belong to six crystal classes: monoclinic, triclinic, orthorhombic, tetragonal, trigonal and cubic. Among the wide range of stereochemistry adopted by these clusters, octahedral and capped square-pyramidal are the most common. Although platinum is classified as a soft metal atom, it bonds to a variety of soft, borderline and hard metals. Nineteen different heterometal ions are involved in hexanuclear platinum clusters.  The shortest Pt-M bond distance in the case of M being a non-transition element is 2.395(4) Å for germanium and for M being a transition metal ion it is 2.402(2) Å for Cobalt. The shortest Pt-Pt bond distance observed in these clusters is 2.532 Å. Several relationships between the structural parameters are identified and discussed.  Some clusters exist in two isomeric forms and some show crystallographically independent molecules within the same crystal. Such isomers and independent molecules are examples of distortion isomerism.

Cent. Eur. J. Chem. • 12(11) • 2014 • 1101-1126DOI: 10.2478/s11532-014-0558-7

1101

Page 2: art%3A10.2478%2Fs11532-014-0558-7

Crystallographic and structural characterization of heterometallic platinum complexes

Part VI. Heterohexanuclear complexes

Table 1. Crystallographic and structural data for heterohexanuclear platinum clusters (Pt5M, Pt4M2 and Pt3M3)a.

COMPOUND(colour)

Crys.clSp.Grp

Z

a [Å]b [Å]c [Å]

a [o]ß [o]g [o]

Chromo-phore

M-L[Å]

M-M [Å]M-L-M [°]

L-M-L[o]

Ref

A: Pt5M (PEt3)4(CO). (µ-CO)4Pt5Fe(CO)4(red brown)

mP21/n

4

11.421(2)23.653(3)13.877(3)

95.16(2)PtCFePt4

PtCPFePt2PtC2PPt3

(x2)

PtC2PPt4

FeC4Pt2

OCb 1.76(4)µOC 1.97(3,6) 2.25(3,4)

Et3P 2.247(8,11) 2.296(8,26)

OC 1.75(3,5)

Fe 2.570(4)2.603(4)

Pt 2.666(1)2.895(1)2.765c

Fe,Ptb57.8(1) 118.5(1,7) 145.5(1)

Pt,Pt60.41(4,3.2) 112.0415(5,6.5)

Pt,Pt 63.2(1)

[6]

[(Pcy3)4(CO)5Pt5.(µ-O)2(µ-OH)Re].[ReO4].0.5Et2O(black)

orFdd2

16

27.783(5)55.20(1)26.778(7)

PtOCPRePt(x4)

PtCRePt4

ReO4Pt4

µO 2.792(2)- 3.275(2))OC not givency3P not given

µO 2.792(2)- 3.275(2)

Re 2.548(2)2.792-3.275(2)Pt 2.747(2,35)

3.380(2)-3.714(2)

not given

not given

[7]

B. Pt4M2(NBu4)[{(C6F5)2Pt.(µ-OH)(HgCl)Pt.(C6F5)2}2(µ-OH)2].7/4CH2Cl2(red)(at 223(1) K)

trPī2

14.228(12)17.813(12)20.55(2)

87.03(7)83.91(7)83.46(5)

PtC2O2Hg

HgClPt2

C 1.95(4,9)µHO 2.09(3,3)

Cl 2.35(1)

Hg 2.663(4,15)2.717(4,3)O 116(1,6)

C,C 93(2,5)O,O 83.1(9,1.4)O,Hg 87.8(7,7.0)

Cl,Pt 140.5(3,10.6)Pt,Pt 78.4(1,6)

[8a]

(NBu4)[{(C6Cl5)2Pt.(µ-OH)ľPt.(C6Cl5)2}2 Hg2].CH2Cl2(garnet)

mP21/n

4

13.105(3)29.771(6)31.745(6)

97.63(3)PtO2C2Hg

HgPt2Hg’

µO 2.085(8,27) 2.142(8,18)C 1.999(12,35)

Hg 2.675(1,19)2.943(1,42)Pt 3.170(1,4)O 97.2(3,27)Hg 2.559(1)

O,O 79.0(3,2.2)C,C 93.0(4,1.9) 172.3(5,5.9)

Hg,Pt 54.0(1,4.6)Pt,Pt 68.5(1,60

Hg,Pt 122.6(0,1) 161.6(1,2.4)

[8b]

(PPh3)4(µ-CO)4.Pt4Hg2(CF3)2(red)

mP21/n

4

17.845(14)20.696(5)20.626(4)

90.39PtC2PHg2.Pt2 (x2)PtC2PPt2

(x2)

HgCPt2

µOC 2.08(2,8)Ph3P 2.265(4,12)

C 2.30(2,0)

Hg 2.727(1,8)2.775(1,22)3.087(1,7.2)Pt 2.7157(8)-

2.9489(9)2.775c

C 81.8(5,1.1)

C,P 99.6(1,9.5) 142.5(1,10.1)

Hg,Pt 56.82(2,2.5) 65.54(2,2.4)Pt,Ot 57.32(2,30) 65.34(2,30)Pt,Pt 55.39(2,70) 64.79(2,40)

[9]

(PPh3)4(µ-CO)4.Pt4Hg2Br2(red)

mP21/c

2

20.32(3)20.549(6)97.932(4)

90.50(2)PtC2PHg2.Pt2 (x2)PtC2PPt2

(x2)

HgBrPt3

µOC2.040(2,41) 2.160(2)

Ph3P 2.259(6,6) 2.274(6,3)

Br 2.515(3,8)

Hg 2.741(1,6)2.765(1,12)3.067(1,46)

Pt 2.725(1,3)2.751(1,0)3.008(1)3.211(1)

Hg 3.617(1)

P,Hg 96.85(2,6.0)P,Pt 144.28(2,8.4)Pt,Pt 66.67(3,37)

Br,Pt 64.99(1) 146.32(8,6.5)

Pt,Pt 66.48(1)

[10]

(PMe2Ph)4(µ-CO)4.Pt4Hg2I2(red)

mP21/m

4

10.086(2)18.739(4)24.764(5)

90.94(3)PtC2PHg2.Pt2 (x2)

PtC2PPt2(x2)

HgIPt3

µOC not givenP not given

I 2.707(5,4)

Hg 2.732(3,16)2.802(3,11)3.117(3,46)Pt 2.726(3,8)

3.011(3)

Hg 3.395(4)

P,Hg 99.5(4)P,Pt 148.6(4)

Hg,Hg 75.6(1)Pt,Pt 56.6(1) 75.9(1)

Hg,Pt 56.7(1,1.4) 68.2(1) 114.9(2)

not given

[11]

[{(PPh3)4Pt2(µ3-Se)2}2.In2(µ-Se)2].(ClO4)2.4MeOH(brown)

mP21/c

2

14.5465(9)27.2617(13)18.3583(9)

106.963(1)PtP2Se2

InSe4

Ph3P not givenµ3Se 2.497(1,3) 2.496(1,7)

µSe 2.634(1,18)µ3Se2.571(1,15)

Se 87.71(1)

µSe 82.00(1)

Se,Se 81.32(1,16)

µSe,µSe 98.00(2)µSe,µ3Se121.14(3,2.8)

[12]

1102

Page 3: art%3A10.2478%2Fs11532-014-0558-7

M. Melník, P. Mikuš, C. E. Holloway

{NBu4)2[{(C6Cl5)4.(µ-Cl)2Pt2Ag}2](yellow)

mP21/n

4

14.528(9)42.615(12)19.942(10)

96.08(2)PtC2Cl2Ag

AgPt2

C 1.971(32,6) 2.037(26,48)

µCl 2.418(12,28)

Ag 2.751(4,4)2.773(4,8)

Pt 3.268(3,4)Cl 84.9(4,6)

Ag 3.87

not given

Pt,Pt 163.2(2)

[13]

[{(PPh3)2Pt(µ3-S)}4.Ag2](BF4)2 (yellow)

mP21/a

4

24.638(7)19.722(7)32.619(9)

94.40(4)PtS2P2

AgS2Ag

µ3S 2.353(8,27)Ph3P not given

µ3S 2.389(9,10)

Ag 3.450(3)-3.905(3)

Pt 3.314(2,36)Ag 2.815(4)

S,S 82.6(3,1.3)

S,S 175.1(3,1.1)

[14]

[(Pcy3)4(µ-CO)2Pt4(µ-OReO3)2 (red black)

trgR3c18

45.067(7)

26.498(2)

PtCPPt3(x2)

PtOCPPt3(x2)

ReO4

µOC 1.92(1,2)µO 2.153(9)

cy3P 2.298(5,30)

O 1.70(1,2)µO 1.74(1)

Pt 2.692(1)2.761(1,36)

2.871(1)

not given

not given

[15]

[(Pmop3)2(NCS).(µ3-NCS)Pt2.(µ-η1:η5-C5H4)2Fe]2(red)

trPī1

15.755(8)16.081(9)15.287(9)

108.58(4)107.20(4)68.44(4)

PtCNSP(x2)

PtCNSP(x2)

FeC10

η1C not givenSCN 2.04(2)µS 2.393(5)P not given

µ3SCN 2.08(2)µ3NCS 2.398(6)

not given

not given

not given

[16]

[{{(η2-dach)Pt.(µ-η:η2-betmp)}2.Cu}2(BF4)](BF4)3(blue green)

tgI41/acd

4

22.498(4)

23.16(4)

PtIIN2S2

CuIIO4

not given

not given

not given

not given

[17]

C: Pt3M3[(CO)3Pt3{µ-Sn.(N(SiMe3)2)2}3](yellow)

mP21/n

4

11.688(1)23.582(2)27.426(2)

94.41(1)PtCSn2Pt3

SnN2Pt2

OC not given

N 2.05(2)

Sn 2.620(1,6)Pt 2.763(1,12)

Sn,Pt 58.48(3)Pt,Pt 60.43(2)N,N 108(1)

Pt,Pt 63.3(/3)

[18]

(η4-cod)Pt3W3.(µ3-CMe)2(µ-CMe).(CO)6(cp*)3(burgundy)

trPī2

11.935(6)13.242(7)18.193(9)

80.53(4)81.22(4)67.39(4)

PtC2W2

PtC2W2PtC5W

WC7Pt2

WC8Pt(x2)

µC 2.05(2)µ3C 2.08(2)

µ3C 2.09(2,3)η4C 2.27(2,2)µ3C 2.04(2)

OC 1.98(2,1)η5cpC 2.35

OC 1.95(2,2)µ3C 1.91(2,8)

η5cp*C 2.33(-,1)

W 2.729(2,18)Pt 3.109(2)3.201(2)

W,W 148.4(1,1)Pt,Pt 103.1(1)

Pt,Pt 70.5(1,1.4)

[19]

[{(CO)3Pt3{Fe(CO)4}3](dark brown)

mP2/c

4

15.996(6)11.843(4)12.796(5)

92.35(3)PtCFe2Pt2

FeC4Pt2

OC 1.88(2,3)

OC 1.80(2,3)

Fe 2.578(2,7)Pt 2.589(2,3)

C,Fe 90.4(4,2)C,Pt 149.9(4,3)

Fe,Fe 176.0(1,3.7)Pt,Pt 60.06(2)

Fe,Pt 59.84(5,35) 119.61(5,33)Pt,Pt 60.30(5,10)

[20]

[N(Me3)(CH2Ph)].[(CO)3Pt3{Fe(CO)4}3](green)

trPī4

17.217(6)10.722(4)8.854(6)

96.25(3)90.37(3)93.99(4)

PtCFe2Pt2

FeC4Pt2

OC 1.80(3)

OC 1.76(3)

Fe 2.587(4)Pt 2.656(1)

not given

not given

[21]

[Pt(µ-abz)Fe(cp)]3.CHCl3(dark green)

mP21//n

4

21.439/7)11.990(7)20.919(4)

90.79(2)PtS2NC

FeC10

µS 2.31(4,6)N 2.18(13,4)µC 2.03(27,3)

η5C not given

Fe 3.49(3)3.67(3,2)

Pt 3.535(9)3.691(9,7)

S,S 92(1,1)S,N 87(2,2)d

S,C 103(5,3)N,C 78(8,2)d

not given

[22]

ContinuedTable 1. Crystallographic and structural data for heterohexanuclear platinum clusters (Pt5M, Pt4M2 and Pt3M3)a.

COMPOUND(colour)

Crys.clSp.Grp

Z

a [Å]b [Å]c [Å]

a [o]ß [o]g [o]

Chromo-phore

M-L[Å]

M-M [Å]M-L-M [°]

L-M-L[o]

Ref

1103

Page 4: art%3A10.2478%2Fs11532-014-0558-7

Crystallographic and structural characterization of heterometallic platinum complexes

Part VI. Heterohexanuclear complexes

tetrahedron sharing its Pt(1)-Pt(5) edge with a FePt3 lonzenge shaped moiety. The latter is created by the triangles FePt(3)Pt(5) and Pt(1)Pt(3)Pt(5) which form a dihedral angle of 2.1° with each other. This lozenge is oriented in a such way that its mean plane is nearly orthogonal to the Pt(1)Pt(2)Pt(4) plane (dihedral angle 93.3°), and platinum atoms Pt(2) and Pt(4) are situated -1.649 and 0.985 Å on either side of this plane. There

are eight Pt-Pt bonds (2.666(3) – 2.895(1) Å) and two Pt-Fe bonds, 2.570(4) and 2.603(3) Å (Table 1A).

In the black Pt5Re cluster [7] a central RePtCO unit with four peripheral Pt(CO)L units is found, each of which is coplanar with and arranged like the spokes of a wheel around the Re-Pt axis. Each peripheral PtRe unit is bridged by a µ-O or µ-OH ligand, with the central Pt-Re bond of 2.548(2) Å. The distance between the central

(PPri3)3Pt3Co3.

(µ6-C)(µ-H)(µ-CO)4.(CO)5(green)

mP21/n

4

12.536(2)24.068(4)16.512(3)

91.72(1)PtC3PCo3

PtC2PCo2Pt(x2)

CoC4Pt3CoCoC4Pt2CoCoC4Pt2.

Co2

µOC 2.09(2,7)µ6C 2.11(2,8)

P 2.262(4) 2.310(4,4)

OC 1.98(1,1)µOC 1.88(2,6)µ6C 1.86(2,3)

Co 2.599(2)3.060(2)2.771c

µ6C 82.6(6,3.3)95.5(6,4.0)165.45(8)Pt 2.868(1)3.260(1)

µ6C 86.6(5)101.6(5)171.8(8)

Co 2.693(3,1)µ6C 91.7(7,5)

164.4(8)

Co,Co 57.4(1,1) 74.8(1) 87.2(1)

Co,Pt 53.9(1,3.9) 64.6(1,2.6)

78.1(1) 91.3(1)

Pt,Pt 88.7(1)

Pt,Pt 59.5(1,3) 74.2(1,1.5) 99.4(1,2.2)

Pt,Co 54.9(1,1.7) 68.0(1,2.6) 91.8(1,1.9)

[23]

Pt3Ir3(µ-CO)3.(CO)3(cp*)3

e

(dark brown)

mP21/n

8

41.811(34)9.183(6)

21.892(14)90.99(6)

PtC2Ir2Pt2

IrC8Pt2

PtC2Ir2Pt2

IrC8Pt2

µOC 1.89(6,17)

OC 1.77(4,1)µOC 2.06(4,2)

η5cp*C not given

µOC 1.90(5,15)

OC 1.79(4,1)µOC 2.07(4,6)

Ir 2.664(3,39)C 84.0(1,7.0)Pt 2.707(3,7)

Ir 2.670(3,31)C 77.0(1,9.0)Pt 2.700(3,9)

Ir,Ir 170.1(1,5.7)Ir,Pt 59.3(1,1.1) 119.2(1,1.5)Pt,Pt 60.0(1,2) Pt,Pt 61.0(1,1)

Ir,Ir 175.3(1,1.4)Ir,Pt 59.7(1,1.1) 118.4(1,1.3)Pt,Pt 60.0(1,3)Pt,Pt 60.8(1,1)

[24]

[{(η2-en)Pt(µ-N4,N4´-bpz-N1,N1´).Pd(η2-en)}3].(NO3)4(PF6)8.5H2O(yellow brown)

mP21/n

4

17.002(3)22.827(5)22.763(5)

93.91(3)PtN4

PdN4

not given

not given

Pd 6.82(1)Pt 7.888(1)Pd 3.45(1,6)

9.77(1)

not given

not given

[25]

[{(η2-en)Pt(µ-N4,N4´-bpz-N1,N1´).Pd(η2-en)}3](NO3)7.(PF6)5.9.75H2O(yellow-brown)(at 143(2) K)

mP21/c

4

16.920(3)24.099(5)22.146(4)

95.18(3)PtN4

PdN4

[26]

[{(NH3)2Pt}3(µ-bpz)3.{Pd(η2-en)}2.5].(ClO4)6(NO3)5.5H2O(red yellow)

orCcca

16

31.616(6)35.691(7)13.355(3)

PtN4

PdN4

H3N 2.00(2,2)bpzN 2.00(2,3)

N 2.01(2,2)

N,N 90,0 178.6(11,1.5)N,N 80.5(7,1)d

[27]

a. Where more than one chemically equivalent distance or angle is present, the mean value is tabulated. The first number in parenthesis is the e.s.d., and the second is the maximum deviation from the mean.b. The chemical identity of the coordinated atom or ligand is specified in these columns.c. The mean Pt-Pt distanced. Five-membered metallocyclic ring.e. There are two crystallographically independent molecules.

ContinuedTable 1. Crystallographic and structural data for heterohexanuclear platinum clusters (Pt5M, Pt4M2 and Pt3M3)a.

COMPOUND(colour)

Crys.clSp.Grp

Z

a [Å]b [Å]c [Å]

a [o]ß [o]g [o]

Chromo-phore

M-L[Å]

M-M [Å]M-L-M [°]

L-M-L[o]

Ref

1104

Page 5: art%3A10.2478%2Fs11532-014-0558-7

M. Melník, P. Mikuš, C. E. Holloway

and peripheral platinum atoms ranges from 2.712(2) to 2.782(2) Å, and between peripheral platinum atoms from 3.380(2) to 3.714(2) Å. In contrast, when Re-Pt is bridged by µ-O and µ-OH, the distance ranges from 2.792(2) to 3.275(2) Å, with the longest being tentatively assigned to the µ-OH.

There are ten colored Pt4M2 clusters, four red M = Hg [8-11], one brown M = In [12], two yellow M = Ag [13,14], and one each of orange M = Re [15], red M = Fe [16] and blue green M = Cu [17] (Table 1B). The structure of red Pt4Hg2 clusters [8a] contains well separated NBu4

+ cations, a complex [{(C6F5)2Pt(µ-OH)(µ-HgCl)Pt(C6F5)2}2(µ-OH)2]2- anion and CH2Cl2 molecules. The core of the complex anion is a puckered eight-membered ring {-Pt-O(H)-}4 to which two HgCl units are bound, each by two Pt-Hg bonds. Each Pt centre also has two C6F5 ligands cis to each other, in such a way that the Pt centre has a square-planar arrangement at the base of its coordination shell. The coordination about each Pt centre is completed by an Hg atom which sits at the apex of a square-pyramid (mean Pt-Hg bond length of 2.690 Å).

The structure of the garnet Pt4Hg2 cluster [8b] consists of two {(C6Cl5)2Pt(µ-OH)2Pt(C6Cl5)2} moieties, connected via a Hg2

2+ bridge. Each mercury atom is bonded to two platinum atoms with two different Hg-Pt bond distances of 2.675 and 2.943 Å. The Hg-Hg bond distance is 2.559(1) Å. Each Pt atom is located approximately in the center of the base of a square pyramid formed by two C6Cl5 and two OH groups in mutually cis positions in the basal plane, and mercury occupying the apical position. The mean Pt-C and Pt-O bond distances are 1.999 and 2.114 Å respectively. The mercury atom is located in a distorted planar trigonal arrangement, formed by two platinum atoms and the other mercury atom.

In another red Pt4Hg2 cluster [9], four platinum atoms form two triangles with a common Pt(1)-Pt(2) edge. The Pt(1)-Pt(2) bond distance of 2.9489(9) Å is about 0.217 Å longer than the mean values of the remaining four Pt-Pt bonds (2.732 Å). Two {Hg(CF3)} units link to each of the respective Pt3 triangles in an asymmetrical fashion.

The remaining two red derivatives, (PAr3)4(µ-CO)4Pt4Hg2X2 (Ar = Ph and X = Br [10], Ar = Me2Ph and X = I [11]) retain the “butterfly” clusters, with two “wings” containing platinum atoms. Each of the mercury atoms is bonded to the two bridging platinum atoms but to only one of the external platinum atoms. The triangular wings are capped asymmetrically by the Hg atoms as shown by the Hg-Pt distances, which differ significantly, varying between 2.736(1) to 3.113(1) Å in the former and 2.716(3) to 3.163(3) Å in the latter (Table 5B).

The brown Pt4In2 cluster [12] has a planar {In2Se2} core sandwiched by two hinged {Pt2Se2} moieties. It can

also be viewed as two trigonal bipyramidal {InPt2Se2} fragments connected at the In(III) ends by two µ-Se, with a center of inversion at the centre of the structure. The two edge-linked {Pt2Se2} butterflies (dihedral angle 129.3°) are almost perpendicular (89.1°) to the central planar {In2Se2} unit, thus bestowing a C2h symmetry to the molecule.

Two yellow Pt4Ag2 clusters [13,14] are different from each other. In one of them [13], the cluster anion comprises two {Pt2(µ-Cl)2(C6Cl5)4} units double bridging two Ag atoms, creating an eight-membered {AgPt(Cl)2Pt}2 ring in which both Pt-Pt edges are double bridged by two chlorine atoms. The mean Pt-Ag bond lengths are 2.762 Å. The homo metal distances (Pt-Pt 3.268 Å (average), and Ag...Ag 3.87 Å) exclude any bonding.

In the other Pt4Ag2 cluster [14], the [{(PPh3)2Pt(µ3-S)}4Ag2]2+ cation contains two binuclear hinged {Pt2S2(PPh3)4} moieties bridging the silver atoms via the sulfido ligands, creating two eight membered rings {PtSAgS}2 with two common SAgS edges.

The structure of the red black Pt4Re2 complex [15] contains a slightly distorted tetrahedral Pt4 cluster with two opposing edges, related by a crystallographic dyad axis bridged by CO ligands. In addition, two platinum atoms are each attached to one oxygen atom of a terminal OReO3

¯ anion {Pt-O-Re, 163.8(7)°}.The structure of the red Pt4Fe2 cluster [16] is shown

in Fig. 1, where it is seen that the complex has a dimeric structure in which two NCS ligands bridge three Pt atoms in µ3-(2S,N) fashion. The molecule lies on the crystallographic center of symmetry.

In the blue green Pt4Cu2 derivative [17] two fragments of {(η2-dach)Pt(betmp)} are linked by one copper(II) atom through the carboxylate group of the betmp ligand. In addition, a pair of [{(η2-dach)Pt(betmp)}2Cu] units form a dimer. The core of the structure has a nearly spherical shape whose surface incorporates the six metal centers. The line of contact between the two monomers resembles the seam of a tennis ball. One of the BF4¯ anions is centered in the cavity resulting from the dimerization.

There are eleven colored Pt3M3 clusters with M = Sn [18], W [19], Fe (4 examples) [20-22], Co [23], Ir [24] and Pd (3 examples) [24-26] listed in Table 5C. In the yellow Pt3Sn3 cluster [18] each edge of the Pt3 triangle (average Pt-Pt bond length of 2.763 Å) is capped by Sn{N(SiMe3)2}3 units. The mean Pt-Sn bond length is 2.620 Å.

The structure of the burgundy Pt3W3 cluster [19] is shown in Fig. 2. The six metal atoms in the chain are almost coplanar, with the greatest out-of-plane deviation (0.18 Å) exhibited by Pt(1) carrying the cod ligand. The

1105

Page 6: art%3A10.2478%2Fs11532-014-0558-7

Crystallographic and structural characterization of heterometallic platinum complexes

Part VI. Heterohexanuclear complexes

Figure 1. Structure of [(Pmop3)2(NCS)(µ3-NCS)Pt2(µ-C5H4)2Fe]2 [16].

Figure 2. Structure of [Pt3W3(µ3-CMe)2(µ-CMe)(CO)6(cod)(cp*)2] [19].

1106

Page 7: art%3A10.2478%2Fs11532-014-0558-7

M. Melník, P. Mikuš, C. E. Holloway

metal-metal bonds are also bridged by three ethylidyne ligands. Two ethylidyne fragments [C(11)C(12) and C(21)C(22)] adopt triple bridging modes on opposite sides of the Pt3W3 chain, while one ethylidyne group [C(31)C(32)] edge bridges the Pt(3)-W(3) bond. The Pt-W bond distance ranges from 2.716(2) to 2.747(2) Å.

The molecule of dark brown [{(CO)Pt}3{Fe(CO)4}3] [20] contains a crystallographically imposed 2-fold rotation axis that passes through the Fe(1), Pt(1), C(11) and O(11) atoms. The six metals are arranged in a “raft” structure. The Pt atoms form a central triangular cluster (ave Pt-Pt, 2.589 Å) with a Fe(CO)4 moiety bridging each Pt-Pt edge (ave Pt-Fe, 2.578 Å). Another two green Pt3Fe3 clusters, triclinic and monoclinic [21], are isostructural with that of dark brown Pt3Fe3 [20]. The mean Pt-Fe and Pt-Pt bond distances are 2.587(4) and 2.656(1) Å in the triclinic form, and 2.596(4) and 2.750(1) Å in the monoclinic form.

In the dark green Pt3Fe3 cluster [22], three 2-(ferrocenyl)-benzothiazolinate fragments bind platinum(II) atoms via C, N and S atoms. Each of the S atoms binds two platinum atoms and creates a central six-membered {PtSPtSPtS} ring. There is no metal-metal bond present (Table 5C).

In the green Pt3Co3 cluster [23], the µ6-C atom is located inside the Pt3Co3 core, with the metal atoms occupying essentially octahedral sites, with meridional arrangements of the Co3 and Pt3 groups. However, the core is open, since one Pt...Pt separation (3.260(1) Å) is too long for direct metal-metal connectivity.

In the dark brown Pt3Ir3 cluster [24], two crystallographically independent molecules are present, differing mostly by degree of distortion. The main feature is a near-planar array of metal atoms, with a central-triangle of platinum atoms (average Pt-Pt bond length of 2.703(3) Å) each edge-bridged by an iridium atom (average Ir-Pt bond length of 2.667(3) Å). The iridium atoms are each coordinated to a η5-cp* group and by two CO ligands.

The remaining three Pt3Pd3 clusters [25-27] are isostructural, containing [{(L)Pt(µ-bpz)Pd(η2-en)}3]12+ (L = η2-en [25,26] or two NH3 [27]). The six metal atoms form the corners of a compressed distorted trigonal antiprism (Fig. 3). While the three Pt(II) atoms form an equilateral triangle with side lengths of 7.888(1) Å, the Pd triangle is considerably larger and nearly isosceles (8.39(1), 8.55(1), 9.77(1) Å). The six Pt-Pd distances are about 6.82(1) Å.

2.2 Pt2M4There are over twenty clusters of this type for which the structural parameters are summarized in Table 2. There are three colorless Pt2Li4 [28,29,30] clusters which

differ from each other. An orthorhombic Pt2Li4 cluster [28] contains a six-membered metallocyclic ring {-Pt-Li-Li-}2. The Pt-Li bond distances range from 2.621(11) to 2.658(11) Å (ave 2.640 Å) and Li-Li from 2.855(14) to 2.91(2) Å. The Pt...Pt separation is 3.382(2) Å. Each of eight methyl groups bridges between a Pt atom and two lithium atoms. In addition, each of the lithium(I) atoms is coordinated by the O atom of the Et2O ligand. In triclinic [{(η1-ButC≡C)Pt(µ3-Ph2PO)3Li2(H2O)(thf)}2] [29] two independent, but similar, half-molecules per asymmetric unit were found. Each centrosymmetric Pt2Li4 molecule is made up of two identical {Pt(C≡CBut)(PPh2O)3}2- fragments, staggered by 180°, which sandwich a one-dimensional lithium string consisting of four Li(I) atoms linked through the oxygen atoms of the phosphinite groups. The inner lithium centers [Li(2),Li(2´)] are surrounded by four oxygen atoms from four different PPh2O¯ ligands (two from each platinum fragment), while the peripheral lithium centers [Li(1), Li(1´)] interact with only two oxygen atoms of two different PPh2O¯ ligands (one from each Pt unit), completing their coordination spheres with two different solvent molecules each (THF and H2O). The Li(2)-Li(2´) bond distance of 2.57(4) Å is somewhat shorter than that of Li(1)-Li(1´), 2.62(3) Å.In another Pt2Li4 cluster [30], the molecule is formed by two identical {OPPh2{Pt(C≡CBut)2}PPh2O}¯ fragments which act as bidentate ligands bridging the four Li(I) centers pairwise through the oxygen atoms of OPPh2 ligands. This creates two planar {Li2O2} rings of {Li(1,2)O(1,2´)} and {Li(1´,2´)O(1´,2)}, which are rigorously coplanar as shown in Fig.4. The central Li(2), and Li(2´) atoms are doubly bridged by two H2O molecules.

A study of the yellow Pt2Tl4 cluster [31] reveals two eclipsed {Pt(C≡CBut)4}2- fragments connected by four bridging Tl(I) atoms. A highly symmetric Pt2Tl4 structure containing an octahedron of metal atoms is noted, with the thallium centers in the equatorial plane and the platinum(II) atoms mutually trans. Each Tl(I) atom interacts asymmetrically with four alkynyl ligands (µ3-η2:σ(Pt):η2(Tl,Tl)), approximately forming the square-pyramidal geometry A4Tl (A = midpoint of Cα≡Cß) with Tl at the apex.

A hexanuclear yellow Pt2Hg4 cluster [32] is formed by two trinuclear {Pt{CH2C6H4P(o-tolyl)2}(µ-O2CCH3)2Hg(µ3-acac)Hg(O2CCH3)} units related to each other by a center of symmetry, connected by one oxygen atom of the acac2- bridging ligand. In each unit the five-coordinated Pt atom is located at the center of the base of a distorted square pyramid, with the Hg atom in the apical position (Pt-Hg, 2.6498(2) Å).

The unit cell of the yellow Pt2Ag4 cluster [33] contains six [Pt2Ag4(C≡CBut)8] molecules, two of which are located on a two-fold axis, so that there are 1.5

1107

Page 8: art%3A10.2478%2Fs11532-014-0558-7

Crystallographic and structural characterization of heterometallic platinum complexes

Part VI. Heterohexanuclear complexes

Table 2. Crystallographic and structural data for heterohexanuclear platinum clusters (Pt2M4)a.

COMPOUND(colour)

Crys.clSp.Grp

Z

a [Å]b [Å]c [Å]

a [o]ß [o]g [o]

Chromo-phore

M-L[Å]

M-M [Å]M-L-M [°]

L-M-L[o]

Ref

[Li2Pt(µ3-CH3)4.(Et2O)2] (colourless)(at 183 K)

orPbca

4

14.8564(5)14.3705(6)15.8683(6)

PtC4Li3

Li2Opt2

µ3H3Cb 2.116(12)

µ3H3C 2.458(13,23)Et2O 2.046(12,5)

Li 2.621-2.658(11)Pt 3.372(2)Li 2.88(1,3)

C,Cb 89.5(3,5)Li,Li 66.7(3,2) 100.9(3,2)Li,Li 121.7(5)

[28]

[{(η1-ButC≡C)Pt.(µ3-Ph2PO)3Li2.(H2O)(thf)}2].1.75H2O(colourless)(at 150(1) K)

trPī2

16.1646(13)17.1032(10)19.0177(12)

90.441(7)102.621(9)98.044(9)

PtP3C

LiO4Li(x2)

LiO4Li(x2)

P 2.304(3,14)η1C 2.010(12)µO 1.97(2,3)

µO 1.91(2,1)H2O 1.94(2)thfO 1.99(2)

Li 2.60(4,3)O 83.3(9,1.2)

Li 2.62(3)

P,P 89.6(1,1)P,C 175.0(3)

O,O 102.4(8,9.9) 124.9(1,1.6)Li,Li 174.0(14)

O,O 100.7(9,11.6) 123.0(11)

[29]

[(η1-ButC≡C)2Pt.(µ-Ph2PO)2Li2.(µ-H2O)(Me2CO)2]2.0.5Me2CO(colourless)(at 173 K)

trPī2

13.858(3)13.8587(3)24.693(7)

83.79(3)87.53(2)65.02(2)

PtC2P2

LiO4Li2(x2)

LiO4Li(x2)

η1C 2.003(6,3)P 2.303(2,3)

µH2O 2.048(1,0)µO 1.963(10,6)

µO 1.917(10,10)Me2CO not given

Li 2.610(13)2.848(19)

O 84.5(4,1)

not given

O,O 92.9(4,1.0)

O,O 97.9(4,1.1)

[30]

[Pt(µ3-ButC≡C)4Tl2]2(yellow)

not given PtC4

TlC8

µ3C 2.000(16,3) 2.031(13,7)

µ3C 2.886(12,34) 2.931(12,17)

Tl 3.798(1,16)Pt 3.573

Tl 4.254(-,16)

C,C 90.0(5,1.8)Tl,Tl 118.6(1,1) not given

[31]

[(η2-C˄P)Pt.(µ-η2-ac)2Hg.(µ3-acac-C,O).Hg(η1-ac)]2.CHCl3(yellow)( at 200(2) K)

trPī1

10.488(1)13.158(2)15.821(2)

77.15(1)75.74(1)86.39(1)

PtO2CPHg2

HgO2CPt

η2acO 2.071(7) 2.149(7)η2C 2.046(12) η2P 2.229(3)

η2acO 2.104(9) 2.426(8)

2.593(9,61 µC 2.133(10,24)

Hg 2.6498(2)

C 98.5(4)

O,O 78.2(2)C,P 83.9(3)c

O,Hg 88.5(2,1.4)C,Hg 94.8(4)P,Hg 97.79(8)

O,O 88.7(3,6.7)O,Pt 77.2(2,1)

[32]

[Pt2(µ-ButC≡C)8Ag4]d

(yellow)(at 273 K)

mC26

37.062(7)12.022(16)20.459(3)

107.48PtC4

AgC4

PtC4

AgC4

µC 1.970(25,8) 2.034(24,29)

C 2.38(2,15)µC 2.29(2,30)

µC 1.958(21,8) 2.062(24,15)

C 2.33(2,6)µC 2.34(2,11)

Ag 3.062(2,28)3.149(2,25)

C 93.8(1,2.4)Ag 3.199(2,30)

Ag 3.148(2,4)C 91.4(1,6.5)

Ag 3.273(4,40)

Ag,Ag 62.0(1,1.1) 93.1(1,4)

Pt,Pt 86.5(1.3)Pt,Ag 59.0(1,1.8)Ag,Ag 90.0(1,9)

Ag,Ag 60.5(1,4.0) 91.5(1,7.6)Pt,Pt 87.2(1)

Pt,Ag 58.5(1,2.0)Ag,Ag 90.0(1,2.0)

[33]

[Pt2Ag4(µ-C≡CBut)8].(bipy)(yellow-green)

trPī1

10.892(3)11.861(3)12.778(2)

73.86(1)77.35(1)87.24(1)

PtC4

AgC4

µC 2.032(7,14)

C 2.48(-,11)µC 2.236(9,8)

Ag 3.266(-,6)

Ag 3.282(1,21)

not given

not given

[34]

[(η1-C6F5)2PtAg2.(µ3-η

2-C≡CPh)2.(PPh3)]2.0.5CH2Cl2(pale yellow)

trPī2

15.265(3)16.866(4)19.759(4)

106.66(2)86.48(2)95.86(2)

PtC4( x2)

AgC3(x2)

AgC2P(x2)

η1C 2.05013,3)µC 2.05(2)

µ3C 2.042(14)

C 2.42(1,15)µ3C 2.285(11)C 2.354(12)

µ3C 2.454(13)Ph3P 2.395(4)

Ag 2.888(2)3.085(2,30)

µC 85.7(5,2.2)µ3C 88.5(5,3.0)

Ag 2.959(2)

C,C 90.0(5,3.6)Ag,Ag 84.08(4)

not given

C,P 142.1(4)µ3C,P 138.8(3)

[35]

[(η1-C6F5)2PtAg2.(µ3-η

2-C≡CBut)2.(Me2CO)2]2(pale yellow)

mP21/n

2

13.862(2)17.294(4)14.681(5)

101.56(2)PtC4

AgC4(x2)

AgC2O2(x2)

η1C 2.032(9,10)µ3C 2.036(9,8)C 2.61(1,10)

µ3C 2.222(9,2)µ3C 2.381(8,57)O 2.39(1,10)

Ag 2.950(1)3.109(1,3)

Ag 3.039(2)

N,N 90.0(3,3.7) 178.4(4,3)

not given

O,O 82.6(4)

[36]

1108

Page 9: art%3A10.2478%2Fs11532-014-0558-7

M. Melník, P. Mikuš, C. E. Holloway

[(NH3)2(µ-η2-meu).(µ- η2-mec-)Ag.(µ-OH2)(µ-η2-O2NO).Ag(OH2)(η

1-ONO2)]2.3H2O(colourless)

trPī1

7.421(1)12.784(2)14.353(2)

108.89(2)92.45(2)

105.22(/1)

PtN4(x2)

AgO4(x2)

AgO4 (x2)

H3N 2.054(10,14)µLN 2.041(10,5)

µLO 2.411(8,59)µ2NO 2.459(7)H2O 2.396(13)

O2NO 2.540(11)µLO 2.44(1,7)

Ag2.906(1)

Ag 3.553(1)6.898(1)

N,N 90.0(3,3.7) 178.4(4,3)

O,O 77.2(1)- 151.6(3)O,O 87.5(4)- 133.3(3)

[37]

[(η2-dbbpy)Pt.(µ-pyc)2Re2.(µ-η2-dppm)2]2.(CF3SO3)8.2.37CH2Cl2.1.18H2O(red)(at 110(2) K)

mP21/c

2

20.218(4)28.529(6)20.218(4)

98.78(3)PtN4

ReO2P2Re

η2N 1.99(2,3)µLN 1.99(2,1)

µLO 2.104(17,18)

Pt 11.97

Re 2.2839(15)

N,N 89.0(9)

O,O 80.3(7,6)

[38]

[(Cl)2(CO)2Pt2.{µ-η1:η10-PPh.(C5H4)2Fe2(cp)2}2](orange)

mC2/c

8

18.826(5)13.0717(8)50.192(3)

99.42PtCClPPt

FeC10

OC 1.82(2,2)Cl 2.310(4,4)

µLP 2.334(3,10)η5C not given

Pt 2.6267(8) C,Pt 82.8(5,9)Cl,Pt 88.4(1,8)

P,Pt 172.5(1,2.6)not given

[39]

[[{(cp)Fe}2(µ-η10:η2-bpyv)PtMe2Br]2{µ-η2-(CH2)2C6H4}]CH2Cl2(deep red)(at 193 K)

trPī2

14.469(12)15.145(11)21.33(2)

69.46(5)71.15(5)81.87(6)

PtC3N2Br

FeC10

not given

not given

[40]

(OC)2Pt2Ru4(CO)16(purple black)

mC2/c

4

12.542(2)15.350(4)15.252(3)

105.32(2)PtCRu3Pt

RuC4Pt2Ru(x2)

RuC4PtRu(x2)

OC 1.827(8)

OC 1.93(1,3)

OC 1.93(1,2)

Ru 2.6456(8)2.8160(8)2.8730(8)

Pt 2.6656(8)Ru 2.8480(9)

Ru,Ru 62.88(2) 109.2,170.41(2)Ru,Pt 62.06(2,1.1)

109.55(2)Pt,Pt 55.87(2)Pt,Ru 55.69(2) 98.64(2)

Pt,Ru 61.54(2)

[41]

(OC)2Pt2Ru4(CO)16(purple black)

orPna21

4

17.738(3)15.596(2)10.357(1)

PtCRu3Pt

RuC4Pt2Ru(x2)

RuC4Pt2Ru(x2)

OC 1.80(2)

OC 1.94(3)

OC 1.94(3)

Ru 2.650(2,2)2.822(2,9)2.878(2,17)Pt 2.665(1)

Ru 2.864(3,11)

Ru,Ru 63.03(6,39) 108.96(5,75) 171.38(3,29)

Ru,Pt 62.13(4,2.1) 112.60(5,2.1)Pt,Pt 55.74(4,26)Pt,Ru 55.55(6,7) 100.72(7,19)Ru,Ru 61.06(4,4)

[42]

[Pt2Ru4(µ5-bpeb).(CO)14].0.5C6H6(gray-brown)

trPī2

11.759(2)16.678(3)11.247(2)

92.47(2)105.86(2)81.67(2)

PtC2Ru3Pt

RuCXPt2Ru2RuCXPt2RuRuCXPtRu

OC not givenµC not given

not given

Ru 2.6911(9)2.717(1,4)2.860(1,11)Ru 2.761(1)

2.777(1)

not given

not given

[43]

(OC)2Pt2(µ3-η2-

PhC≡CPh)(µ4-η2-

PhC≡CPh)Ru4(CO)12(brown)

mP21/c

4

16.381(2)10.715(2)23.987(2)

90.21PtC2Ru4Pt

PtC3Ru3Pt

RuC5Pt2Ru(x2)

RuC4PtRu2RuC5Pt2

OC 1.90(1)µC 2.199(9)

OC 1.90(1)µC 2.113(9,32)

OC 1.90(1)µC 2.19(1,2) 2.33(1)

Ru 2.685(1)2.7937(9)

2.891(1,19)Pt 2.5325(6)

Ru 2.7395(9)2.853(1,14)

Ru 2.804(1,12)

Ru,Ru 59.07(3,8) 86.98(3,6.3)

122.2;152.35(3)Ru,Pt 63.14(3,13)

101.15(2)Ru,Ru 87.53( 121.41(2)

Ru,Pt 63.44(2,2.3)Pt,Pt 52.30(2,32)Pt,Ru 61.00(3,2.6)

93.40(2,54)Ru,Ru 55.65(2)

83.77(3)

[44]

ContinuedTable 2. Crystallographic and structural data for heterohexanuclear platinum clusters (Pt2M4)a.

COMPOUND(colour)

Crys.clSp.Grp

Z

a [Å]b [Å]c [Å]

a [o]ß [o]g [o]

Chromo-phore

M-L[Å]

M-M [Å]M-L-M [°]

L-M-L[o]

Ref

1109

Page 10: art%3A10.2478%2Fs11532-014-0558-7

Crystallographic and structural characterization of heterometallic platinum complexes

Part VI. Heterohexanuclear complexes

[{(η4-cod)Pt}2.Ru4(µ3-H)2.(µ-CO)(CO)10](brown-red)

mP21/c

4

9.261(2)21.362(7)16.307(4)

101.05(2)PtC4Ru3

RuC3HPt2.Ru3 (x2)

(x2)

RuC3H2Pt.Ru3 (x2)

η4C 2.20(1,4) 2.27(1,1)

OC 1.91(1,5)µH 1.80(8,3)

OC 1.85(1,2)µOC 2.14(1,13)

µH 1.82(8,9)

Ru 2.672(1)2.713(1,1)2.834(1,29)Ru 2.817(1)2.974(2,15)3.026(1,26)

Ru 2.698(1)

Ru,Ru 61.06(3,1.4) 65.60(3,71)

Pt,Ru 57.94(3,2.6) 104.14(3,41) 117.31(3,51)

Ru,Ru 61.74(3,52)Pt,Ru 59.64(3,14)

107.65(4) 115.46(4)

Ru,Ru 56.52(3) 64.29(3,18)

[45]

(η4-cod(CO)Pt2.Os4(CO)14(gray green)

orPbca

8

14.781(3)35.83(2)11.548(2)

PtCOs4

PtC4Os2OsC3PtOs2

(x2)OsC4PtOs2

(x2)

OC 1.87(3)

η4C 2.17(3,3)OC 1.93(3,9)

OC 1.92(3,6)

Os 2.667(2,5)2.669(2,2)

Os 2.671(2,3)Os 2.797(1)2.838(2,7)

Os,Os 63.67(4,40) 126.18(5,27) 152.8(7,6.0)Os,Os 62.15(4)Pt,Pt 116.11(5)

Pt,Os 58.29(4,94) 116.01(5,10) 174.59(5,16)

Os,Os 116.22(5,30)

[46]

(CO)8Os2Pt2.(CO)2Os2(CO)8(red)

orP21cn

4

10.325(2)15.549(3)17.748(3)

PtCOs3

OsC4Pt2Os(x2)

OsC4PtOs(x2)

OC not given

OC not given

C not given

Os 2.655(4,3)2.832(4,17)2.892(4,21)

Os 2.891(3,15)

not given

not given

[47]

(CO)Pt2Os4.(µ4-PhC≡CPh).(µ3-PhC≡CPh)3.(CO)7(brown)

trPī2

12.530(2)21.565(4)11.284(2)

100.3(2)111.89(1)76.78(2)

PtC2Os4Pt

PtC4Os2Pt

OsC3Pt2Os2OsC5Pt2Os

OsC5PtOs2OsC4Os2

µC 2.08(2,1)

OC 1.81(2)µC 2.09(2)µ3C 2.18(2)

OC 1.86(2,6)µC 2.30(2,2)

µ3C 2.15(2,19)

Os 2.755(1,6)2.989(1,26)Pt 2.761(1)

Os 2.605(1)2.743(1)2.847(1)

Os 2.682(1)2.812(1)3.092(1)

Os,Os 58.34(3,24) 76.42(3)

116.41(3,4.24)Os,Pt 57.43(3,4.0)

98.03(4)Os,Os 68.50(3)

78.50(3) 126.97(3)

Os,Pt 58.86(3,5.25) 97.92(4,2.2)Os,Os 80.14(3) 116.80(4)

[48]

(η4-cod)2Pt2.Os4(µ-CO)(CO)10(dark brown)

mP21/c

4

8.622(2)21.917(5)16.767(3)

95.61(2)PtC4Os3

OsC3Pt2OsC3Pt

η4C 2.18(1,4)µOC 2.34(3,7)

OC 1.89(3,5)µOC 2.05(3,2)

Os 2.609(1)2.839(1,1)2.863(1,15)Os 2.530(1)

2.614(1)2.703(1)

2.833(1,2)

Os,Os 60.33(3,3.9)

Pt,Pt 123.21(4,64)Pt,Os 59.86(3,5.5) 101.86(4,53) 118.64(4,7)

Os,Os 60.60(3,7.0)

[49,50]

(η4-cod)2Pt2.Os4(CO)12(dark brown)

trPī2

11.217(2)17.295(3)8.866(2)

92.88(2)105.82(2)104.23(2)

PtC4Os3

OsC4Pt2OsC3Pt

η4C 2.22(2,4)

OC 1.90(3,7)

Os 2.711(1)2.739(1,2)2.826(1,42)

2.975(1)Os 2.777(1,18)

2.849(1,17)

Os,Os 60.63(3,2.8)

Pt,Pt 113.23(4,3.4)Pt,Os 59.68(3,5.3) 105.97(4,3.4) 111.41(4,46)

Os,Os 60.00(3,2.0)

[49,50]

[{(MeNH2)Pt(µ-η2-ampy)12Pd2(η

1-ONO2)3(H2O)}2].(NO3)2.3.5H2O

d

(dark red)

mP2/c

4

21.722(2)22.013(5)23.909(4)

107.57PtN4

PdN2O2Pd

N not givenµLN 2.02(2,2)µN 2.05(1,3)O not given

Pt 6.949(1)6.990(1)

Pd 2.877(2)2.855(2)

N 89.0(6,1)

N,N 173.5(7,1.6)

N,N 76.4(5,1)

[51]

a. Where more than one chemically equivalent distance or angle is present, the mean value is tabulated. The first number in parenthesis is the e.s.d., and the second is the maximum deviation from the mean.b. The chemical identity of the coordinated atom or ligand is specified in these columns.c. Five-membered metallocyclic ring.d. There are two crystallographically independent molecules.

ContinuedTable 2. Crystallographic and structural data for heterohexanuclear platinum clusters (Pt2M4)a.

COMPOUND(colour)

Crys.clSp.Grp

Z

a [Å]b [Å]c [Å]

a [o]ß [o]g [o]

Chromo-phore

M-L[Å]

M-M [Å]M-L-M [°]

L-M-L[o]

Ref

1110

Page 11: art%3A10.2478%2Fs11532-014-0558-7

M. Melník, P. Mikuš, C. E. Holloway

Figure 3. Structure of [{(en)Pt(µ-bpz)Pd(en)}3]12+ [25].

Figure 4. Structure of [(BuC≡C)2Pt(µ3-Ph2PO)2Li2(µ-H2O)(Me2CO)2]2 [30].

1111

Page 12: art%3A10.2478%2Fs11532-014-0558-7

Crystallographic and structural characterization of heterometallic platinum complexes

Part VI. Heterohexanuclear complexes

independent molecules per unit, differing mostly by degree of distortion. The six metal atoms are arranged in a slightly irregular octahedron with the platinum atoms mutually trans, while the silver atoms are in the equatorial plane. Each platinum atom is σ bonded to four C≡CBut groups in a slightly distorted square-planar environment.

The structure of [Pt2Ag4(C≡CBut)8]bpy [34] is similar to the previous example [33]. However, here the hexanuclear cluster interacts very weakly with the 2,2´-bipyridine ligand, forming an intriguing one-dimensional polymeric array extending along the crystallographic b axis.

Another yellow Pt2Ag4 complex [35] consists of two identical cis-{(C6F5)2Pt(µ-C≡CPh)2Ag(1)(PPh3)} units joined together by two silver atoms [Ag(2) and Ag(2a)] through bridging C≡CPh groups. Therefore, there are two different types of silver atoms, terminal and bridging in the molecule. The skeleton of the pale yellow Pt2Ag4 complex [36] is similar to that of [35].

In the colorless Pt2Ag4 complex [37], the cis-(NH3)2PtII moiety binds through the N3 atom of the uracil and the N3 atom of the cytosine ring. One silver atom is directly coordinated to the O4 of uracil and O2 of cytosine, leading to a Pt-Ag separation of 2.906(1) Å. Pairs of binuclear Pt,Ag units are linked via aqua ligands and bridging nitrate ions to two additional silver(I) atoms which, in turn, complete their coordination spheres by an aqua ligand and a monodentate nitrate each. As a result, large 12-membered rings, consisting of four Ag atoms, two H2O groups, as well as two O-N-O bridges are formed. The Ag-Ag distances in these rings vary between 3.553(1) and 6.898(1) Å.

The red Pt2Re4 cluster [38] contains a cationic {(η2-dbbpy)2Pt2(µ-pyc)4Re4(µ-η2-dppm)4}8+ unit and CF3SO3¯ anions. The structure of the cation is a molecular square consisting of alternating {(dppm)2Re2} and {(dbbpy)Pt} units at the vertices with isonicotinate (pyc) ligands along the edges, as seen in Fig. 5. In each binuclear Re2(dppm)2 unit, the triple Re≡Re bond (2.2839(15) Å) is bridged by two η2-dppm-P,P ligands in a syn-syn arrangement. Each of the isonicotinate groups bind to the Pt(II) center via the N atom of the pyridine ring and to Re(II) via two chelating O atoms of the carboxylic group. The molecule, which resides on a crystallographic inversion center, is considerably distorted from ideal as clearly illustrated by various parameters within the molecule. For example, the Pt-Pt´ diagonal is 11.97 Å whereas the diagonal defined by the midpoints of the two Re2 units is 13.26 Å.

The structure of the orange Pt2Fe4 complex [39] consists of two square-planar {PtCl(CO){P(Ph)(C5H4)2}Fe(cp)} units bonded via a direct Pt(I)-Pt(II) bond

(2.6267(8) Å) unsupported by any bridging ligand. The planes are oriented approximately perpendicular to each other, with a dihedral angle of 65.6°.

In deep red [{(cp)Fe}2(µ-bpyv)Pt(Me)2Br}2{µ-(CH2)2C6H4}] [40], two Pt(IV) centers are arranged above and below the plane of the central ortho-substituted benzene ring. The ferrocene positions of the (bpyv)Fe2 ligands are arranged with the unsubstituted cp ring directed towards the central benzene ring and opposite the bromine ligands. All of the Fe(cp) groups are directed towards a void created by the coordination of the central benzene ring.

Purple black (CO)2Pt2Ru4(CO)16 exists in two isomeric forms, monoclinic [41] and orthorhombic [42] which are isostructural, differing mostly by degree of distortion. The molecule contains an open, but folded array of six metal atoms. Two mutually bonded ruthenium atoms Ru(1)-Ru(2´) (2.8480(9) Å [41] and 2.864(3) Å [42], are joined to the two mutually bonded platinum atoms, 2.6656(8) Å [41] and 2.665(1) Å [42], which are bonded to a second pair of mutually bonded ruthenium atoms, Ru(2)-Ru(1´). The molecule contains a crystallographically imposed 2-fold rotation axis that lies perpendicular to the Pt-Pt´and Ru(1)...Ru(1´) vectors. Ru(2) and Ru(2´) are bonded only to one ruthenium atom and one platinum atom (Table 2).

The gray brown triclinic Pt2Ru4 cluster [43] possesses the “raft” structure in which all six metal atoms lie approximately in one plane. Both alkyne groups are coordinated to the same side of the cluster as triple bridges across neighboring PtRu2 triangles. The Pt-Ru bond distance ranges from 2.6911(9) to 2.871(1) Å and R-Ru bond distances are 2.761(1) and 2.777(1) Å. In the brown monoclinic Pt2Ru4 cluster [44] there are two types of PhC≡CPh ligands. One serves as a bridge between three metal atoms and the other bridges between four metal atoms. Each Pt atom has one terminally bonded CO group, and each Ru atom has three such CO groups. The Pt-Pt bond distance of 2.5326(6) Å is shorter than the Pt-Ru bond distances, which range from 2.685(1) Å to 2.893(1) Å, and also the Ru-Ru bond distances, 2.816(1) Å (ave).

In another monoclinic Pt2Ru4 cluster [45], two Pt(η4-cod) units are connected via three Ru atoms of a Ru4(µ3-H)2(µ-CO)(CO)10 fragment. The Pt-Ru bond distance ranges from 2.672(1) to 2.863(1) Å, and the Ru-Ru distance from 2.698(1) to 3.052(1) Å. In gray green orthorhombic (η4-cod)(CO)Pt2Os4(CO)14 [46], the Pt atoms differ, the Pt(CO) unit being connected with all four Os atoms with a mean Pt-Os bond distance of 2.683 Å, while the Pt(η4-cod) unit bonds to two Os atoms with a mean Pt-Os bond distance of 2.671 Å. The mean Os-Os bond distance of 2.817 Å is much longer than the two previously mentioned Pt-Os bonds.

1112

Page 13: art%3A10.2478%2Fs11532-014-0558-7

M. Melník, P. Mikuš, C. E. Holloway

Figure 5. Structure of [(dbbpy)Pt(µ-pyc)2Re2(µ-dppm)]28+ [38].

Figure 6. Structure of [(CO)Pt2Os4(µ4-PhC≡CPh)(µ3-PhC≡CPh)3(CO)7] [48].

1113

Page 14: art%3A10.2478%2Fs11532-014-0558-7

Crystallographic and structural characterization of heterometallic platinum complexes

Part VI. Heterohexanuclear complexes

The hexanuclear core of red Pt2Os4 [47] consists of two edge-sharing butterflies. The angles between the planes are: Os(1)Pt(2)Os(4)-Pt(2)Os(4)Pt(5) 38.2°, Pt(2)Os(4)Pt(5)-Pt(2)Os(3)t(5) 48.1° and Pt(2)Os(3)Pt(1)-Os(3)Pt(5)Os(6) 46.1°. The mean Pt-Os and Os-Os bonds are 2.793 and 2.891 Å, respectively.

The brown Pt2Os4 cluster [48] consists of an osmium capped Pt2Os3 square pyramid. It also contains three triple bridging diphenylacetylene ligands and one which is quadruple bridging, as shown in Fig. 6. The Pt-Pt bond is 2.761(1) Å, the Pt-Os distance ranges from 2.605(1) to 3.015(1) Å and Os-Os from 2.682(1) to 3.092(1) Å. Another two brown Pt2Os4 clusters [49,50] are structurally similar and consist of a central tetraosmium core arranged in a tetrahedral geometry with two Pt(cod) moieties capping triangular faces. All six Os-Os bonds lie within the range of 2.530(1)-2.838(1) Å in one cluster, and 2.785(1) – 2.859(1) Å in the other. The Pt-Os distances span a somewhat shorter range in the former (2.609(1)-2.883(1) Å), but a slightly wider range in the latter (2.711(1)-2.975(1) Å (Table 2).

The dark green Pt2Pd4 complex [51] contains two crystallographically independent molecules differing mostly by degree of distortion. Each [{(MeNH2)2Pt(µ-ampy)2Pd2(ONO2)3(H2O)}2]2+ cation (Fig. 7) has a crystallographic C2 axis which passes through the two Pt(II) centers in one molecule (A) and is perpendicular to the Pt-Pt vector in the other (B). Consequently, adjacent cations are mutually perpendicular in the crystal lattice. Each trans-{Pt(MeNH2)2} unit carries two coplanar aminopyridonate rings that are bound to Pt through

the endocycle ring N atoms and adopt a head-to-head orientation. The two Pd2 units each bridge the four deprotonated exocyclic amide nitrogen atoms to give a µ3-η2-coordination pattern for the ampy ligands. The resulting {Pd2N2} rings are folded along the N-N vectors, leading to short Pd-Pd bond distances (2.877(2) and 2.855(2) Å). The Pt...Pt distances are beyond bonding at 6.949(1) Å (A) and 6.990(1) Å (B), respectively. The separations between the midpoints between the pairs of oppositely placed Pd2 units are 6.276(1) (A) and 6.270(1) Å (B), respectively

2.3. PtM5, Pt2M3M’, Pt2M2M2’, Pt3(Pt1-xNix)Au2 and Pt2(Pt2-yNiy)Au2There are twenty two PtM5 clusters, including a single Pt2Cu3Fe, two Pt2M2M2´ and two Pt2Os3M clusters, for which structural parameters are gathered in Table 3. Two [Pt(MCl3)5]-3 (M = Ge [52] or Sn [53]) clusters have a similar structure containing a trigonal bipyramid (TB) metal core. In the former, the TB is a distorted with equatorial Pt-Ge bonds of 2.424(3), 2.399(3) and 2.480(3) Å, while the apical Pt-Ge bonds are 2.410(3) and 2.391(3) Å. In the latter, the TB is regular with equatorial Pt-Sn bonds of 2.5722(10) Å with the mean of the apical Pt-Sn bonds at 2.6530(7) Å.

The molecule of a PtFe5 complex [54] contains an octahedral six metal atom cluster with intrapolyhedral carbide. The Fe-Pt distances (Table 3A) indicate significant distortions of the octahedral cluster core. The lengths of the Fe-Fe bonds vary from 2.622(2) to 2.786(2) Å.

Figure 7. Structure of [{(MeNH2)2Pt(µ-ampy)2Pd2(NO3)3(H2O)}2]2+ [51].

1114

Page 15: art%3A10.2478%2Fs11532-014-0558-7

M. Melník, P. Mikuš, C. E. Holloway

Table 3. Crystallographic and structural data for heterohexanuclear platinum clusters (PtM5, Pt2Cu3Fe, Pt2M2M2’, and PtOs3M2)a.

COMPOUND(colour)

Crys.clSp.Grp

Z

a [Å]b [Å]c [Å]

a [o]ß [o]g [o]

Chromo-phore

M-L[Å]

M-M [Å]M-L-M [°]

L-M-L[o]

Ref

A: PtM5 (NMe4)3[Pt(GeCl3)5](red)

mP21/c

4

11.300(9)14.982(16)25.631(28)

100.81(5)PtGe5

GeCl3Pt Clb 2.184(7,16) 2.227(7,17)

Ge2.395(3,4 )2.416(3,8)2.480(3)

Ge,Geb90.2(1,2.6)c

109.3(1,1.8) 141.5(1) 175.7(1)

Cl,Cl 97.8(4,4.2)Cl,Pt 119.5(2,4.5)

[52]

(Ph3PMe)3[Pt.(SnCl3)5](red orange)

cR32

15.897(1) 82.02(1) PtSn5

SnCl3Pt Cl 2.347(6,4) 2.373(5,2)

Sn 2.552(1,2)2.5722(10)x3

Sn,Sn 90.00(3,23)

Cl,Cl 97.4(2,2.7)Cl,Pt 120.0(1,2.3)

[53]

(PPh3)PtFe5.(µ6-C)(µ-CO)2.(CO)13

mP21/m

4

9.4205(6)16.7257(10)12.4603(11)

108.37PtC2PFe4

FeC4PtFe3(x4)

FeC3Fe4

µOC 2.02(1)µ6C 2.02(1)

Ph3P 2.276(3)OC 1.81(1,2)

µOC 2.08(1,14)µ6C 1.92(1,1)OC 1.80(1,2)µ6C 1.91(1)

Fe 2.650(2)2.888(1,0)2.910(1)

Fe 2.624(2,2)2.658(2)

2.778(2,8)

not given

not given

[54]

[(PPh3)(CO)Pt.(AuPPh3)5].Cl..Et2O(red)(at 186 K)

mC2/c

8

35.91(1)29.637(7)26.025(7)

136.26(2)PtCPAu5

AuPPtAu4AuPPtAu3

(x2)AuPPtAu2

(x2)

OC 1.99(6)Ph3P 2.32(1)

Ph3P 2.27(2,2)

Au 2.590(3)2.659(4,17)

Au 2.811(3)-3.176(3)2.949c

C,P103(1)Au,Au 67.9(1,6.6) 124.8(1,8.1)

P,Pt 161.4(8,4) 170.9(6,1.6)

[55]

(CO)PtRu5(µ6-C).(µ-CO)(CO)14(red)

mP21/n

4

9.341(2)14.957(3)36.80(1)

90.38(2)PtC3Ru4

RuC5PtRu3RuC4PtRu3RuC4PtRu2

(x2)RuC4Ru4PtC3Ru4

RuC5PtRu3RuC4PtRu3RuC4PtRu2

(x2)RuC4Ru4

OC 1.87(2)µOC 2.13(1)µ6C 2.04(1)

OC 1.91(2,10)µOC 1.99(2,1)µ6C 2.05(2,3)

OC 1.89(1)OC 2.14(1)µ6C 2.05(1)

OC 1.90(2,4)µO 1.99(2,1)µ6C 2.05(1,3)

Ru 2.777(1)-3.045(2)2.911c

µ6C 90.6(5,5.8)

Ru 2.826(2)-2.951(2)2.892c

µ6C 89.7(5,3.1)

Ru 2.779(1)-3.046(1)2.911c

µ6C 90.4(5,5.5)

Ru 2.824(2)-2.965(2)2.895c

µ6C 89.8(5,3.3)

Ru,Ru 89.30(4,2.6)

Pt,Ru 89.73(4,1.2)Ru,Ru 89.77(4,4.3)

Ru,Ru 89.74(4,2.0)

Pt,Ru 89.59(4,1.8)Ru,Ru 90.18(4,3.5)

[56]

(PBut3)PtRu5.

(µ6-C)(µ-CO)2.(CO)13(red)

trPī2

9.9510(5)12.1523(6)16.8957(8)

79.7987.3472.94

PtCPRu4

RuCXPtRu3

RuCXRu4

µOC not givenBut

3P not given

not given

Ru 2.7966(5)3.1413(5)

3.1473(5,10)Ru 2.8580

(7,5)2.9288(7,9)

not given

not given

[57]

(η4-cod)PtRu5.(µ6-C)(µ-CO)4.(CO)10

d

(red orange)

tgP41212

16

17.302(4)

38.128(5)

PtC5Ru4

RuCXPtRu3 RuCXRu4

RuC5Ru4

RuCXPtRu3RuCXRu4

η4C 2.21(3,1) 2.27(3.3)µ6C 2.04(2)

OC not givenµOC not givenµ6C 2.06(2)

η4C 2.22(3,2) 2.28(3,0)µ6C 2.06(2)µ6C 2.05(2)

Ru2.848(2,5)2.962(2)3.072(2)

Ru 2.826(3)-2.944(3)2.884c

Ru2.860(2,2)2.964(2)3.074(2)

Ru 2.822(3)-2.967(4)2.883c

Ru,Ru 59.19(8,30)

not given

Ru,Ru 59.06(7,80)

not given

[58]

1115

Page 16: art%3A10.2478%2Fs11532-014-0558-7

Crystallographic and structural characterization of heterometallic platinum complexes

Part VI. Heterohexanuclear complexes

[(PPh3 )PtRu5.(µ6-C)(µ-CO).(CO)13(PPh3)(red)

mP21/c

4

17.4020(3)13.7880(4)26.6030(7)

106.77PtCPRu3

RuCXPtRu3 RuCXRu4

µ6C 2.062(2)Ph3P 2.269(2)

µ6C 2.071(8) Ph3P 2.377(2)

Ru 2.7715(7)-2.976(1,16)3.0092(8)

µ6C 84.94(8)Ru 2.8247(9)-

3.0403(9)2.903c/8

µ6C 85.8(1,1)96.05(8)

not given

not given

[58]

[(PPh3 )PtRu5.(µ6-C)(µ-CO)(CO)14(red)

mP212

9.2740(3)23.5940(8)9.8433(2)

116.49 PtCPRu4

RuCXPtRu4RuCXRu4

µ6C 2.05(1)Ph3P 2.272(2)

µ6C 2.042(8)

Ru 2.7945(8)2.937(1,36)3.0817(7)

µ6C 175.1(5)Ru 2.814(1)-

2.948(1)µ6C 173.8(6,2.9)

not given

not given

[58]

(PMe2Ph)PtRu5..(µ6-C)(µ-CO)(CO)14

d

(red)

orPna21

?

44.897(5)14.590(2)10.208(2)

PtC2PRu4

PtC2Ru4

P 2.26(1)

P 2.27(1)

not given

not given

[59]

PtRu5(µ6-C).(CO)14(PMe2Ph)2(red)

mP21/n

?

9.407(1)25.955(7)9.980(1)

113.41(1)PtC2Ru4 not given not given [59]

[(η2-dppe)PtRu5. (µ6-C)(µ-C60). (µ-CO)(CO)10].2CS2(orange)

trPī2

12.018(1)16.234(1)21.260(1)

67.780(1)74.277(1)77.090(1)

PtP2CRu4

RuCXPtRu3RuCXRu4

η2P not givenµ6C 2.039(6)

µ6C 1.981(6) 2.071(6,36)

2.169(6)

Ru 2.8745(6)2.961(-,25)3.1478(6)

Ru 2.8149(7)-3.0465(7)

2.885c

not given

not given

[60]

(η2-dppe)PtRu5(µ6-C). (µ-CO)2(CO)12(red)

mP21/n

4

14.596(1)19.693(1)15.693(1)

99.43PtP2CRu4

RuCXPtRu3RuCXRu4

η2 P not givenµ6C 2.054(8)

µ6C 2.028(8,10) 2.075(8,18)

2.102(8)

Ru 2.924(-,29)3.062(-,59)

Ru 2.793(1)-2.949(1)2.869c

not given

not given

[60]

(PBut3)PtRu5(µ5-C).

(µ-CO)2(CO)13d

(red)(at 190 K)

mP21/n

4

12.4684(10)17.9669(15)17.3482(14)

102.613(2)PtC2PRu2

RuCXPtRu3PtC2PRu2

RuCXPtRu3

µOC not given P not given

not givennot given

not given

Ru 2.7894(5)2.8018(5)3.3076(5)

Ru 2.860(-,33)Ru 2.8213(5)

2.8282(5)3.1603(5)

Ru 2.860(-,33)

not given

not givennot given

not given

[57]

(CO)PtRu5(µ5-C).(µ3-Ph)C≡CPh).(µ-PhC≡CPh)d

(red)

mP21/n

8

19.586(5)12.073(2)36.467(6)

97.26(2)PtC4Ru3

RuC3PtRu3(x2)

RuC2PtRu3RuCRu3

(x2)PtC4Ru3

RuC3PtRu3RuC2PtRu3

RuCRu3

OC not givenµC 2.16(1,10)

µC 2.16(1,8)µ5C 2.01(1,1) 2.09(1,3)

µC 2.17(1,12)OC not given

µC 2.15(1,8)µ3C 1.98(1)

2.06(1,3)

Ru 2.741(1)2.900(1,30)µC 78.3(4,3)Ru 2.684(2)-

3.023(2)2.857c

µ5,C90.3(5,7.1)

Ru 2.745(1)2.908(1,53)

µC 78.3(4,1.2)Ru 2.673(2)-

3.090(2)2.911c

µ5C 90.4(5,3.7)

not given

Ru,Ru90.00(4,3.6)Pt,Ru110.64(4,1.0) 118.73(4,30)

not given

Ru,Ru 90.00(4,4.1)Pt,Ru 111.55(4)

119.56(4,2.1)

[61]

ContinuedTable 3. Crystallographic and structural data for heterohexanuclear platinum clusters (PtM5, Pt2Cu3Fe, Pt2M2M2’, and PtOs3M2)a.

COMPOUND(colour)

Crys.clSp.Grp

Z

a [Å]b [Å]c [Å]

a [o]ß [o]g [o]

Chromo-phore

M-L[Å]

M-M [Å]M-L-M [°]

L-M-L[o]

Ref

1116

Page 17: art%3A10.2478%2Fs11532-014-0558-7

M. Melník, P. Mikuš, C. E. Holloway

(CO)PtRu5(µ5-C).(µ3-EtC≡CEt).(µ-EtC≡CEt).(CI)12(red)

orPna11

2

19.951(3)9.905(2)47.180(2)

PtC4Ru3

RuC4PtRu3 (x3)RuC3Ru3

(x2)

OC 1.80(3)µC 2.15(3,5)OC 1.90(3)

µC 2.15(2,8)µ5C 1.98(2,3) 2.07(2,4)

Ru 2.720(2)2.937(2,60) Ru

2.664(2)-3.129(2)2.896c

µ5C90.7(8,8.6)

Ru,Ru 53.90(5)65.94(5,38)

Ru,Ru 61.17(7,3.5) 90.00(7,3.0)Pt,Ru 63.92(6,1.8) 108.81(7,1.5) 119.45(7,6.2)

[62]

[N(PPh3)2][PtRh5.(µ3-CO)4(CO)12](brown)

trPī2

16.596(7) 15.655(7)10.692(6)

95.02(9)85.35(8)81.37(8)

PtC3Rh4

RhC3PtRh3

OC 1.80(2)µ3OC not given

OC 1.70(2)µ3OC not given

Rh 2.778(2,2)2.802(2,9)

Rh 2.698(2)2.827(2)2.760c

not given

not given

[63]

[(PPh3)PtOs5.(µ4-S)(µ-CO).(CO)14(dark brown)

mP21/c

4

8.986(7)16.605(5)26.005(8)

97.62(4)PtCPOs3

OsC3SPtOs4 (x3)OsC3SOs4

(x2)

C 1.82(4)Ph3P 2.311(4)

OC 1.88(2,10)µOC 2.08(2,5)µ4S 2.469(4,40)

Os 2.646(1)2.791(1)2.986(1)

Os 2.703(1)-2.919(1)2.840c

S 69.6(1,3.4)107.5(1,5)C 80.9(5)

C,P 89.6(7)Os,Os 61.20(2.2.6)

Os,Os 60.78(2,1.9) 89.37&(2,1.6)

141.5(4)Pt,Os 59.40(2,4.8) 120.4(6,3.6)

[64]

[(PPh3)PtOs5.(µ3-S)(CO)15.(PPh3)].0.25CH2Cl2(purple)

trPī2

12.538(2)15.958(2)18.061(2)

63.00(1)76.63(1)65.68(1)

PtCSPOs3

OsC3SPtOs2OsC3POs4

OC 1.88(2)µ4S 2.333(4)

Ph3P 2.362(5)

OC 1.87(2,11)µ4S 2.443(4)

2.535(5,15)

Ph3P 2.371(5)

Os 2.762(1)2.818(1)3.030(1)

Os 2.719(1)-2.984(1)2.848c

S,Os 56.3(1,2.2) 84.0(1)

Os,Os 60.93(3,1.6) 90.78(3)

Os,Os 60.0(3,5.0) 116.85(4,4.5)

148.68(4)Pt,Os 58.18(3,6.8) 87.70(3,5) 131.31(4)

[64,65]

(OC)PtOs5.(µ-H)4(CO)17(red)

mP212

8.875(5)19.47(1)9.370(3)

116.42(3)PtCOs5

OsC3PtOs4

OC 1.87(5)

Os 1.89(7,17)

Os 2.762(3)-3.052(3)2.870c/5

Os 2.769(3)-2.950(3)2.887c/4

Os,Os 61.09(8,2.8) 117.2(1,6.9 ) 172.5(1,2.2)

Os,Os 60.00(7,3.3)Pt,Os 59.50(7,2.0)

[66]

PtOs5(µ3-S).(µ-H)6(CO)15

e

(red)

trPī6

19.541(6)23.071(3)9.771(2)

94.69(1)100.8(2)98.90(2)

PtSOs5

OsC3SPtOsC3Pt

PtSOs5

PtSOs5

µ3S 2.38(1,1)

OC 1.95(4,1.6)µ3S 2.413(7,22)

Os 2.667(2)-2.901(2)2.766c

S 74.5(2,1.0)Os 2.890(2)-

2.950(2)2.921c

S 75.3(2,6)Os 2.669(2)-

2.905(2)2.770c

Os 2.673(2)-2.897(2)2.766c

Os,Os 64.52(5,4.2) 113.75(5,1.9) 130.64(6,7) 163.26(7,98)

O s,Os 60.00(5,5)Pt,Os 57.81(5,1.8)

[66]

PtOs5(µ-H)6.(CO)16(red)

mP21/n

4

11.810(4)15.656(4)16.286(6)

109.15(3)PtH3Os5

OsC3H2PtOs2 (x3)OsC3H2PtOs5 (x2)

µH 1.96(-,1) 2.03

OC 1.81(3,7)µH 1.81(-,7) 2.10(-,3)

Os 2.664(2)-2.954(3)2.739c

Os 2.864(1,6)2.911(2,1)

2.887c

Os,Os 64.24(4,3.4) 116.52(4,1.3) 147.73(5,1.3)

176.10(4)Os,Os 60.00(4,1.2)Pt,Os 57.89(4,6.0)

[67]

B: Pt2Cu3Fe[Fe{µ-η5:η1-C5H4)2.Pt2(µ-C≡CPh)6Cu3](green)

mP21/c

4

12.151(6)23.435(7)16.835(5)

103.00(3)PtC4Cu2

CuC4Pt

FeC10

µC not given

C 2.192(11,61)µC 1.975(9,10)η5C not givenη5µC not given

Cu 2.845(5)-2.975(5)

not given

not given

not given

[68]

ContinuedTable 3. Crystallographic and structural data for heterohexanuclear platinum clusters (PtM5, Pt2Cu3Fe, Pt2M2M2’, and PtOs3M2)a.

COMPOUND(colour)

Crys.clSp.Grp

Z

a [Å]b [Å]c [Å]

a [o]ß [o]g [o]

Chromo-phore

M-L[Å]

M-M [Å]M-L-M [°]

L-M-L[o]

Ref

1117

Page 18: art%3A10.2478%2Fs11532-014-0558-7

Crystallographic and structural characterization of heterometallic platinum complexes

Part VI. Heterohexanuclear complexes

C: Pt2M2M2´[{Pt(µ-η3-mec)4.Co(H2O)Na}2].(NO3)4.4H2O(red)

trPī2

12.161(5)12.364(3)12.846(6)

117.60(3)111.83(4)90.87(3)

PtN4Co

CoN4Opt

NaO6

µη3N 2.012(9,26)

µη3N 1.918(11,14)H2O 1.975(9)

O 2.330- 2.694(9)

Co 2.402(2)Na 3.369(5)

N,N 90.0(4,5) 176.0(4,8)

Co,N 175.33(8)N,N 90.0(4,1.4)O,Pt 179.0(3)

O,O 68.2-158.3(4)

[69]

Pt2Ru2W2(µ3-tlm)2.(µ-CO)2(CO)9(cp)2(black)

orPbnb

8

9.246(4)46.799(8)11.972(5)

PtC2W2Ru2

PtC3WRu

WC7Pt2Ru2WC8Pt

RuC4Pt2WRuC5PtW

µOC 2.12(3)µ3C 2.11(3)

OC 1.78(5)µOC 1.93(5)µ3C 2.14(3)

OC 1.96(4,12)OC 1.95(4,6)

η5cpC not givenµ3C 1.98(3,3)OC 1.93(6,15)µOC 2.21(5)µ3C 2.16(3,5)

W2.751(3,51)µ3C 86(1)

Ru2.730(4,58)µ3C 83(1)

Pt 3.064(4)W 2.739(3)µ3C 83(1)

Ru 2.677(3)µ3C 97(1)

Ru 2.800(5,43µ3C 84(1,2)

W,W 164.5(1)Ru,Ru 114.3(1)W,Ru 101.8(1) 134.7(1)

W,Ru 63.3(1)

Pt,Pt 67.6(1)Pt,Ru 58.3(1,2.3)

72.7(1)Pt,Pt 69.9(1)

Pt,W 60.0(1,2)

[70]

D: PtOs3M2[(Pcy3)PtOs3Sn.(µ-H)2(Cl)(OEt2).(CO)10(SnCl3)](orange)

mP21/n

4

18.887(8)12.697(8)20.475(8)

103.63(3)PtHCPOs2.

Sn

OsC3HPt.Os2Sn

OsC2H2Pt.Sn2Os

OsC4Os2Sn

SnOClPt.Os3

µH not givenOC 2.04(17)

cy3P 2.388(14)

OC 1.88(7,15)µH not given

Et2O 2.49(4)Cl 2.37(3,3)

Os 2.782(3)2.865(3)

Sn 2.975(5)

Sn 2.610(5,2)2.645(5)3.058(5)

Os3.047(3,45)

C,P 93.2(44)P,Os 114.4(4) 163.0(4)P,Sn 131.1(4)Os,Os 66.4(1)

Os,Sn 53.0,64.1(1)Pt,Os 58.1(1) 105.3(1)

Pt,Sn 58.3(1,2.8)Sn,Os 50.9(1,8) 64.1(3) 105.4(2)

Os,Os51.7(65.2(1)Pt,Os 58.1(1,3.2)

109.8(2)Os,Os 65.6(1) 117.8(1)

[71]

[(η4-cod)PtOs3(CO)9.(µ4-cpbcp-η5:η5). Fe2(cp)2](brown)

trPī2

11.359(2)18.684(5)10.827(2)

96.4(2)PtC5Os2

OsC3PtOs2OsC4PtOs2

OsC5OsFeC10

η4C not givenµ3C 2.18(1)

OC not givenµC 2.18(1,2)µ3C 2.23(1,2)η5C not given

Os 2.6974(9)2.7817(9)

Os 2.7245(9)2.8351(8)

not given

not given

not given

[72]

[Pt3(Pt0.83Ni0.17)(AuPPh3)2(µ-CO)4(CO)(PPh3)3].(thf)(Pri

2O)(dark brown)(at 173 K)

trPī2

13.107(1)13.454(1)29.459(3)

96.90(1)100.62(1)105.81(1)

PtC2P(x3)

MC3Au(Pt0.83Ni0.17)AuPM2 (x2)

µOC not givenPh3P 2.232(8,7)µOC not given

OC 1.89(4)Ph3P 2.282(8,4)

M 2.713(1,21)Pt 3.286(1)

Au 2.710(1,10)Pt 2.941(1)Au 3.043(1)

not given

not given

not given

[73]

[Pt3(Pt0.26Ni0,74)(AuPPh3)2(µ-CO)4(CO)(PPh3)3].(thf)(Pri

2O)(dark brown)(at 173 K)

trPī2

13.117(1)13.459(1)29.4679(3)

96.88(1)100.59(1)105.88(1)

PtC2P(x3)

MC3Au

AuPM2 (x2)

µOC not givenPh3P 2.251(6,2)µOC not given

OC 1.85(3)Ph3P 2.296(6,1)

M 2.708(1,17)Pt 3.289(1)

Au 2.738(1,40)Pt 2.949(1)Au 3.039(1)

not given

not given

not given

[73]

[Pt3(Pt1.58Ni0.42)(AuPPh3)2(µ-CO)4(CO)2(PPh3)3].MeCN(dark brown)(at 173 K)

mC2/c

4

29.925(1)16.034(1)19.495(1)

125.55(1)PtC2P(x2)

MC2P

AuPM2 (x2)

µOC not givenPh3P 2.259(2)µOC not given

OC 1.82(2)Ph3P 2.282(2)

M 2.692(1,4)Pt 3.356(1)Au 2.746(1,1)M 2.896(1)Au 2.876(1)

not given

not given

not given

[73]

ContinuedTable 3. Crystallographic and structural data for heterohexanuclear platinum clusters (PtM5, Pt2Cu3Fe, Pt2M2M2’, and PtOs3M2)a.

COMPOUND(colour)

Crys.clSp.Grp

Z

a [Å]b [Å]c [Å]

a [o]ß [o]g [o]

Chromo-phore

M-L[Å]

M-M [Å]M-L-M [°]

L-M-L[o]

Ref

1118

Page 19: art%3A10.2478%2Fs11532-014-0558-7

M. Melník, P. Mikuš, C. E. Holloway

The structure of the red PtAu5 cluster [55] can be described as a fragment of a Pt-centered icosahedron. The central Pt atom is bonded to five peripheral AuPPh3 units. The Pt-Au bonds range from 2.590(3) to 2.676(3) Å and Au-Au from 2.811(3) to 3.176(3) Å.

There are nine red PtRu5 clusters [56-60] of the general formula (L)PtRu5(µ6-C)(µ-CO)n(CO)m, in which six metal atoms are arranged in the form of an octahedron with the µ6-carbide ligand located in the center. The Pt-µ6C and Ru-µ6C bond distances are ~2.04 Å. The PtL (L = CO [56], PBut

3 [57], cod [58], PPh3 [58], PMe2Ph [59], dppe [60] fragment spans four ruthenium atoms in an unsymmetrical fashion. The Pt-Ru distances, as well as the Ru-Ru core, are almost in the same range with values of 2.77 to 3.15 and 2.79 to 3.15 Å (Table 3A), respectively. Three of the clusters [56,58,59] contain two crystallographically independent molecules within the same crystal, differing mostly by degree of distortion.

In another three red PtRu5 clusters [57,61,62], five ruthenium atoms form a square-pyramidal cluster, the µ5-carbido ligand being located in the center of the square face with a mean Ru-C-Ru angle of 90.0° (± 8.6°). In monoclinic (PBut

3)PtRu5(µ5-C)(µ-CO)2(CO)13 [57], which contains two crystallographically independent molecules, in each the Pt(PBut)3 fragments only two Ru atoms are bonded in the base. In addition, each of Ru-Pt edges is bridged by a CO group. The mean Pt-Ru bond distances are 2.795 Å (in molecule 1) and 2.825 Å (in molecule 2). The mean Ru-Ru bond distances are 2.860 Å in both molecules. In another monoclinic (CO)PtRu5(µ5-C)(µ3-PhC≡CPh)(µ-PhC≡CPh) cluster [61], which also contains two crystallographically independent molecules within the same crystal, the Pt(CO) fragment caps one Ru3 triangle. There is a triple bridging PhC≡CPh ligand on one of the PtRu2 triangular groupings and an edge bringing the PhC≡CPh ligand across the bond between the Pt atoms at the apex of the square pyramid.

[Pt3(Pt0.21Ni0.79)(AuPPh3)2(µ-CO)4(CO)2(PPh3)2]. (dark brown)(at 173 K)

trPī2

12.876(1)13.432(1)27.051(1)

87.86(1)88.81(1)74.20(1)

PtC2P(x3)

MC3Au

AuPM2 (x2)

µOC not givenPh3P

µOC not givenOC 1.69(2)

Ph3P 2.294(2,3)

M 2.670(2,38)Pt 3.256(1)

Au 2.712(3,18)Pt 2.917(4)Au 3.075(1)

not given

not given

not given

[73]

[Pt3(Pt1.36Ni0.64)(AuPPh3)2(µ-CO)4(CO)2(PPh3)3].MeCN(dark brown)(at 173 K)

mC2/c

4

29.925(1)16.034(1)19.495(1)

125.55(1)PtC2P(x2)

MC2P

AuPM2 (x2)

µOC not givenPh3P 2.259(2)µOC not given

OC 1.82(2)Ph3P 2.282(2)

M 2.692(1,4)Pt 3.356(1)Au 2.746(1,1)M 2.896(1)Au 2.876(1)

not given

not given

not given

[73]

[Pt3(Pt1.58Ni0.42)(AuPPh3)2(µ-CO)4(CO)2(PPh3)3].MeCN(dark brown)(at 173 K)

mC2/c

4

29.939(1)16.001(1)19.502(1)

125.48(1)PtC2P(x2)

MC2P (x2)

AuPM2 (x2)

µOC not givenPh3P 2.258(2)µOC not given

OC 1.82(3)Ph3P 2.285(2)

M 2.679(1,5)Pt 3.351(1)Au 2.736(1,7)M 2.903(1)Au 2.878(1)

not given

not given

not given

[73]

[Pt3(Pt0.12Ni1.88)(AuPPh3)2(µ-CO)4(CO)2(PPh3)3].(thf)(dark brown)(at 173 K)

mP21/n

4

12.976(1)39.978(1)15.599(1)

97.051(1)PtC2P(x2)

MC2P (x2)

AuPM2 (x2)

µOC not givenPh3P 2.269(3,2)µOC not givenOC 1.71(2,3)

Ph3P 2.281(3,2)

M 2.558(1,8)Pt 3.495(1)Au 2.650(2,7)M 2.876(1)Au 2.876(1)

not given

not given

not given

[73]

[Pt3(Pt0.1Ni1.90)(AuPPh3)2 (µ-CO)4(CO)2(PPh3)3].CH2Cl2(dark brown)(at 173 K)

mC2/c

8

47.947(3)15.763(1)20.032(1)

96.59(1)PtC2P(x2)

MC2P (x2)

AuPM2 (x2)

µOC not givenPh3P 2.303(3,3)µOC not givenOC 1.76(2,0)

Ph3P 2.301(3,1)

M 2.679(1,5)Pt 3.351(1)Au 2.736(1,7)M 2.903(1)Au 2.878(1)

not given

not given

not given

[73]

a. Where more than one chemically equivalent distance or angle is present, the mean value is tabulated. The first number in parenthesis is the e.s.d., and the second is the maximum deviation from the mean.b. The chemical identity of the coordinated atom or ligand is specified in these columns.c. The average M-M distance.d. There are two crystallographically independent molecules.e. There are three crystalografically independent molecules.

ContinuedTable 3. Crystallographic and structural data for heterohexanuclear platinum clusters (PtM5, Pt2Cu3Fe, Pt2M2M2’, and PtOs3M2)a.

COMPOUND(colour)

Crys.clSp.Grp

Z

a [Å]b [Å]c [Å]

a [o]ß [o]g [o]

Chromo-phore

M-L[Å]

M-M [Å]M-L-M [°]

L-M-L[o]

Ref

1119

Page 20: art%3A10.2478%2Fs11532-014-0558-7

Crystallographic and structural characterization of heterometallic platinum complexes

Part VI. Heterohexanuclear complexes

The mean Pt-Ru and Ru-Ru bond distances (molecule 1 vs. molecule 2) are 2.847 and 2.857 Å vs. 2.854 and 2.911 Å. The structure of orthorhombic (CO)PtRu5(µ5-C)(µ3-EtC≡CEt)(µ-EtC≡CEt)(CI)12 [62] is similar to its PhC≡CPh analogue [61]. The mean Pt-Ru and Ru-Ru distances are 2.865 and 2.918 Å.

In the [PtRh5(µ3-CO)4(CO)12]2- anion [63], the metal atoms form an octahedron with the mean of four Pt-Rh bonds at 2.790 Å, which are about 0.030 Å longer than those of the eight Rh-Rh bonds (ave 2.760 Å). The Pt-µ3CO bond distance of 2.13(2) Å is shorter than the Rh-µ3CO bond with a value of 2.22(2) Å (ave.).

There are five PtOs5 clusters [64-67] (Table 3A). The structure of monoclinic (PPh3)PtOs5(µ4-S)(µ-CO)(CO)14 [64] consists of a square pyramidal arrangement of five osmium atoms with the sulfide atom located in the center of the square face. The square pyramid is capped on one triangular face by a Pt atom. Seven of the eight Os-Os bond distances lie in the range 2.804(1)-2.919(1) Å. The bonding of the Pt atom to the Os atom is very unsymmetric, with a Pt-Os(3) distance of 2.646(1) Å and a Pt-Os(2) distance of 2.986(1) Å.

The structure of triclinic [(PPh3)PtOs5(µ4-S)(CO)15(PPh3)]0.25CH2Cl2 [64,65] consists of a square-pyramidal arrangement of one platinum and four osmium atoms with the sulfide atom located in the center of the square face. The fifth osmium atom bridges the pair of osmium atoms in the basal plane. The mean Pt-Os

and Os-Os bond distances are 2.870 and 2.848 Å. The remaining three PtOs5 clusters, monoclinic (CO)PtOs5(µ-H)4(CO)17 [66], triclinic PtOs5(µ3-S)(µ-H)6(CO)15 [66] and monoclinic PtOs5(µ-H)6(CO)15 [67], contain a PtOs3 tetrahedron fused to a PtOs2 triangle by the vertex-sharing platinum atom. The structure of PtOs5(µ-H)6(CO)15 is shown in Fig. 8, where it can be seen that there are six hydride atoms bridging the respective metal atoms. Triclinic red PtOs5(µ3S)(µ-H)(CO)15 [66] contains two crystallographically independent molecules. The mean Pt-Os and Os-Os bond distances are 2.870 and 2.887 Å in the monoclinic cluster [66], 2.766 and 2.921 Å (in triclinic, molecule 1), 2.770 and 2.766 Å (in triclinic, molecule 2) [66], and 2.739 and 2.887 Å [67].

The green Pt2Cu3Fe cluster [68] is the only example of such a combination of metals in the series of heterohexanuclear platinum clusters. The six metal atoms are arranged in a slightly irregular octahedron, with two platinum atoms mutually trans while three copper atoms and one iron atom are in the equatorial plane. Three phenylethynyl ligands are σ –bonded to each platinum atom and form π-linkages to each of the copper atoms. The average of the Pt-Cu bond distances is 2.910 Å. The two coordination planes of platinum are almost parallel, the dihedral angle being 4.5°. The ferrocenediyl moieties have an eclipsed conformation with a dihedral angle of 7.4° between them (Table 3A).

Figure 8. Structure of [PtOs5(µ-H)6(CO)16] [67].

1120

Page 21: art%3A10.2478%2Fs11532-014-0558-7

M. Melník, P. Mikuš, C. E. Holloway

There are two Pt2M2M2´ clusters, red Pt2Co2Na2 [69] and black Pt2W2Ru2 [70] (Table 3C). In the former [69], a pair of Pt(mec)4Co units weakly bind two Na(I) atoms through their sets of four O(2) donors. Each Na(I) atom completes its distorted octahedral coordination sphere by an oxygen from a nitrate anion and an O(2) atom of the other symmetry-related PtCo unit. Cobalt(III) is bonded to the four N4 sites of the methylcytosinate ligands, to platinum and a water molecule. The platinum(II) atom is surrounded by the four N3 donor sites. The methylcytosinato ligands around the metals are distorted in a twisted propeller fashion. All three metals are in an almost collinear arrangement (Na...Pt-Co of 175.33(8)°) with a Pt-Co bond of 2.402(2) and a Pt...Na distance of 3.369(5) Å. In black Pt2Ru2W2(µ3-tlm)2(µ-CO)2(CO)9(cp)2 [70], two µ5-tolylmethylidine groups span the metal triangles, one W2Ru1Pt1 and the other W2Ru1Pt2. The mean metal-metal bond distances elongate in the order: 2.712 Å (Pt-Ru) < 2.723 Å (Pt-W) < 2.800 Å (Ru-W).

There are two PtOs3M2 clusters, orange (M = Sn [71]) and brown (M = Fe [72]) (Table 3D). The metal framework in the former may be described as an edge-bridged tetrahedron, and is shown in Fig. 9. The tetrahedron comprises a platinum atom plus Sn(1) and two osmium atoms, Os(2) and Os(3). The Os(2)-Sn(1) edge is bridged by a third osmium atom Os(1). The Pt-Sn(1) distance is 2.975(5) Å which is longer than the mean Pt-Os(2)/Os(1) bond distance of 2.823 Å. The Os(1)...Os(3) and Os(1)...Pt separations of 4.500(3) and 4.602(3) Å rule out the possibility of bonding.

The structure of [(cod)PtOs3(CO)9(µ4-cpbcp)Fe2(cp)2] [72] is shown in Fig. 10, and consists of a butterfly cluster of metal atoms consisting of one Pt and three Os atoms. The platinum atom occupies one of the wingtip positions. The cluster is coordinated to one of the C-C triple bonds of the FeC4Fe ligand in the well-established µ4-bonding mode. The mean Pt-Os bond distance of 2.739 Å is somewhat shorter than the mean Os-Os distance of 2.780 Å.

In dark brown, Pt3(Pt1-xNix)(AuPPh3)2(CO)4(CO)(PPh3)3 (1) [73] and Pt2(Pt2-yNiy)(AuPPh3)2(µ-CO)4(CO)2(PPh3)2 (2) [73], the six metal atom M4Au2 cores constitute butterfly based geometries, in which each of the two basal MB atoms is coordinated to both Au atoms of the bidentate {Ph3PAu-AuPPh3} unit. Both of these clusters show ligation-induced site-specific Pt/Ni substitution disorder at one or both of their basal MB atomic sites. Both clusters exist in four solvated crystals (Table 3). Formal Ni substitution for Pt is at only the basal NB site(s) in the crystal composition of cluster (1) and (2) was found to vary widely from 0.17 to 0.79 Ni in (1) and from 0.42 to 1.90 In in (2). The mean M-M bond distance (1 vs. 2) elongated in the order: 2.679 vs. 2.633 Å (Pt-PtB) < 2.724 vs. 2.678 Å (Au-MB) < 2.927 vs. 2.855 Å (PtB-NiB) < 3.032 vs. 2.886 Å (Au-Au) < 3.274 vs. 3.364 Å (Pt-Pt).

Examination of the data in Tables 1-3 reveals that there are seventy-three heterohexanuclear platinum clusters, with seven different types of composition: Pt5M, Pt4M2, Pt3M3, Pt2M4, PtM5, Pt2M3M´ and Pt2M2M2´, of which Pt2M4 (24 examples) and PtM5 (22 examples) are by far

Figure 9. Structure of [(Pcy3)PtOs3Sn(µ-H)2(Cl)(OEt2)(CO)10SnCl3] [71].

1121

Page 22: art%3A10.2478%2Fs11532-014-0558-7

Crystallographic and structural characterization of heterometallic platinum complexes

Part VI. Heterohexanuclear complexes

Figure 10. Structure of [(cod)PtOs3(CO)9(µ-cpbcp)Fe2(cp)2] [72].

Table 4. Summary of the mean Pt-M distances in heterohexanuclear platinum clusters.

Pt-M [Å] bondsa Pt-M [Å]b

Pt-M

Mean Shortest [ref] Longest [ref] Mean Shortest [ref] Longest [ref]

-Ge 2.420 2.395(4)[52] 2.480(3)[52]

-Fe 2.617 2.570(4)[6] 2.910(1)[54] 3.61 3.49(3)[22] 3.69(3)[22]

-Sn 2.626 2.550(1)[53] 2.975(5)[71]

-Li 2.640 2.621(11)[28] 2.658(11)[28]

-Au 2.645 2.590(3)[55] 2.676(3)[55]

-Co 2.677 2.402(2)[69] 2.937(2)[23] 3.060(2)[23]

-Ir 2.680 2.625(3)[24] 2.708(3)[24]

-W 2.727 2.663(3)[70] 2.747(3)[19]

-Hg 2.730 2.648(4)[8] 2.813(3)[11] 3.09 3.015(1)[9] 3.163(3)[11]

-Re 2.750 2.548(2)[7] 2.792(2)[7] 3.275(2)[7]

-Os 2.768 2.605(1)[48] 2.986(1)[64] 3.053c 3.015(1)[48] 3.092(3)[48]

-Rh 2.790 2.776(2)[63] 2.811(2)[61]

-Ag 2.792 2.746(4)[13] 2.950(1)[36] 3.254 3.034(2)[33] 3.905(3)[14]

-Ru 2.839 2.6456(8)[41] 2.997(2)[62] 3.115 3.045(2)[56] 3.3076(5)[60]

-Cu 2.910 2.845(5)[68] 2.975(5)[68]

-Na 3.369(5)[69]

-Tl 3.498 3.482(1)[31] 3.514[31]

-Pd 6.81(1)[25]

aPt-M less 3.0 ÅbPt-M over 3.0ÅcPt-Os, 4.602(3) Å [71] was not included to the mean value

1122

Page 23: art%3A10.2478%2Fs11532-014-0558-7

M. Melník, P. Mikuš, C. E. Holloway

most common. The clusters crystallize in the six crystal classes: monoclinic (41) > triclinic (22) > orthorhombic (7) > tetragonal, trigonal and cubic (one each).

Six metal atoms form a wide variety of stereochemistries, of which octahedral, with different degrees of distortion, and a square-pyramidal with capping by the sixth metal are most common. The (CO)2Pt2Ru4(CO)16 molecule exists in two isomeric forms, monoclinic [41] and orthorhombic [42]. Another case, PtOs5(µ3-S)(µ-H)6(CO)15 [66] contains three crystallographically independent molecules within the same crystal, and seven other clusters [24,33,51,56,58,59,61] contain two such molecules. The isomers and the crystallographically independent molecules differ mostly by degree of distortion, and all are examples of distortion isomerism [74].

A summary of the Pt-M bond distances (below 3.0 Å) and the Pt-M separations (over 3.0 Å) are gathered in Table 4. Although platinum is classified as a soft metal atom, it can be seen that it is found bonded

to a variety of other metal atoms of the soft, borderline and hard variety. There are nineteen different metal atoms which are involved in the hexohexanuclear platinum clusters. These metal atoms are: Ru (18 examples) < Os(12 examples) < Fe (11 examples) < Ag (7 examples) < Hg (5 examples) < Pd (4 examples) < Li, Sn, Re (3 examples each) < Co, W (2 examples each) < Na, In, Tl, Ge, Cu, Au, Rh, Ir (1 example each). The shortest Pt-M bond for a non-transition metal is Pt-Ge with a distance of 2.395(4) Å [52] and for Pt-M (transition) it is Pt-Co with a distance of 2.402(2) Å [69].

A summary of M-M and M´-M´distances for heterohexanuclear platinum clusters is shown in Table 5. As can be seen, the shortest M-M bond distance is an Re-Re triple bond with a distance of 2.2839(5) Å [38]. The shortest Pt-Pt bond is 2.5325(6) Å [44] and the shortest M-M´ bond is that of Os-Sn, with a distance of 2.608(5) Å [71].

3. Conclusions This review classified and analyzed over seventy heterohexanuclear platinum clusters. This review with its precursors [1-5] shows platinum present with other metal atoms as partners in molecules from two to six metal atoms per unit. There are over one thousand and three hundred such examples, which clearly document an enormous interest in platinum chemistry. The metal atoms cover nineteen transition metals, fifteen non-transition metals, lanthanides (Yb and U), and even an actinide (Th). These clusters crystallize mostly in three crystal classes: monoclinic (51,8%) > triclinic (32.5%) > orthorhombic (13.7%).

Interestingly, the shortest Pt-Pt bond of 2.58 Å is present in hetero-trimers, -tetramers, -and –pentamers. This bond in heterohexamers is somewhat stronger with a distance of 2.532 Å. The shortest Pt-M (non-transition) bond distance elongates in the order: 2.315 Å (M = Ga, trimers) < 2.354 Å (Ge, dimers) < 2.395 Å (Ge, hexamers) < 2.406 Å (Ge, pentamers) < 2.430 (Ge, tetramers). The shortest Pt-M (transition) bond distance elongates in the order: 2.402 Å (M = Co, hexamers) < 2.483 Å (Pd, tetramers) < 2.489 Å (Co, trimers) < 2.495 Å (Cr, dimers) < 2.500 Å (Co, pentamers).

It is hoped that this review will serve to organize the majority of relevant structural information on platinum in a systematically useful manner and illustrate the similarities and differences which may be important, serving to stimulate further studies in this rich area of chemistry. A similar review of heteroheptanuclear platinum clusters is in progress.

Table 5. Summary of the mean M-M and M-M´ distances in heterohexanuclear platinum clusters.

M-M [Å] M - M Mean Shortest [ref] Longest [ref]

Re – Re 2.2839(5)[38] 13.26(2)[28]

Co – Co 2.692 2.691(3)[23] 2.693(1)[23]

Fe – Fe 2.693 2.622(2)[54] 2.786(1)[54]

Pt – Pt 2.727 2.5325(6)[44] 2.9489(9)[9]

3.372 3.008(1)[10] 3.714(2)[10]

7.273 6.949(1)[55] 7.88(1)[25]

Li – Li 2.746 2.57(4)[29] 2.91(2)[28]

Rh – Rh 2.760 2.698(2)[63] 2.827(1)[63]

Os – Os 2.846 2.530(1)[50] 2.989(1)[65]

3.062 3.002(3)[71] 3.092(1)[48]

4.500(3)[71]

Au – Au 2.858 2.811(5)[55] 2.935(3)[55]

3.070 3.005(4)[55] 3.176(3)[55]

Pd – Pd 2.865 2.853(2)[51] 2.877(2)[51]

3.45 3.39(1)[25] 3.51(1)[25]

Ru – Ru 2.875 2.664(2)[62] 2.965(2)[56]

3.054 3.000(1)[45] 3.129(2)[62]

Ag – Ag 2.887 2.815(4)[14] 2.959(2)[34]

6.898(1)[37]

Hg – Hg 3.506 3.395(4)[11] 3.617(1)[10]

Tl – Tl 4.254 4.238[31] 4.270[31]

Sn – Os 2.622 2.608(5)[71] 2.645(5)[71]

3.058(3)[71]

W – Ru 2.800 2.757(5)[70] 2.843(5)[70]

1123

Page 24: art%3A10.2478%2Fs11532-014-0558-7

Crystallographic and structural characterization of heterometallic platinum complexes

Part VI. Heterohexanuclear complexes

C.E. Holloway, M. Melník, Centr. Eur. J. Chem. 9, 501 (2011)M. Melník, O. Sprušanský, C.E. Holloway, Centr. Eur. J. Chem. 10, 1709 (2012)

M. Melník, P. Mikuš, C.E. Holloway, Centr. Eur.

J. Chem. 11, 827 (2013) M. Melnik, P. Mikuš, C.E. Holloway, Centr. Eur. J. Chem. 11, 1902 (2013) M. Melník, P. Mikuš, C.E. Holloway, Centr. Eur. J. Chem. 12, 283 (2014)

Abbreviationsabz 2-SC6H4N = C(H)C5H4;ac acetate;acac acetylacetonate;ampy 2-aminopyridinate;betmp bis(ethylthio)methylenepropanedioate;bpeb o-bis(phenylethynyl)benzene;bpy 2,2´-bipyridine;bpyv 4,4´di(cyclopentadienyl)vinyl-2,2´-bipyridine;bpz 2,2´-bipyrazine;C6Cl5 pentachlorophenyl;C6F5 pentafluorophenyl;cod cycloocta-1,5-diene;cp cyclopentadienyl;cp* pentamethylcyclopentadienyl;C^P -CH2C6H4P(o-tolyl)2;C5H10 pentane;C5H4PPh2 diphenylcyclopentadienylphosphine;cpbcp bis(cyclopentadienyl)butadiyne;EtC≡CEt 1,2-diethyletin;PhC≡CPh 1,2-diphenyletin;dach diaminocyclohexane;dbbpy 4,4´-di-tert-butyl-2,2´-bipyridine;dppe 1,2-bis(diphenylphosphine)ethane;dppm bis(diphenylphosphino)methane;en ethylenediamine;Et ethyl;m monoclinic;Me methyl;mec 1-methylcytosinate;meu methyluracilate;NMe4 tetramethylammonium;or orthorhombic;PPh3 triphenylphosphine;PMe3 trimethylphosphine;Pcy3 tricyclohexylphosphine;PEt3 triethylphosphine;Ph phenyl;P(mop)3 tri(p-methoxyphenyl)phosphine;PBut

3 tri-tert-butylphosphine;PPri

3 tri-iso-propylphosphine;tlm 4-tolylmethylidyne;thf tetrahydrofuran.

References

[1]

[2]

[3]

[4]

[5]

1124

Page 25: art%3A10.2478%2Fs11532-014-0558-7

M. Melník, P. Mikuš, C. E. Holloway

R. Bender, P. Braunstein, D. Bayeal, Y. Dusausoy, Inorg. Chem. 28, 2381 (1989) L. Hao, J.J. Vittal, J. Xiao, R.J. Puddephatt, J. Amer. Chem. Soc. 117, 8035 (1995)(a) R. Usón, J. Forniés, L.R. Falvello, I. Ara, I. Usón, Inorg. Chim. Acta 212, 105 (1993); (b) I. Ara, J. Fornies, L. Gabilordo, M.A. Uson, Inorg. Chim. Acta 347, 155 (2003)I.G. Furmanova, V.V. Bashilov, S.S. Kurasov, N.K. Eremenko, V.I. Sokolov, Kristallografiya 37, 625 (1992) (in Russian)N.K. Eremenko, S.S. Karasov, A.V. Virovets, Yu T. Struchkov, V.V. Bashilov, V.I. Sokolov, Izv. Akad. Nauk, Sec. Khim. 46, 168 (1997) (in Russian)K.H. Dahmen, D. Imhof, L.M. Venanzi, T. Gerfin, V. Gramlich, J. Organomet. Chem. 486, 37 (1995)J.S.L. Yeo, J.J. Vittal, W. Henderson, T.S.A. Hor, J. Organomet. Chem. 659, 92 (2002)R. Usón, J. Forniés, M. Tomás, J.M. Casas, Angew. Chem. Int. Ed. Engl. 28, 748 (1989)C.E. Briant, T.S.A. Hor, N.D. Howells, D.M.P. Mingos, J. Organomet. Chem. 256, C15, (1983)L. Hao, J.J. Vittal, R.J. Puddephatt, L. Manojlovič-Muir, K.W. Muir, J. Chem. Soc., Chem. Commun. 2381 (1995)K. Onitsuka, T. Yoshida, F. Ozawa, K. Sonogashira, Chem. Lett. 259 (1996)K.M. Kim, J.S. Park, Y.S. Kim, Y.J. Jun, T.Y. Kang, Y.S. Sohn, M.J. Jun, Angew. Chem. Int. Ed. Engl. 40, 2458 (2001)G.K. Campbell, P.B. Hitchcock, M.F. Lappert, M.C. Misra, J. Organomet. Chem. 289, C1 (1985)S.J. Davies, G.P. Elliott, J.A.K. Howard, Ch.M. Nunn, F.G.A. Stone, J. Chem. Soc. Dalton Trans. 2177 (1987)R.D. Adams, I. Arata, G. Chen, J.Ch. Lii, J.G. Wang, Organometallics 9, 2350 (1990)G. Longeni, M. Manassero, M. Sansoni, J. Amer. Chem. Soc. 102, 7973 (1980)I. Nagasawa, T. Kawamoto, H. Kuma, H. Kushi, Chem. Lett. 921 (1996)J.C. Jeffery, M.J. Parrott, F.G.A. Stone, J. Organomet. Chem. 382, 225 (1990)M.J. Freeman, A.D. Miles, M. Murray, A.G. Orpen, F.G.A. Stone, Polyhedron 3, 1093 (1984)R.D. Schnebeck, E. Freisinger, B. Lippert, Angew. Chem., Int. Ed. Engl. 38, 168 (1999)R.D. Schnebeck, E. Freisinger, F. Glahé, B. Lippert, J. Amer. Chem. Soc. 122, 1381 (2000)R.D. Schnebeck, E. Freisinger, B. Lippert, Chem. Commun. 675 (1999)R. Wyrwa, H. Görls, Z. Anorg. Allg. Chem. 625,

1904 (1999)L.R. Falvello, J. Forniés, J. Gómez, E. Lalinde, A. Martin, M.T. Moreno, J. Sacristan, Chem. Eur. J. 5, 474 (1999)L. Falvello J. Forniés, E. Lalinde, A. Martin, T. Moreno, J. Sacristan, Chem. Commun. 141 (1998)J.R. Berenguer, J. Forniés, J. Gómez, E. Lalinde, M.T. Moreno, Organometallics 20, 4847 (2001)I. Ara, L.R. Falvello, J. Forniés, V. Sicilia, P. Willarroya, Organometallics 19, 3091 (2000)P. Espinet, J. Forniés, F. Martinez, M. Tomás, E. Lalinde, M.T. Moreno, A. Ruitz, A.J. Welch, J. Chem. Soc., Dalton Trans. 791 (1990)I. Ara, J. Forniés, E. Lalinde, M.T. Moreno, M. Tomás, Organometallics 19, 3137 (2000)I. Ara, J. Forniés, E. Lalinde, M.T. Moreno, M. Tomás, J. Chem. Soc., Dalton Trans. 2397 (1995)J. Forniés, M.A. Gómez-Saso, F. Martinez, E. Lalinde, M.T. Moreno, A.J. Welch, New J. Chem. 16, 483 (1992)H. Schöllhorn, U. Thewalt, B. Lippert, Inorg. Chim. Acta 135, 155 (1987)J.K. Bera, B.W. Smucker, R.A. Walton, K.R. Dunbar, Chem. Commun. 2562 (2001)T.E. Müller, F. Ingold, S. Menzer, D.M.P. Mingos, D.J. Williams, J. Organomet. Chem. 528, 163 (1997)S. Achar, C.E. Immoos, M.G. Hill, V.J. Catalano, Inorg. Chem. 30, 2314 (1997)(a) R.D. Adams, G. Chen, W. Wu, J. Cluster Sc. 4, 119 (1993); (b) R.D. Adams, G. Chen, J.G. Wang, W. Wu, Organometallics 9, 1339 (1990)V. Antonucci, A.S. Arićo, F. Calderazzo, L. Labella, F. Marchetti, J. Cluster Sc. 12, 293 (2001)R.D. Adams, U.H.F. Bumz, W. Fu, L. Kloppenburg, Bo Qu, Inorg. Chem. Commun. 2, 1 (1999)R.D. Adams, W. Wu, Organometallics 12, 1248 (1993)R.D. Adams, Z. Li, J.Ch. Lii, W. Wu, Inorg. Chem. 31, 3445 (1992)R.D. Adams, M.S. Alexander, I. Arafa, W. Wu, Inorg. Chem. 30, 4717 (1991)P. Sundberg, J. Chem. Soc., Chem. Commun. 1307 (1987)R.D. Adams, W. Wu, J. Cluster Sc. 5, 317 (1994)R.D. Adams, W. Wu, Inorg. Chem. 30, 3605 (1991)R.D. Adams, W. Wu, Organometallics 10, 35 (1991)H. Rauter, I. Mutikainen, M. Blomberg, C.J.L. Lock, P. Amo-Ochoa, E. Freisinger, L. Randaccio, E. Zangrando, E. Chiarparin, B. Lippert, Angew. Chem. Int. Ed. Engl. 36, 1296

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48][49][50][51]

1125

Page 26: art%3A10.2478%2Fs11532-014-0558-7

Crystallographic and structural characterization of heterometallic platinum complexes

Part VI. Heterohexanuclear complexes

(1997)E.D. Estes, D.J. Hodgson, Inorg. Chem. 12, 2932 (1973)J.H. Nelson and N.W. Alcock, Inorg. Chem. 21, 1196 (1982)V.E. Lopatin, Yu. L. Slovokhotov, Yu T. Struchkov, Koord. Khim. 14, 116 (1988) (in Russian); Engl. Ed., p. 76L.N. Ito, A.M.P. Felicissimo, L.H. Pignolet, Inorg. Chem. 30, 387 (1991)R.D. Adams, W. Wu, J. Cluster Sc. 2, 271 (1991)R.D. Adams, B. Captain, W. Fu, P.J. Pellechia, M.D. Smith, Angew. Chem. Int. Ed. Engl. 41, 1951 (2002)S. Hermans, T. Khimyak, B.F.G. Johnson, J. Chem. Soc., Dalton Trans. 3295 (2001)R.D. Adams, B. Captain, W. Fu, P.J. Pellechia, Chem. Commun. 937 (2000)K Lee, J.R. Shapley, Organometallics 17, 3020 (1998)R.D. Adams, W. Wu, Organometallics 12, 1238 (1993)R.D. Adams, W. Wu, J. Cluster Sc. 4, 245 (1993)A. Fumagalli, S. Martinengo, P. Chini, A. Albinati, S. Bruckner, B.T. Heaton, J. Chem. Soc., Chem. Commun. 195, (1978)R.D. Adams, J.E. Babin, R. Mathab, S. Wang, Inorg. Chem. 25, 1623 (1986)

R.D. Adams, J.E. Babin, R. Mahtab, S. Wang, Inorg. Chem. 25, 4 (1986)R.D. Adams, M.P. Pompeo, W. Wu, Inorg. Chem. 30, 2899 (1991)R.D. Adams, M.P. Pompeo, W. Wu, Inorg. Chem. 30, 2425 (1991)S. Tanaka, T. Yoshida, T. Adachi, T. Yoshida, K. Onitsuka, K. Sonogashira, Chem. Lett. 877 (1994)A. Hegmans, E. Zangrando, E. Freisinger, F. Pichierri, L. Randaccio, C. Mealli, M. Gerdan, A.X. Trantwein, B. Lippert, Chem. Eur. J. 5, 3010 (1999)S.J. Davies, J.A.K. Howard, M.U. Pilotti, F.G.A. Stone, J. Chem. Soc., Dalton Trans. 2289 (1989)P. Ewing, L.J. Farrugea, New J. Chem. 12, 409 (1988)R.D. Adams, Bo Qu, J. Organomet. Chem. 620, 303 (2001)N. DeSilva, R.V. Nichijoruk, L.F. Dahl, Dalton Trans. 2291 (2006)(a) M. Melník, Coord. Chem. Rev. 47, 239 (1982); (b) M. Melník, C.E. Holloway, Coord. Chem. Rev. 250, 2261 (2006)

[52]

[53]

[54]

[55]

[56][57]

[58]

[59]

[60]

[61]

[62][63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

1126