ars.els-cdn.com  · Web viewSUPPORTING INFORMATION. ANTIBIOTICS IN THE AQUATIC ENVIRONMENTS: A...

86
SUPPORTING INFORMATION ANTIBIOTICS IN THE AQUATIC ENVIRONMENTS: A REVIEW OF THE EUROPEAN SCENARIO Isabel T. Carvalho, Lúcia Santos* LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal *Corresponding author: Tel.: +351 22 5081682, Fax: +351 22 508 1449, e-mail address: [email protected]

Transcript of ars.els-cdn.com  · Web viewSUPPORTING INFORMATION. ANTIBIOTICS IN THE AQUATIC ENVIRONMENTS: A...

SUPPORTING INFORMATION

ANTIBIOTICS IN THE AQUATIC ENVIRONMENTS: A REVIEW OF THE EUROPEAN SCENARIO

Isabel T. Carvalho, Lúcia Santos*

LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and

Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465,

Porto, Portugal

*Corresponding author: Tel.: +351 22 5081682, Fax: +351 22 508 1449, e-mail address:

[email protected]

Table S1. Overview on the occurrence of antibiotics in European environmental aqueous matrices.Study (Reference)

Matrices (location)

Antibiotic classes:Active agents

Concentrations (ng L-1) Analytical methods

Analytical parameters (ng L-1)LOD LOQ

Austria(Clara et al. 2005)

WWTPI; WWTPE (South-East)

Macrolide: ROX

Mean WWTPI: ROX=25-117

WWTPE: ROX=nd-69

SPE-HPLC-MS/MS ROX=10 ROX=20

Sulfonamide: SXZ

SXZ=nd-145 SXZ=nd-91 SXZ=20 SXZ=20

Belgium(Vergeynst et al. 2015)

WWTPI; WWTPE (Aalst; Schilde)

Amphenicol:CRP

Mean WWTPI:CRP=nd

WWTPE: CRP=nd

SPE-HPLC-(IT)HRMS

CRP=11-13 CRP=36-44

β-lactam: Penicillin AMX

AMX=nd AMX=nd AMX=9,023->25,000

AMX=>25,000

Diaminopyrimidine:TMT

TMT=111 TMT=34 TMT=28-59 TMT=93-197

Nitroimidazole:MND

MND=24 MND=nd MND=12-25 MND=40-84

Quinolones: FluoroquinolonesBSF; CPF; ERF; FMQ; GTF; LVF; MXF; NLA; SRFOther quinolonesFMQ; NLA

BSF=nd; CPF=342; ERF=nd; GTF=nd; LVF=413; MXF=317; SRF=nd; FMQ=nd; NLA=nd

BSF=nd; CPF=45; ERF=nd; FMQ=nd; GTF=nd; LVF=45; MXF=281; NLA=nd; SRF=nd

BSF=38-60; CPF=31-75; ERF=50-76; GTF=23-52; LVF=20-57; MXF=11-35; SRF=25-41; FMQ=59-159; NLA=86-198

BSF=128-201; CPF=102-250; ERF=166-252; GTF=76-175; LVF=68-189; MXF=35-118; SRF=83-137; FMQ=195-529; NLA=287-661

Sulfonamides:SDX; SMX; SMZ

SDX, SMX, SMZ=nd SDX=nd; SMX=54; SMZ=nd SDX=17-18; SMX=26-50; SMZ=46-73

SDX=55-61; SMX=86-168; SMZ=154-243

Tetracyclines:OXT; TTC

OXT=nd; TTC=1,371 OXT, TTC=nd OXT=592-1,119; TTC=161-295

OXT=1,974-3,731; TTC=539-985

Croatia(Senta et al. 2013)

WWTPI; WWTPE (Belisce; Bjelovar; Cakovec; Karlovac; Novi Zagreb; Osijek; Rijeka; Slavonski Brod; Sisak; Split; Varazdin; Vinkovci; Velika Gorica; Zadar; Zagreb)

Diaminopyrimidine:TMT

Min-max WWTPI:TMT=35-3,442

WWTPE: TMT=924-1,352

SPE-LC-(QqQ)MS/MS

na na

Macrolides:AZT; CTR; ERT; RXT

AZT=77-1,129; CTR=112-300; ERT=24-420; RXT=nd-50

AZT=38-784; CTR=25-113; ERT=15-163; RXT=nd

na na

Quinolones:FluoroquinolonesCPF ; ERF; NOF

CPF=nd-2,610; ERF=nd-16; NOF=nd-2,937

CPF=11-201; ERF=7-12; NOF=24-1,185

na na

Sulfonamides:SDZ; STA; SPD; SMZ; SMX

SDZ=2-132; SMX=210-11,555; SMZ=2-175; SPD =80-931; STA=1-4

SDZ=1-18; SMX=119-1,207; SMZ=nd; SPD=48-784; STA=nd

na na

Table S1. (Continuation).Study (Reference)

Matrices (location)

Antibiotic classes:Active agents

Concentrations (ng L-1) Analytical methods

Analytical parameters (ng L-1)LOD LOQ

(Babić et al. 2006)

WWTPE (pharmaceutical industry)

Diaminopyrimidine:TMT

WWTPE:TMT=nr

SPE-HPLC-DAD TMT=10,000 TMT=30,000

Quinolone:FluoroquinoloneERF

ERF=23,700 ERF=100,000 ERF=1,500

Sulfonamides:SDZ; SGD; SMZ

SDZ=111,400; SGD =211,100; SMZ=107,100->500,000 SDZ=10,000; SGD =40,000; SMZ=10,000

SDZ=20,000; SGD=60,000; SMZ=20,000

Tetracycline:OXT

OXT=nd OXT=10,000 OXT=30,000

Czech Republic(Golovko et al. 2014)

WWTPI; WWTPE (České Budějovice)

Diaminopyrimidine:TMT

Min-max WWTPI:TMT=120-530

WWTPE:TMT=83-440

SPE-LC-(QqQ)MS/MS

na TMT=3

Macrolides:AZT; CTR; ERT

AZT=14-510; CTR=310-3,090; ERT=20-300

AZT=8-220; CTR=210-2,310; ERT=30-350

na AZT=7; CTR=3; ERT=6

Quinolones:FluoroquinolonesCPF; LVF; NOF

CPF=80-860; LVF=5-69; NOF=130-1,330

CPF=8-190; LVF=4-18; NOF=20-250

na CPF=3; LVF=3; NOF=3

Sulfonamides:SMX; SPD

SMX=43-490; SPD =18-660 SMX=31-260; SPD=14-200 na SMX=5; SPD=3

(Tylová et al. 2013)

WWTPI; WWTPE (6 different localities)

Lincosamides:CDM; LCM

Min-max WWTPI:CDM=nd-150.7; LCM=nd-32.7

WWTPE:CDM=nd-102.1; LCM=nd-46.4

SPE-UHPLC-(TOF)MS

na CDM=4.36; LCM=4.23

Macrolides:CTR; ERT; RXT; TLS

CTR =79.0-1,287.9; ERT=nd-248.6; RXT=nd; TLS=nd

CTR =61.0-794.2; ERT=nd-204.2; RXT=nd; TLS=nd

na CTR =4.06; ERT=4.34; RXT=8.34; TLS=6.47

Quinolones:FluoroquinolonesCPF; ERF; NOF; OFX

CPF =nd-640.6; ERF=nd; NOF=nd-377.4; OFX=nd-485.0

CPF=nd-133.6; ERF=nd; NOF=nd 24.2-63.0; OFX=nd-283.0

na CPF =3.68; ERF=3.99; NOF=3.75; OFX=7.81

Sulfonamides:SDD; SDM; SDZ; SMX; STA

SDD=nd-177.1; SDM=nd; SDZ=ndSMX=nd-796.2; STA =nd

SDD=nd; SDM=nd; SDZ=nd; SMX=nd-681.1;STA=nd

na SDD=8.43; SDM=8.80; SDZ=10.43; SMX=8.68; STA=8.75

Tetracyclines:CTC; DXC; OXT; TTC

CTC, DXC, OXT, TTC=nd CTC, DXC, OXT, TTC=nd na CTC=18.07; DXC=17.33; OXT=8.22; TTC=8.27

Table S1. (Continuation).Study (Reference)

Matrices (location)

Antibiotic classes:Active agents

Concentrations (ng L-1) Analytical methods

Analytical parameters (ng L-1)LOD LOQ

(Seifrtová et al. 2010)

HWWTPI; HWWTPE (University Hospital, Hradec Králové); RW (Elbe River, Hradec Králové)

Quinolones:FluoroquinolonesCPF; ERF; NOF; OFX

HWWTPI:CPF=2,468.70; ERF=nd; NOF=38.11; OFX=20.27; PEF=nd

HWWTPE:CPF=38.06; ERF=nd; NOF=25.69; OFX=nd; PEF=nd

RW:CPF, ERF, NOF, OFX=nd

SPE-UHPLC-FL-(QqQ)MS/MS

na CPF, ERF, NOF, OFX=12.5-125

Finland(Vieno, Härkki, et al. 2007)

RW (Vantaa River) Quinolones:FluoroquinolonesCPF; NOF; OFX

Min-max RW:CPF=<LOQ; NOF=<LOQ; OFX=<LOQ-5

SPE-LC-(QqQ)MS/MS

na CPF=24; NOF=24; OFX=2.6

(Vieno, Tuhkanen, et al. 2007)

WWTPI; WWTPE (Aura; Helsinki; Hyvinkää, Joensuu; Jyväskylä; Lappeenranta; Nurmijärvi; Oulu; Riihimäki; Tampere; Turku; Vaasa)

Quinolones:FluoroquinolonesCPF; NOF; OFX

Min-max WWTPI:CPF=nd-4,230; NOF=nd-960; OFX=nd-350

WWTPE:CPF=nd-130; NOF=nd-110; OFX=nd-30

SPE-LC-(QqQ)MS/MS

na CPF=29-163; NOF=24-78; OFX=5.8-18

(Vieno et al. 2006)

WWTPI; WWTPE (Riihimäki; Hyvinkää, Kalteva; Nurmijärvi, Klaukkala); RW (Vantaa and Luhtajoki Rivers)

Quinolones:FluoroquinolonesCPF; NOF; OFX

Min-max WWTPI:PF=200-450; NOF=<LOQ-180;OFX=30-130

WWTPE:CPF=<LOQ-40; NOF=<LOQ-40; OFX=<LOQ-10

RW:CPF=<LOQ-25; NOF =<LOQ; OFX=<LOQ

SPE-LC-(QqQ)MS/MS

na CPF=24-163; NOF=24-78; OFX=2.6-18

France(Jeanton et al. 2014)

RW (Allier River) Tetracycline:DXC

Min-max RW:DOX=nd-1.8

SPE-RRLC-(QqQ)MS/MS

na DOX=1

(Pasquini et al. 2014)

WWTPI; WWTPE (Nancy)

Macrolide: ERT

Mean WWTPI:ERT=150-200

WWTPE:ERT=100-200

SPE-LC-MS/MS ERT=50 ERT=100

Quinolone:FluoroquinoloneOFX

OFX=300-600 OFX=100-500 OFX=50 OFX=100

Table S1. (Continuation).Study (Reference)

Matrices (location)

Antibiotic classes:Active agents

Concentrations (ng L-1) Analytical methods

Analytical parameters (ng L-1)LOD LOQ

(Dévier et al. 2013)

DW (bottled natural mineral water, EVIAN and VOLVIC factories)

Amphenicols:CRP; TAP

DW:CRP, TAP=nd

SPME-RRLC-(QqQ)MS/MS

CRP=5; TAP=5 CRP=5; TAP=10

β-lactams: Cephalosporins CLX; CPD; CRX; CTF; CTXPenicillins AMP; AMX; CXC; DCX; OXC; PNG; PNV

CLX, CPD, CRX, CTF, CTX, AMP, AMX, CXC, DCX, OXC, PNG, PNV=nd

CLX=8; CPD=2; CRX=2; CTF=3; CTX=3; AMP=3; AMX=10; CXC=0.4; DCX=0.7; OXC=0.4; PNG=0.5; PNV=0.5

CLX=10; CPD=100; CRX=10; CTF=100; CTX=10; AMP=10; AMX=80; CXC=10; DCX=10; OXC=10; PNG=10; PNV=10

Diaminopyrimidine:TMT

TMT=nd TMT=0.7 TMT=1

Lincosamides:CDM; LCM

CDM, LCM=nd CDM=0.2; LCM=3 CDM=5; LCM=5

Macrolides:AZT; CTR; ERT; JSM; RXT; SPR; TLS

AZT, CTR, ERT, JSM, RXT, SPR, TLS=nd AZT=11; CTR=0.4; ERT=3; JSM=2; RXT=1; SPR=13; TLS=3

AZT, CTR, ERT, JSM, RXT, SPR, TLS=5

Nitroimidazole:MND

MND=nd MND=0.4 MND=2

Quinolones:FluoroquinolonesCPF; ERF; MBF; NOF; OFXOther quinolonesFMQ; OXA; PPA

CPF, ERF, MBF, NOF, OFX, FMQ, OXA, PPA=nd CPF=3; ERF=2; MBF=1; NOF=2; OFX=0.8; FMQ=0.1; OXA=0.1; PPA=2

CPF=5; ERF=5; MBF=5; NOF=5; OFX=2; FMQ=2; OXA=5; PPA=5

Steroid antibacterial:FSA

FSA=nd FSA=10 FSA=15

Streptogramin:VGN

VGN=nd VGN=4 VGN=10

Sulfonamides:SDM; SDZ; SMR; SMT; SMX; SMZ; SNL; SPD; STA

SDM, SDZ, SMR, SMT, SMX, SMZ, SNL, SPD, STA=nd SDM=0.1; SDZ=0.4; SMR=0.5; SMT=0.4; SMX=1; SMZ=0.2; SNL=37; SPD=0.5; STA=0.4

SDM=1; SDZ=15; SMR=1; SMT=1; SMX=1; SMZ=1; SNL=150; SPD=1; STA=1

Tetracyclines:CTC; DXC; OXT; TTC

CTC, DXC, OXT, TTC=nd CTC=2; DXC=0.9; OXT=1; TTC=0.7

CTC=5; DXC=3; OXT=2; TTC=5

Others: MNN; SLN

MNN, SLN=nd MNN=27; SLN=70 MNN=2; SLN=1,400

Table S1. (Continuation).Study (Reference)

Matrices (location)

Antibiotic classes:Active agents

Concentrations (ng L-1) Analytical methods

Analytical parameters (ng L-1)LOD LOQ

(Dinh et al. 2011)

RW (Seine, Charmoise, and Prédecelle Rivers)

β-lactams: CephalosporinCTXPenicillin AMX

Min-max RW:CTX=<LOQ; AMX=<LOQ-68

SPE-LC-(QqQ)MS/MS

CTX=13.7; AMX=12.0

CTX=45.6; AMX=39.2

Diaminopyrimidine:OMT; TMT

OMT=<LOQ; TMT=<LOQ-254 OMT=1.9; TMT=1.5

OMT=6.2; TMT=4.8

Glycopeptide:VCM

VCM=<LOQ-90 VCM=2.0 VCM=6.7

Macrolides:ERT; TLS

ERT=<LOQ-131; TLS =<LOQ 2.8 ERT=0.8; TLS=0.6 ERT=2.5; TLS=1.9

Nitroimidazole:OND

OND=<LOQ OND=4.3 OND=14.1

Quinolones:FluoroquinolonesCPF; ENX; ERF; LMF; NOF; OFX; SRFOther quinolonesFMQ; NLA; OXA; PPA

CPF=<LOQ-135; ENX=<LOQ; ERF=<LOQ; LMF=<LOQ; NOF=<LOQ-75; OFX=2.3-231; SRF=<LOQ; FMQ=<LOQ-4.6; NLA=<LOQ; OXA=<LOQ-23; PPA=<LOQ

CPF=1.0; ENX=2.2; ERF=3.3; LMF=3.3; NOF=2.1; OFX =0.5; SRF=1.1; FMQ=1.1; NLA=1.3; OXA=1.7; PPA=5.0

CPF=3.3; ENX=8.7; ERF=11.0; LMF=11.0; NOF=7.0; OFX=1.7; SRF=3.6; FMQ=3.5; NLA=4.3; OXA=5.7; PPA=16.5

Sulfonamides:SMX; SMZ

SMX=3.6-1,435; SMZ=<LOQ SMX=0.6; SMZ=1.4

SMX=2.0; SMZ=4.7

Tetracyclines:CTC; TTC

CTC=<LOQ; TTC=<LOQ-7.4 CTC=2.3; TTC=1.8 CTC=7.7; TTC=6.0

(Felizzola and Chiron 2009)

RW (Arc River) Macrolides: AZT; CTR

Max RW:AZT=nd; CTR =nd-2,330

SPE-LC-MS/MS na AZT, CTR=4-150

Quinolone:FluoroquinoloneCPF

CPF =nd-9,660 na CPF=4-150

Sulfonamide:SMX

SMX=nd na SMX=4-150

Tetracycline:OTC

OXT=nd na OXT=4-150

Table S1. (Continuation).Study (Reference)

Matrices (location)

Antibiotic classes:Active agents

Concentrations (ng L-1) Analytical methods

Analytical parameters (ng L-1)LOD LOQ

(Tamtam et al. 2008)

RW (Seine, Marne, and Oise Rivers)

Diaminopyrimidine:TMT

Max RW:TMT=16-45

SPE-UPLC-(QqQ)MS/MS

na TMT=10

Nitroimidazole:OND

OND=<LOQ-58 na OND=10

Quinolones:FluoroquinolonesCPF; DIF; DNF; ENX; ERF; LMF; NOF; OFX; SRF Other quinolonesFMQ

CPF=<LOQ; DIF=<LOQ; DNF=<LOQ-19; ENX=<LOQ-11; ERF=<LOQ-10; LMF=<LOQ-10; NOF=13-163; OFX=<LOQ-55; SRF=<LOQ-10; FMQ=13

na CPF, DIF, DNF, ENX, ERF, LMF, NOF, OFX, SRF, FMQ=10

Sulfonamides: SMX; SMZ

SMX=72-544; SMZ=<LOQ na SMX, SMZ=10

(Andreozzi et al. 2003)

WWTPE (Lyon) Diaminopyrimidine:TMT

Min-max WWTPE:TMT=20-40

SPE-HPLC-MS/MS na na

Quinolones:FluoroquinolonesCPF; ENX; LMF; NOF; OFX

CPF=60; ENX=10-30; LMF=180-190; NOF=50-80; OFX=330-510 na na

Sulfonamide:SMX

SMX=70-90 na na

Germany(Baumann et al. 2015)

WWTPE; RW (Bavaria)

Macrolide:CTR

Min-max WWTPE:CTR=110-460

RW:CTR=4-100

SPE-LC-(QqQ-IT)MS/MS

na CTR=2

(Maier et al. 2015)

WWTPE (Langwiese); RW (Schussen andArgen Rivers)

Sulfonamide: SMX

Min-max WWTPE:SMX=380-510

RW:SMX=17-64

SPE-LC-MS/MS na SMX=10

(Rossmann et al. 2014)

WWTPI; WWTPE (Dresden; Kaditz)

β-lactams: Cephalosporins CRX; CTXPenicillinsAMX; PNV; PPR

Min-max WWTPI:CRX=49-6,196; CTX=nd-492; AMX=nd-1,270; PNV=nd-252; PPR=nd-2,603

WWTPE:CRX=nd-1,957; CTX=nd-217; AMX=nd-187; PNV=nd; PPR=nd-1,205

SPE-LC-(QqQ)MS/MS

CRX=29.7; CTX=10.6; AMX=2.8; PNV=2.3; PPR=3.0

CRX=99.0; CTX=35.2; AMX=9.3; PNV=7.7; PPR=9.9

Diaminopyrimidine:TMT

TMT=22-372 TMT=25-554 TMT=3.1 TMT=10.2

Glycopeptide:VCM

VCM=nd-664 VCM=nd-348 CDM=0.4 CDM=1.4

Lincosamide:CDM

CDM=11-163 CDM=20-882 VCM=75.3 VCM=245.1

Macrolides:AZT; CTR; RXT

AZT=50-946; CTR=42-1,525; RXT=nd-771

AZT=nd-956; CTR=18-1,800; RXT=nd-181

AZT=0.2; CTR=0.5; RXT=1.1

AZT=0.8; CTR=1.6; RXT=3.8

Table S1. (Continuation).Study (Reference)

Matrices (location)

Antibiotic classes:Active agents

Concentrations (ng L-1) Analytical methods

Analytical parameters (ng L-1)LOD LOQ

Quinolones:FluoroquinolonesCPF; LVF

CPF=78-1,570; LVF=25-2,247 CPF=19-920; LVF=28-836 CPF=2.2; LVF=1.4 CPF=7.3; LVF=4.8

Sulfonamide:SMX

SMX=12-2,204 SMX=18-8,263 SMX=5.1 SMX=17.1

Tetracycline:DXC

DXC=nd-2,393 DXC=nd-1,110 DXC=8.8 DXC=29.2

(Nödler et al. 2010)

WWTPE; RW (Leine River, Göttingen); SeaW (Baltic Sea, Ahlbeck)

Diaminopyrimidine:TMT

WWTPE:TMT=681

RW:TMT=95

SeaW:TMT=nd

SPE-HPLC-(QqQ)MS/MS

na TMT=2.5-15

Macrolides:CTR; ERT; RXT

CTR=520; ERT=173; RXT=509

CTR=77; ERT=22; RXT=16

CTR=14; ERT=nd; RXT=nd

CTR=7.5-18; ERT=7.5-29; RXT=9.5-115

Sulfonamide:SMX

SMX=509 SMX=93 SMX=7 SMX=2.6-14

(Christian et al. 2003)

RW (Southern North Rhine-Westphalia, Greater Cologne-Bonn;Eastern Westphalia; region Lower-Rhine; region Rhine-Sieg)

β-lactams: Penicillin AMP; AMX; BZP; CXC; DCX; FCX; MTC; MZC; OXC; PNX; PPR

Min-max RW:AMP=nd; AMX=nd-6; BZP=nd; CXC=nd; DCX=nd; FCX=nd-7; MTC=nd; MZC=nd; OXC=nd; PNX=nd; PPR=nd-48

SPE-HPLC-MS/MS na AMP, AMX, BZP, CXC, DCX, FCX, MTC, MZC, OXC, PNX, PPR=5

Diaminopyrimidine:TMT

TMT=nd-50 na TMT=2

Lincosamide:CDM

CDM=nd-32 na CDM=1

Macrolides:AZT; CTR; ERT; RXT; SPR; TLS

AZT=nd-15; CTR=nd-37; ERT=nd-302; RXT=nd-31; SPR=nd; TLS=nd

na AZT=1; CTR=0.5; ERT=2; RXT=2; SPR=2; TLS=2

Quinolones:FluoroquinolonesCPF; OFX

CPF=nd-9; OFX=nd-20 na CPF=5; OFX=2

Sulfonamides:SDD; SMX

SDD=nd-7; SMX=nd-300 na SDD, SMX=2

Tetracyclines:CTC; DXC; OXT; TTC

CTC, DXC, OXT, TTC=nd na CTC, DXC, OXT, TTC=10

Greece(Alygizakis et al. 2016)

SeaW (Aegean Sea, Saronikos Gulf andElefsis Bay)

Amphenicols:CRP; FFN; TAP

Min-max SeaW:CRP, FFN, TAP=nd

SPE-LC-(QqQ)MS/MS

CRP=2.4; FFN=0.3; TAP=0.01

CRP=7.2; FFN=0.9; TAP=0.03

β-lactams: CephalosporinCLXPenicillinAMX

CLX=nd; AMX=nd-127.8 CLX, AMX=5.0 CLX, AMX=15.0

Table S1. (Continuation).Study (Reference)

Matrices (location)

Antibiotic classes:Active agents

Concentrations (ng L-1) Analytical methods

Analytical parameters (ng L-1)LOD LOQ

Diaminopyrimidine:TMT

TMT=nd-3.4 TMT=0.4 TMT=1.2

Lincosamide:LCM LCM=nd

LCM=0.07 LCM=0.2

Macrolides:AZT; CTR; ERT; TLS

AZT=nd; CTR=nd-<LOQ; ERT=nd; TLS=nd-2.4 AZT=0.1; CTR=1.0; ERT=5.0; TLS=0.7

AZT=0.3; CTR=3.0; ERT=1.7; TLS=2.2

Nitroimidazole:MND

MND=nd-8.2 MND=1.3 MND=3.8

Pleuromutilin:TAM

TAM=nd-<LOQ TAM=0.1 TAM=0.3

Quinolones:FluoroquinolonesCPF; DIF; ERF; MBF; NOF; OFX; SRFOther quinolonesFMQ; OXA

CPF=nd; DIF=nd; ERF=nd; MBF=nd; NOF=nd; OFX=nd-<LOQ; SRF=nd; FMQ=nd; OXA=nd-<LOQ

CPF=2.3; DIF=1.8; ERF=1.7; MBF=0.2; NOF=6.1; OFX=1.6; SRF=2.8; FMQ=1.0; OXA=1.3

CPF=6.9; DIF=5.4; ERF=5.1; MBF=0.6; NOF=18.3; OFX=4.7; SRF=4.8; FMQ=3.0; OXA=3.8

Sulfonamides:SCP; SCZ; SDD; SDM; SDX; SDZ; SGD; SMM; SMP; SMR; SMT; SMX; SPD; SQN; SSX; SXL

SCP=nd; SCZ=nd; SDD=nd; SDM=nd; SDX=nd; SDZ=nd-2.2; SGD=nd; SMM=nd; SMP=nd; SMR=nd; SMT=nd; SMX=nd-6.3; SPD=nd; SQN=nd; SSX=nd; STA=nd-<LOQ; SXL=nd

SCP=2.2; SCZ=2.2; SDD=0.02; SDM=0.8; SDX=1.1; SDZ=0.1; SGD=8.3; SMM=0.3; SMP=0.3; SMR=0.2; SMT=1.0; SMX=0.1; SPD=0.2; SQN=1.6; SSX=3.1; STA=0.6; SXL=0.6

SCP=6.6; SCZ=6.6; SDD=0.06; SDM=2.4; SDX=3.3; SDZ=0.3; SGD=24.9; SMM=0.9; SMP=0.9; SMR=0.6; SMT=3.0; SMX=0.3; SPD=0.6; SQN=4.8; SSX=9.3; STA=1.8; SXL=1.8

Tetracyclines:CTC; DXC; OXT; TTC

CTC, DXC, OXT, TTC=nd CTC=4.3; DXC=20.6; OXT=4.6; TTC=11.8

CTC=12.9; DXC=61.8; OXT=13.8; TTC=35.4

(Papageorgiou et al. 2016)

WWTPI; WWTPE (Volos)

β-lactams: PenicillinsAMP; AMX

Min-max WWTPI:AMP=nd-1,805; AMX=nd

WWTPE:AMP=nd-498; AMX=nd

SPE-LC-DAD-(QqQ)MS/MS

AMP=24.7-81.5; AMX=161.2-553.2

AMP=21.3-70.3; AMX=156.3-515.8

Table S1. (Continuation).Study (Reference)

Matrices (location)

Antibiotic classes:Active agents

Concentrations (ng L-1) Analytical methods

Analytical parameters (ng L-1)LOD LOQ

Diaminopyrimidine:TMT

TMT=<LOQ-200 TMT=nd-95.8 TMT=3.5-11.7 TMT=2.4-7.8

Lincosamide:LCM

LCM=nd-281 LCM=nd-<LOQ LCM=16.2-53.5 LCM=14.3-47.7

Macrolides:ERT; RXT

ERT=nd-320; RXT=nd-<LOQ ERT, RXT=nd ERT=32.8-108.2; RXT=26.3-86.8

ERT=24.3-80.2; RXT=24.4-80.6

Nitroimidazole:MND

MND=nd-64.7 MND=nd-35.2 MND=7.5-24.7 MND=5-16.5

Quinolones:FluoroquinolonesCPF; MXF

CPF=nd-591; MXF=nd-773 CPF=nd-591; MXF=nd-298 CPF=18.4-60.7; MXF=18.8-62.1

CPF=14.7-48.6; MXF=14.5-47.8

Sulfonamides:SDZ; SMX

SDZ=nd-846; SMX=nd-507 SDZ=nd-194; SMX=nd-80 SDZ=27.6-91; SMX=4.7-15.6

SDZ=18.4-607; SMX=3.2-10.4

(Kosma et al. 2014)

WWTPI; WWTPE (Ioannina; Arta; Preveza; Agrinio; Grevena; Kozani; Veroia)

Diaminopyrimidine:TMT

Min-max WWTPI:TMT=nd-1,866.2

WWTPE:TMT=nd-533.2

SPE-LC-UV/Vis-(Q-LIT-ORBITRAP)MS/MS

TMT=2.1-3.4 TMT=6.2-10.9

Sulfonamide:SMX

SMX=nd-2,626.3 SMX=nd-481.3 SMX=3.5-4.0 SMX=10.5-12.4

(Andreozzi et al. 2003)

WWTPE (Iraklio) Diaminopyrimidine:TMT

Min-max WWTPE:TMT=40

SPE-HPLC-MS/MS na na

Quinolones:FluoroquinolonesCPF; ENX; LMF; NOF; OFX

CPF=70; ENX=30; LMF=290; NOF=70; OFX=460 na na

Sulfonamide:SMX

SMX=10 na na

Ireland(McEneff et al. 2014)

WWTPE (east and west coast); SW (marine)

Diaminopyrimidine:TMT

Min-max WWTPE:TMT=60-1,200

SW:TMT=70-870

SPE-LC-(IT)MS/MS

na TMT=3-49

Italy(Celano et al. 2014)

WWTPI; WWTPE; DW; SeaW

Sulfonamide:SMX

WWTPI:SMX=104.5

WWTPE:SMX=53.4

DW:SMX=<LOQ

SeaW:SMX=nd

SPE-DLLME-UHPLC-(QqQ)MS/MS

SMX=3.8-15.1 SMX=12.5-49.9

(Verlicchi et al. 2014)

WWTPI; WWTPE; SW (Po Valley)

Diaminopyrimidine:TMT

Mean WWTPI:TMT=59

WWTPE:TMT=40

SW:TMT=2

SPE-HPLC-(QqQ-LIT)MS/MS

TMT=1 na

Macrolides:AZT; CTR; ERT; RXT

AZT=120; CTR=200; ERT=46; RXT=65

AZT=130; CTR=280; ERT=15; RXT=290

AZT=7; CTR=6; ERT=nd; RXT=nd

AZT=1-4; CTR=1-6; ERT=4-8; RXT=1-3

na

Nitroimidazole:MND

MND=42 MND=28 MND=nd MND=1-4 na

Table S1. (Continuation).Study (Reference)

Matrices (location)

Antibiotic classes:Active agents

Concentrations (ng L-1) Analytical methods

Analytical parameters (ng L-1)LOD LOQ

Quinolones:FluoroquinolonesCPF; NOF; OFX

CPF=2,200; NOF=210; OFX=980

CPF=630; NOF=150; OFX=400

CPF=25; NOF=nd; OFX=nd

CPF=1-3; NOF=1-6; OFX=1

na

Tetracyclines:DXC; TTC

DXC, TTC=nd DXC, TTC=nd DXC, TTC=nd DXC=2-18; TTC=5-14

na

(Al Aukidy et al. 2012)

WWTPE; RW (Po Valley)

Diaminopyrimidine:TMT

Mean WWTPE:TMT=nd-27

RW:TMT=1-15

SPE-HPLC–(QqQ-LIT)MS/MS

TMT=0.5 TMT=2-7

Macrolides:AZT; CTR; RXT

AZT=44-175; CTR=102-283; RXT=nd

AZT=4-90; CTR=1-100; RXT=nd

AZT=1; CTR=0.5; RXT=0.5

AZT=3-17; CTR=2-13; RXT=2-7

Nitroimidazole:MND

MND=16-19 MND=nd-10.5 MND=0.5 MND=1-7

Quinolone:FluoroquinoloneCPF

CPF=25-284 CPF=nd-100 CPF=1 CPF=3-7

Sulfonamide:SMX

SMX=91-97 SMX=3.5-4.5 SMX=1 SMX=3-7

(Verlicchi et al. 2012)

WWTPI; WWTPE; HWWTPE

Amphenicol:CRP

Min-max WWTPI:CRP=13-24

WWTPE:CRP=nd

HWWTPE:CRP=nd-36

SPE-HPLC–(QqQ-LIT)MS/MS

CRP=4-9 na

Diaminopyrimidine:TMT

TMT=39-72 TMT=36-51 TMT=68-1,800 TMT=1-2 na

Macrolides:AZT; CTR; ERT; JSM; RXT; SPR; TLS; TMC

AZT=10-330; CTR=110-780; ERT=26573; JSM=nd-7; RXT=nd-140; SPR;=nd-150; TLS=nd; TMC=21-460

AZT=70-180; CTR=260-310, ERT=12328; JSM=nd; RXT=13-53; SPR=19-53; TLS=nd; TMC=nd-81

AZT=nd-1,040; CTR=20-14,000; ERT=60-320; JSM=nd-15; RXT=nd-140; SPR=nd-110; TLS=nd; TMC=14-350

AZT=2-4; CTR=2-6; ERT=5-8; JSM=1-3; RXT=2-6; SPR=2-3; TLS=1-3; TMC=1-6

na

Nitroimidazole:MND

MND=28-56 MND=13-41 MND=260-1,640 MND=1-6 na

Quinolones:FluoroquinolonesCPF; DNF; ENX; ERF; NOF; OFX

CPF=1,100-3,700; DNF=nd; ENX=81-130; ERF=nd; NOF=150-310; OFX=450-2,200

CPF=290-1,100;DNF=nd; ENX=30-100; ERF=nd; NOF=140-170; OFX=220-520

CPF=1,400-26,000; DNF=nd; ENX=58-480; ERF=nd; NOF=23-510; OFX=3,300-37,000

CPF=2-4; DNF=3-9; ENX=2-7; ERF=2-5; NOF=3-8; OFX=1-2

na

Sulfonamides:SDZ; SMZ; SMX

SDZ=13-26; SMZ=10-33; SMX=280-740

SDZ=10-21; SMZ=10-15; SMX=170-240

SDZ=29-380; SMZ=nd-30; SMX=900-6,500

SDZ=2-7; SMX=1-3; SMZ=2-6

na

Table S1. (Continuation).Study (Reference)

Matrices (location)

Antibiotic classes:Active agents

Concentrations (ng L-1) Analytical methods

Analytical parameters (ng L-1)LOD LOQ

Tetracyclines:CTC; DXC; OXT; TTC

CTC, DXC, OXT, TTC=nd

CTC, DXC, OXT, TTC=nd

CTC=nd-94; DXC=nd-70; OXT=nd-1,300; TTC=nd-33

CTC=8-14; DXC=8-18; OXT=6-15; TTC=7-14

na

(Zuccato et al. 2010)

WWTPI; WWTPE (Varese); RW (Po and Arno Rivers)

β-lactam:PenicillinAMX

WWTPI:AMX=18

WWTPE:AMX=<LOQ

RW:AMX=<LOQ-9.91

SPE-HPLC-(QqQ)MS/MS

na AMX=2.08

Glycopeptide:VCM

VCM=41 VCM=29 VCM=0.44-11.69 na VCM=na

Lincosamide:LCM

LCM=9.7 LCM=7.2 LCM=3.72-10.92 na LCM=0.31

Macrolides:CTR; ERT; OLD; SPR; TLS; TMC

CTR=319; ERT=12; OLD=2.2; SPR=603; TLS=<LOQ; TMC=<LOQ

CTR=145; ERT=72; OLD=3.1; SPR=375; TLS=<LOQ; TMC=<LOQ

CTR=0.89-44.76; ERT=0.78-8.12; OLD=<LOQ; SPR=<LOQ 2.35-17.92; TLS=<LOQ; TMC=<LOQ -6.67

na CTR=0.15; ERT=0.4; OLD=0.31; SPR=1.4; TLS=0.77; TMC=0.71

Quinolone:FluoroquinoloneCPF

CPF=513 CPF=148 CPF=1.32-37.50 na CPF=1.8

Sulfonamide:SMX

SMX=246 SMX=101 SMX=1.79-11.40 na SMX=1.48

Tetracycline:OXT

OXT=<LOQ OXT=<LOQ OXT=1.23-1.82 na OXT=1.19

(Castiglioni et al. 2005)

WWTPE (Cagliari; Cosenza; Palermo; Latina; Naples; Cuneo; Varese Olona; Varese Lago)

β-lactam: PenicillinAMX

Min-max WWTPE:AMX=nd-120

SPE-HPLC-(QqQ)MS/MS

na AMX=2.08

Lincosamide:LCM

LCM=11-846 na LCM=0.31

Macrolides:CTR; ERT; OLD; SPR; TLS; TMC

CTR=8-73; ERT=9-353; OLD=nd; SPR=1.4-161; TLS=nd-0.9; TMC=nd

na CTR=0.15; ERT=0.4; OLD=0.31; SPR=1.4; TLS=0.77; TMC=0.71

Quinolones:FluoroquinolonesCPF; OFX

CPF=27-378; OFX=150-1,081 na CPF=1.8; OFX=1.3

Sulfonamide:SMX

SMX=46-317 na SMX=1.48

Tetracycline:OXT

OXT=nd na OXT=1.19

Table S1. (Continuation).Study (Reference)

Matrices (location)

Antibiotic classes:Active agents

Concentrations (ng L-1) Analytical methods

Analytical parameters (ng L-1)LOD LOQ

(Zuccato et al. 2005)

WWTPE (Cagliari; Latina; Cuneo; Varese; Cosenza; Palermo; Naples; Monza); RW (Po and Lambro Rivers)

β-lactam: PenicillinAMX

Median WWTPE:AMX=47.0

RW:AMX=nd

SPE-HPLC-(QqQ)MS/MS

na na

Lincosamide:LCM

LCM=30.5 LCM=24.4-32.6 na na

Macrolides:CTR; ERT; SPR

CTR=18.1; ERT=47.4; SPR=75.0 CTR=1.6-8.3; ERT=3.2-4.5; SPR=9.8-72.0

na na

Quinolones:FluoroquinolonesCPF; OFX

CPF=251.0; OFX=600.0 CPF=n-14.4; OFX=33.1-306.1 na na

Sulfonamide:SMX

SMX=127.2 SMX=nd na na

(Andreozzi et al. 2004)

WWTPE (Cagliari; Cosenza; Palermo; Roma; Napoli; Torino; Varese; Olona; Varese Lago)

β-lactam: PenicillinAMX

Min-max WWTPE:AMX=4.68-120.35

SPE-HPLC-(QqQ)MS/MS

na AMX=1.8

(Andreozzi et al. 2003)

WWTPE (Latina; Rome; Naples)

Diaminopyrimidine:TMT

Min-max WWTPE:TMT=30-130

SPE-HPLC-MS/MS na na

Quinolones:FluoroquinolonesCPF; ENX; LMF; NOF; OFX

CPF=40-70; ENX=10-30; LMF=180-320; NOF=60-70; OFX=290-580 na na

Sulfonamide:SMX

SMX=nd-30 na na

Luxembourg(Pailler et al. 2009)

WWTPI; WWTPE (Beggen); RW (Alzette and Mess Rivers)

Sulfonamides:SDM; SMX; SMZ; STA

Min-max WWTPI:SDM=<LOQ-26; SMX=1-155; SMZ=<LOQ-2; STA=<LOQ-2

WWTPE:SDM=<LOQ-9; SMX=4-39; SMZ=<LOQ; STA=<LOQ

RW:SDM=<LOQ-3; SMX=<LOQ-22; SMZ=<LOQ; STA=<LOQ-2

SPE-LC-(QqQ)MS/MS

SDM, SMX, SMZ, STA=0.3

SDM, SMX, SMZ, STA=1.0

Tetracyclines:TTC; OXT

TTC=<LOQ-85; OXT=<LOQ-7

TTC=<LOQ-24; OXT=<LOQ-5

TTC=<LOQ-8; OXT=<LOQ-7

TTC, OXT=0.3 TTC, OXT=1.0

Netherlands(Chitescu et al. 2012)

SW; GW β-lactam: PenicillinDCX

Max SW:DCX=nd

GW:DCX=nd

SPE-UPLC-(QqQ-ORBITRAP)MS/MS

DCX=100 na

Macrolide:ERT

ERT=75-100 ERT=nd ERT=50 na

Quinolone:FluoroquinoloneCPF

CPF=nd CPF=nd CPF=100 na

Table S1. (Continuation).Study (Reference)

Matrices (location)

Antibiotic classes:Active agents

Concentrations (ng L-1) Analytical methods

Analytical parameters (ng L-1)LOD LOQ

Sulfonamide:SMX

SMX=75-100 SMX=50-75 SMX=10 na

Tetracyclines:OXT

OXT=nd OXT=nd OXT=50 na

(Jongh et al. 2012)

SW (Rhine, Meuse, Haringvliet, and Drentsche Aa Rivers); DW

Macrolide:CTR; ERT

Max SW:CTR=16; ERT=35

DW:CTR, ERT=nd

SPE-LC-(QLT-FT-ORBITRAP)MS/MS

CTR, ERT=10 na

(Laak et al. 2010)

RW (Rhine River) Diaminopyrimidine:TMT

Min-max RW:TMT=5-10

SPE-HPLC-(QqQ)MS/MS

TMT=5 na

Lincosamide:CDM

CDM=12-23 CDM=10 na

Macrolides:CTR; ERT; RXT

CTR=10-18; ERT=17-40; RXT=10-18 CTR=10; ERT=10; RXT=10

na

Sulfonamide:SMX

SMX=20-40 SMX=10 na

Poland(Sikorska et al. 2015)

WW; TW (food-producing animal farm)

Aminoglycosides: StreptomycinsDST; STMOther aminoglycoside NMC

Min-max WW; TW:DST=nd; STM=nd; NMC=nd-32,000

SPE-LC-(QqQ)MS/MS

DST=730; STM=360; NMC=3,790

DST=2,000; STM=1,000; NMC=10,000

β-lactams: Cephalosporins CLX; CPR; CPZ; CQN; CTF; CZL Penicillins AMP; AMX; DCX; NFC; OXC; PNG

CLX, CPR, CPZ, CQN, CTF, CZL, AMP, AMX, DCX, NFC, OXC, PNG=nd

CLX=10; CPR=10; CPR=20; CQN=10; CTF=20; CZL=10; AMP=20; AMX=3,540; DCX=20; NFC=20; OXC=20; PNG=3,720

CLX=20; CPR=20; CPR=50; CQN=20; CTF=50; CZL=20; AMP=50; AMX=10,000; DCX=50; NFC=50; OXC=50; PNG=10,000

Diaminopyrimidine:TMT

TMT=nd-17,800 TMT=20 TMT=50

Lincosamide:LCM

LCM=nd-304,000 LCM=10 LCM=20

Macrolides:ERT; JSM; SPR; TLS; TMC

ERT=nd; JSM=nd; SPR=nd; TLS=nd; TMC=nd-1,730 ERT=2,030; JSM=20; SPR=20; TLS=10; TMC=10

ERT=5,000; JSM=50; SPR=50; TLS=20; TMC=20

Pleuromutilin:TAM

TAM=nd-66,800 TAM=10 TAM=20

Table S1. (Continuation).Study (Reference)

Matrices (location)

Antibiotic classes:Active agents

Concentrations (ng L-1) Analytical methods

Analytical parameters (ng L-1)LOD LOQ

Quinolones:FluoroquinolonesCPF; DIF; DNF; ERF; MBF; NOF; SRF Other quinolonesFMQ; NLA; OXA

CPF=nd; DIF=nd; DNF=nd; ERF=nd-1,670; MBF=nd; NOF=nd-3,48; SRF=nd; FMQ=nd; NLA=nd; OXA=nd

CPF, DIF, DNF, ERF, MBF, NOF, SRF, FMQ, NLA, OXA=10

CPF, DIF, DNF, ERF, MBF, NOF, SRF, FMQ, NLA, OXA=20

Sulfonamides:SDM; SMM; SMR; SMX; SMZ; STA

SDM=nd; SMM=nd; SMR=nd; SMX=nd-58,700; SMZ=nd; STA=nd SDM=10; SMM=10; SMR=10; SMX=10; SMZ=10; STA=20

SDM=20; SMM=20; SMR=20; SMX=20; SMZ=20; STA=50

Tetracyclines:CTC; DXC; OXT; TTC

CTC=nd; DXC=nd-1,650; OXT=nd; TTC=nd CTC=20; DXC=20; OXT=10; TTC=20

CTC=50; DXC=50; OXT=20; TTC=50

Others: SPT

SPT=nd SPT=350 SPT=1,000

(Wagil et al. 2015)

RW (Gościcina River)

Nitroimidazole:MND

Min-max RW:MND=nd-136.2

SPE-LC-MS/MS MND=3.4 MND=10.1

(Wagil et al. 2014)

RW (Gościcina and Reda Rivers)

Quinolones:FluoroquinolonesCPF; ERF; NOF

Min-max RW:CPF=nd-2,745; ERF=nd-248.7; NOF=nd-442.8

SPE-UPLC-(QqQ)MS/MS

CPF=3.3; ERF=3.3; NOF=3.4

CPF=10.1; ERF=10.1, NOF=10.2

(Borecka et al. 2013)

SeaW (Baltic Sea) Diaminopyrimidine:TMT

Mean SeaW:TMT=nd-3.4

SPE-LC-(UIT)MS/MS

TMT=0.2 TMT=0.5

Macrolide:ERT

ERT=nd-<LOQ ERT=16.7 ERT=50.0

Sulfonamides:SCP; SDM; SMR; SMX; SMZ; SPD; SSX; STA; STZ

SCP=nd; SDM=nd-0.8; SMR=nd; SMX=nd-10.8; SMZ=nd-<LOQ; SPD=nd-<LOQ; SSX=nd; STA=nd-<LOQ

SCP=3.3; SDM=0.2; SMR=16.7; SMX=3.3; SMZ=1.7; SPD=1.7; SSX=3.3; STA=3.3; STZ=3.3

SCP=10.0; SDM=0.5; SMR=50.0; SMX=10.0; SMZ=5.0; SPD=5.0; SSX=10.0; STA=10.0; STZ=10.0

Portugal(Gaffney et al. 2015)

RW (Tagus and Zêzere Rivers); GW (OTA, Alenquer and Lezírias wells); DW

Macrolide:ERT

Max RW:ERT=4-31

GW:ERT=4

DW:ERT=5

SPE-UPLC-(QqQ)MS/MS

na na

Sulfonamides:SDZ; SMX; SMZ; SPD

SDZ=3-26; SMX=2-22; SMZ=1; SPD=2

SDZ=2M SMX=2; SMZ=1; SPD=7

SDZ=1; SMX=1.3; SMZ=0.5; SPD=1.9

na na

(Pereira et al. 2015)

WWTPI; WWTPE Macrolide:AZT

Min-max WWTPI:AZT=nd-719.3

WWTPE:AZT=nd

SPE-LC-MS/MS AZT=0.4-0.5 AZT=1.4-1.7

Quinolone:FluoroquinoloneCPF

CPF=nd-17,500.0 CPF=nd-9,8000.0 CPF=5.0-6.0 CPF=16.4-20.0

Table S1. (Continuation).Study (Reference)

Matrices (location)

Antibiotic classes:Active agents

Concentrations (ng L-1) Analytical methods

Analytical parameters (ng L-1)LOD LOQ

(Santos et al. 2013)

WWTPI; WWTPE; HWWTPE (Coimbra)

Diaminopyrimidine:TMT

Min-max WWTPI:TMT=nd-360

WWTPE:TMT=66.6-299

HWWTPE:TMT=nd-3,963

SPE-LC-(QqQ-LIT)MS/MS

TMT=0.8-1.4 TMT=2.5-4.6

Macrolides:AZT; CTR; ERT

AZT=79.7-295; CTR=nd-52.3; ERT=9.64-220

AZT=93.7-297; CTR=12.0-40.0; ERT=20.4-134

AZT=<LOQ-7,351; CTR=nd-960; ERT=nd-7,545

AZT=0.9-7.4; CTR=0.2-1.3; ERT=1.0-4.8

AZT=3.1-25.0; CTR=0.6-4.4; ERT=3.3-16.0

Nitroimidazole:MND

MND=<LOQ-113 MND=19.4-83.5 MND=nd-12,315 MND=1.0-12.0 MND=3.5-39.0

Quinolones:FluoroquinolonesCPF; OFX

CPF=107-330; OFX=51.9-4,986

CPF=127-1,396; OFX=110-366

CPF=101-38,689; OFX=nd-24,811

CPF=6.8-11.0; OFX=0.3-7.5

CPF=23.0-38.0; OFX=1.1-25.0

Sulfonamide:SMX

SMX=529-1,662 SMX=340-1,679 SMX=nd-8,714 SMX=2.7-3.1 SMX=9.1-10.0

Tetracycline:TTC

TTC=<LOQ-32.3 TTC=<LOQ-22.8 TTC=nd-<LOQ TTC=2.8-15.0 TTC=9.2-49.0

(Madureira et al. 2009)

RW (Douro River) Diaminopyrimidine:TMT

Min-max RW:TMT=nd-13.0

SPE-LC-(IT)MS/MS

TMT=1.25 TMT=3.24

Sulfonamide:SMX

SMX=nd-53.3 SMX=4.40 SMX=6.60

(Pena et al. 2007)

RW (Mondego River) Quinolones:FluoroquinolonesCPF; ERF; OFX

Min-max RW:CPF=nd-119.2; ERF=nd-102.5; OFX=nd

SPE-HPLC-FL na CPF, ERF, OFX=25

Romania(Chitescu et al. 2015)

RW (Danube, Olt, Siret, and Argeș Rivers); LW (Borcea and Călărași)

Amphenicol:CRP

Min-max RW:CRP=nd-13

LW:CRP=nd

SPE-LC-(Q-ORBITRAP)MS/MS

CRP=7.3 CRP=22.3

β-lactam: PenicillinDXC

DXC=nd DXC=nd DXC=12.9 DXC=39.2

Diaminopyrimidine:TMT

TMT=nd-12 TMT=nd TMT=6.5 TMT=17.2

Lincosamide:LCM

LCM=nd LCM=nd LCM=17.5 LCM=56.8

Macrolides:ERT; TLS; TMC

ERT=nd; TLS=nd-39; TMC=nd ERT=nd; TLS=17; TMC=nd ERT=15.5; TLS=9.7; TMC=2.1

ERT=47.1; TLS=24.9; TMC=6.4

Pleuromutilins:TAM; VNM

TAM=nd-3-5.6; VNM=nd TAM, VNM=nd TAM=1.6; VNM=2.0

TAM=4.8; VNM=6.2

Table S1. (Continuation).Study (Reference)

Matrices (location)

Antibiotic classes:Active agents

Concentrations (ng L-1) Analytical methods

Analytical parameters (ng L-1)LOD LOQ

Quinolones:FluoroquinolonesCPF; NOFOther quinoloneFMQ

CPF=nd-6; NOF=nd; FMQ=nd CPF, NOF, FMQ=nd CPF=12.6; NOF=20.6; FMQ=3.2

CPF=38.2; NOF=62.5; FMQ=9.7

Sulfonamides:SDD; SDM; SDZ; SMX; SQN

SDD=nd; SDM=nd; SDZ=nd; SMX=nd-30; SQN=nd

SDD, SDM, SDZ, SMX, SQN=nd

SDD=1.0; SDM=3.4; SDZ=2.3; SMX=1.0; SQN=3.4

SDD=3.2; SDM=10.3; SDZ=7.0; SMX=3.0; SQN=10.3

Tetracyclines:CTC; OXT

DXC, OXT=nd DXC, OXT=nd DXC=8.8; OXT=8.0

DXC=26.6; OXT=24.3

(Chițescu and Nicolau 2014)

RW (Prahova, Timis, Danube, Siret, Prut, and Jijia Rivers); LW (Huși town); DW (Galați town)

β-lactam: PenicillinDXC

Min-max RW:DXC=nd

LW:DXC=nd

DW:DXC=nd

SPE-UHPLC-(ORBITRAP)MS

DXC=100 na

Diaminopyrimidine:TMT

TMT=10-20 TMT=nd TMT=nd TMT=5 na

Macrolide:ERT

ERT=15-25 ERT=nd ERT=nd ERT=5 na

Quinolone:FluoroquinoloneCPF

CPF=nd CPF=nd CPF=nd CPF=5 na

Sulfonamides:SMX

SMX=10-30 SMX=nd SMX=nd SMX=5 na

Tetracyclines:OXT

OXT=nd OXT=nd OXT=nd OXT=50 na

(Opriş et al. 2013)

WWTPI; WWTPE β-lactam: CephalosporinCTN; CTZPenicillinAMP; AMX; PNG

Min-max WWTPI:CTN=nd-334,000; CTZ=nd; AMP=nd, AMX=nd, PNG=nd

WWTPE:CTN, CTZ, AMP, AMX, PNG=nd

SPE-LC-DAD-(Q)MS

CTN=920; CTZ=700; AMP=70; AMX=280; PNG=270

CTN=2,770; CTZ=2,140; AMP=210; AMX=850; PNG=810

Tetracyclines:DXC; TTC

DXC=nd-110,000; TTC=nd-146,000

SCX, TTC=nd DXC, TTC=900 DXC=2,720; TTC=2,720

Slovakia(Birošová et al. 2014)

WWTPI; WWTPE β-lactam: PenicillinPNV

Min-max WWTPI:PNV=<LOQ

WWTPE:PNV=<LOQ

SPE-LC-(Q-ORBITRP)MS

na PNV=0.05-50

Diaminopyrimidine:TMT

TMT=99-187 TMT=86-88 na TMT=0.05-50

Lincosamide:CDM

CDM=44-70 CDM=35-69 na CDM=0.05-50

Table S1. (Continuation).Study (Reference)

Matrices (location)

Antibiotic classes:Active agents

Concentrations (ng L-1) Analytical methods

Analytical parameters (ng L-1)LOD LOQ

Macrolides:AZT; CTR; ERT; RXT

AZT=276-1,360; CTR=771-2,520; ERT=79-118; RXT=<LOQ 5.5

AZT=266-1,220; CTR=624-1,890; ERT=12-20; RXT=<LOQ

na AZT, CTR, ERT, RXT=0.05-50

Quinolones:FluoroquinolonesCPF; DIF; ENX; ERF; LMF; LVF; NOFOther quinoloneOXA

CPF=484-2,710; DIF=<LOQ; ENX=<LOQ-12-39; ERF=<LOQ-14; LMF=<LOQ; LVF=55-239; NOF=46-404; OXA=<LOQ

CPF=96-338; DIF=<LOQ; ENX=<LOQ-8; ERF=<LOQ-2.6; LMF=<LOQ; LVF=23-58; NOF=13-33; OXA=<LOQ

na CPF, DIF, ENX, ERF, LMF, LVF, NOF, OXA=0.05-50

Sulfonamides:SDM; ; SDZ; SMP; SMR; SMT; SMX; SMZ; SPD; SPN; SQN; SSL; STA; SXL; SXL

SDM=<LOQ; SDZ=<LOQ-18; SMP=<LOQ; SMR=<LOQ; SMT=28-57; SMX=51-320; SMZ=<LOQ; SPD=137-419; SPN=<LOQ; SQN=<LOQ-8.1; SSL=26-124; STA=<LOQ; SXL=<LOQ; SXL=<LOQ

SDM=<LOQ; SDZ=<LOQ; SMP=<LOQ; SMR=<LOQ; SMT=<LOQ; SMX=9.2-108; SMZ=<LOQ; SPD=15-120; SPN=<LOQ; SQN=<LOQ; SSL=7.5-124; STA=<LOQ; SXL=<LOQ; SXL=<LOQ

na SDM, , SDZ, SMP, SMR, SMT, SMX, SMZ, SPD, SPN, SQN, SSL, STA, SXL, SXL=0.05-50

Tetracyclines:DXC; OXT; TTC

DXC=12-48; OXT=<LOQ-9.1; TTC=<LOQ-22

DXC=<LOQ-7-8; OXT=<LOQ; TTC=<LOQ-3.1

na DXC, OXT, TTC=0.05-50

Spain(Boix et al. 2015)

WWTPE (Castellon; Valencia Provinces); SW

Diaminopyrimidine:TMT

Min-max WWTPE:TMT=nd-86

SW:TMT=nd-5

SPE-UHPLC-(QqQ-IT)MS/MS

TMT=1.8-2.3 na

Lincosamide:LCM

LCM=nd LCM=nd-12 LCM=0.1-0.4 na

Macrolides:CTR; ERT; RXT

CTR=nd-34; ERT=nd-55; RXT=nd

CTR=nd-34; ERT=nd-10; RXT=nd

CTR=2.9-4.1; ERT=0.8-2.1; RXT=5.4-5.6

na

Quinolones:Other quinolonesFMQ; NLA; OXA

FMQ=nd-7; NLA=nd-17; OXA=nd-5

FMQ=nd-3; NLA=nd-4; OXA=nd-5

FMQ=0.4-1.2; NLA=1.8-2.7; OXA=1.8-2.9

na

Sulfonamides:SDX; SDZ; SMX

SDX=nd; SDZ=nd-28; SMX=nd-372

SDX=nd; SDZ=nd; SMX=nd-25 SDX=0.2-0.5; SDZ=1.4-1.8; SMX=0.5-0.8

na

(Mendoza et al. 2015)

HWWTPE (Valencia)

Diaminopyrimidine:TMT

Min-max HWWTPE:TMT=1,596-4,791

SPE-LC-(QqQ-LIT)MS/MS

TMT=0.6 TMT=2.2

Macrolide:CTR

CTR=78-498 CTR=0.5 CTR=1.8

Quinolone:FluoroquinoloneOFX

OFX=1,547-4,778 OFX=3.7 OFX=12.5

Sulfonamides:SDZ; SMZ

SDZ=9-137; SMZ=nd SDZ=4.4; SMZ=4.9

SDZ=14.6; SMZ=16.6

Table S1. (Continuation).Study (Reference)

Matrices (location)

Antibiotic classes:Active agents

Concentrations (ng L-1) Analytical methods

Analytical parameters (ng L-1)LOD LOQ

(González et al. 2015)

SeaW (Mar Menor Lagoon; Mediterranean Sea)

Diaminopyrimidine:TMT

Max SeaW:TMT=<LOQ-1.5

SPE-UPLC-(QqQ-LIT)MS/MS

TMT=0.1 TMT=0.4

Macrolides:AZT; CTR; ERT

AZT=nd-163.8; CTR=nd-9.6; ERT=nd-78.4 AZT, CTR, ERT=3.3

AZT, CTR, ERT=11.2

Nitroimidazoles:DTZ; RND

DTZ, RND=nd DTZ=6.5; RND=0.6

DTZ=21.7; RND=2.1

Sulfonamide:SMX

SMX=nd-94 SMX=0.3 SMX=0.9

(Osorio et al. 2015)

RW (Llobregat, Ebro, Júcar, and Guadalquivir Rivers)

β-lactam: CephalosporinCLX

Min-max RW:CLX=nd-1.40

SPE-UPLC-(QqQ-LIT)MS/MS

CLX=0.24 CLX=0.80

Diaminopyrimidine:TMT

TMT=0.03-150.43 TMT=0.10 TMT=0.34

Macrolides:AZT; CTR; ERT

AZT=0.09-153.72; CTR=0.09-65.63; ERT=nd-18.58 AZT=0.05; CTR=0.05; ERT=0.13

AZT=0.18; CTR=0.17; ERT=0.44

Nitroimidazole:DTZ; MND; RND

DTZ=nd-47.41; MND=nd-65.93; RND=nd-7.72 DTZ=1.50; MND=0.57; RND=0.83

DTZ=4.90; MND=1.91; RND=2.76

Quinolones: FluoroquinolonesCPF; OFX

CPF=nd-0.10; OFX=nd-0.07 CPF=0.06; OFX=0.04

CPF=0.19; OFX=0.14

Sulfonamide:SMX

SMX=0.07-41.51 SMX=0.09 SMX=0.31

Tetracycline:TTC

TTC=5.92-27.4 TTC=3.55 TTC=11.83

(Climent et al. 2014)

WWTPI; WWTPE (Salt, Sarrià de Ter; Sant Julià a de Ramis;Aiguaviva; Vilablareix; Fornells de la Selva, Girona); HWWTPE (Dr. Josep Trueta Hospital); RW (Ter River)

Quinolone:FluoroquinoloneCPF

Min-max WWTPI:CPF=1,172-1,558

WWTPE:CPF=36-104

HWWTPE:3,089-14,826

RW:7-103

SPE-UPLC-(QqQ-LIT)MS/MS

CPF=0.6-2.4 CPF=2.0-8.2

(Collado et al. 2014)

WWTPI; WWTPE (Celrà, Catalonia); RW (Ter River)

β-lactam: CephalosporinCLX

Mean (WWTPI; WWTPE)Min-max (RW)

WWTPI:CLX=nd

WWTPE:CLX=nd

RW:CLX=nd

SPE-UPLC-(QqQ-LIT)MS/MS

CLX=1.1-8.0 CLX=3.8-26.8

Diaminopyrimidine:TMT

TMT=54 TMT=7 TMT=nd-9 TMT=0.6-7.1 TMT=2.0-20.0

Table S1. (Continuation).Study (Reference)

Matrices (location)

Antibiotic classes:Active agents

Concentrations (ng L-1) Analytical methods

Analytical parameters (ng L-1)LOD LOQ

Macrolides:AZT; CTR; ERT

AZT=129; CTR=100; ERT=15

AZT=143; CTR=99; ERT=18

AZT=nd-43; CTR=nd-19; ERT=nd-<LOQ

AZT=0.1-2.0; CTR=0.6-3.1; ERT=1.1-2.1

AZT=0.5-6.6; CTR=1.9-10.4; ERT=3.5-6.9

Nitroimidazole:DTZ; MND; RND

DTZ, MND, RND=nd

DTZ, MND, RND=nd

DTZ, MND, RND=nd

DTZ=4.4-20.0; MND=2.7-50.0; RND=2.5-17.0

DTZ=15.0-68.0; MND=8.5-70.0; RND=8.3-53.0

Quinolones: FluoroquinolonesCPF; OFX

CPF=392; OFX=128 CPF=176; OFX=118 CPF=nd-36; OFX=nd-33

CPF=5.5-10.0; OFX=0.6-3.7

CPF=18.3-35.0; OFX=1.8-12.1

Sulfonamide:SMX

SMX=70 SMX=10 SMX=nd-16 SMX=2.0-7.1 SMX=6.5-23.7

Tetracycline:TTC

TTC=nd TTC=nd TTC=nd TTC=7.0-26.0 TTC=23.0-60.0

(González et al. 2014)

RW (El Albujón River)

Diaminopyrimidine:TMT

Min-max RW:TMT=1.1-24.8

SPE-UPLC-(QqQ-LIT)MS/MS

na TMT=0.1-30

Macrolides:AZT; CTR; ERT

AZT=nd-16,633; CTR=nd-2,403; ERT=nd-65.1 na AZT, CTR, ERT=0.1-30

Nitroimidazole:DTZ; MND

DTZ=nd-28; MND=nd-<LOQ na DTZ, MND=0.1-30

Sulfonamide:SMX

SMX=1.1-65.2 na SMX=0.1-30

(Molina et al. 2014)

RW (Guadalquivir and tributaries Rivers); WLW (Santisteban; Ardal; Casillas; Castillo; Orcera; Hituelo; Quinta; Perales; Naranjeros y Rompisaco; Argamasilla); ResW (Giribaile; Quiebrajano; Rumblar La Fernandina; Guadalén)

Amphenicols:CRP; TAP

Max RW:CRP, TAP=nd

WLW:CRP, TAP=nd

ResW:CRP, TAP=nd

SPE-LC-(TOF)MS na na

β-lactams: CephalosporinCTXPenicillins CXC; DXC; OXC; PNG

CTX, CXC, DXC, OXC, PNG=nd

CTX, CXC, DXC, OXC, PNG=nd

CTX, CXC, DXC, OXC, PNG=nd

na na

Diaminopyrimidine:TMT

TMT=nd TMT=nd TMT=nd TMT=1.7 TMT=5.7

Lincosamide:LCM

LCM=2,694.5 LCM=nd LCM=nd-15.9 LCM=0.3 LCM=0.9

Macrolides:CTR; ERT; RXT; TLS

CTR, ERT, RXT, TLS=nd

CTR, ERT, RXT, TLS=nd

CTR=nd; ERT=nd-249.7; RXT=nd; TLS=nd

CTR=na; ERT=6.0; RXT=na; TLS=na

CTR=na; ERT=20.0; RXT=na; TLS=na

Nitroimidazole:MND

MND=nd MND=nd MND=nd na na

Table S1. (Continuation).Study (Reference)

Matrices (location)

Antibiotic classes:Active agents

Concentrations (ng L-1) Analytical methods

Analytical parameters (ng L-1)LOD LOQ

Quinolones:FluoroquinolonesDNF; ENX; ERF; LMF; NOF ; OFX; SRFOther quinolonesFMQ; OXA; SPR

DNF, ENX, ERF, LMF, NOF , OFX, SRF, FMQ, OXA, SPR=nd

DNF, ENX, ERF, LMF, NOF , OFX, SRF, FMQ, OXA, SPR=nd

DNF, ENX, ERF, LMF, NOF , OFX, SRF, FMQ, OXA, SPR=nd

na na

Sulfonamides:SCP; SDM; SDZ; SMR; SMT; SMX; SNL; SPD; STA

SCP, SDM, SDZ, SMR, SMT, SMX, SNL, SPD, STA=nd

SCP, SDM, SDZ, SMR, SMT, SMX, SNL, SPD, STA=nd

SCP, SDM, SDZ, SMR, SMT, SMX, SNL, SPD, STA=nd

na na

Tetracyclines:CTC; DXC; DMC; OXT; TTC

CTC, DXC, DMC, OXT, TTC=nd

CTC, DXC, DMC, OXT, TTC=nd

CTC, DXC, DMC, OXT, TTC=nd

na na

(Boleda et al. 2013)

RW (Llobregat River, Catalonia); WTPE

β-lactam: Penicillin AMX

Min-max RW:AMX=nd

WTPE:AMX=nd

SPE-UPLC-(QqQ)MS/MS

na AMX=110-115

Diaminopyrimidine:TMT

TMT=nd-81 TMT=nd na TMT=0.9-1.1

Lincosamide:LCM

LCM=nd LCM=nd na LCM=0.9

Macrolides:AZT; CTR ; ERT; RXT; TLS

AZT=nd-18; CTR=2-54; ERT=0.8-40; RXT=nd; TLS=nd

AZT=nd; CTR=nd; ERT=nd-2; RXT=nd; TLS=nd

na AZT=0.9-1.0; CTR=0.2; ERT=0.2; RXT=0.2;

Sulfonamides:SDM; SMX; SMZ

SDM=nd-43; SMX=13-149; SMZ=nd-113

SDM, SMX, SMZ=nd na SDM=0.8; SMX=1.0-1.1; SMZ=0.7

Tetracyclines:CTC; TTC

CTC, TTC=nd CTC, TTC=nd na CTC=230-240; TTC=105-110

(Gros et al. 2013)

WWTPI; WWTPE (Girona); HWWTPE (Dr. Josep Trueta Hospital); RW (Onyar River)

β-lactams: Cephalosporins CLX; CPR; CRX; CTF; CTX; CZL Penicillins AMP; AMX; OXC; PNG; PNV

Min-max WWTPI:CLX, CPR, CRX, CTF, CTX, CZL, AMP, AMX, OXC, PNG, PNV=nd

WWTPE:CLX=nd; CPR=nd; CRX=nd; CTF=nd; CTX=nd; CZL=nd; AMP=nd; AMX=nd-258; OXC=nd; PNG=nd; PNV=nd

HWWTPE:CLX, CPR, CRX, CTF, CTX, CZL, AMP, AMX, OXC, PNG, PNV=nd

RW:CLX=nd; CPR=nd; CRX=nd; CTF=nd; CTX=nd; CZL=nd; AMP=nd; AMX=nd-175; OXC=nd; PNG=nd; PNV=nd

SPE-UHPLC-(QqQ-LIT)MS/MS

CLX=0.77-4.32; CPR=2.37-18.54; CRX=5.48-26.90; CTF=1.26-8.31; CTX=2.82-22.52; CZL=13.37-54.11; AMP=0.83-4.56; AMX=1.32-9.49; OXC=34.63-49.43; PNG=2.55-8.62; PNV=5.37-22.82

CLX=2.56-14.41; CPR=7.90-61.80; CRX=18.27-89.67; CTF=4.19-27.71; CTX=9.41-75.06; CZL=44.58-180.37; AMP=2.76-15.20; AMX=4.38-31.63; OXC=115.43-164.75; PNG=8.51-28.73; PNV=17.89-76.08

Table S1. (Continuation).Study (Reference)

Matrices (location)

Antibiotic classes:Active agents

Concentrations (ng L-1) Analytical methods

Analytical parameters (ng L-1)LOD LOQ

Diaminopyrimidine:TMT

TMT=<LOQ-108

TMT=<LOQ-178

TMT=50-216 TMT=nd-28 TMT=1.71-11.50 TMT=5.70-38.34

Lincosamide:CDM; LCM

CDM=14-37; LCM=nd

CDM=18-57; LCM=nd-100

CDM=184-1,465; LCM=nd-119

CDM=2.0-25; LCM=nd

CDM=0.48-4.89; LDM=6.04-17.82

CDM=1.61-16.29; LDM=20.15-59.40

Macrolides:AZT; CTR; RXT; SPR; TLS; TMC

AZT=nd-437; CTR=185-632; RXT=nd-<LOQ; SPR=nd; TLS=nd; TMC=nd

AZT=184-592; CTR=172-229; RXT=nd; SPR=nd; TLS=nd; TMC=nd

AZT=85-113; CTR=113-973; RXT=nd; SPR=nd; TLS=nd; TMC=nd

AZT=10-130; CTR=15-125; RXT=2.0-5.0; SPR=nd; TLS=nd; TMC=nd

AZT=0.61-4.63; CTR=0.35-16.64; RXT=0.31-8.71; SPR=3.99-26.41; TLS=2.37-34.00; TMC=3.73-17.82

AZT=2.05-15.45; CTR=1.18-55.47; RXT=1.04-29.04; SPR=13.29-88.05; TLS=7.90-113.35; TMC=12.44-59.39

Nitroimidazole:MND

MND=17-83 MND=28-316 MND=67-643 MND=25-28 MND=0.43-6.49 MND=1.44-21.64

Quinolones:FluoroquinolonesCPF; DNF; ERF; MBF; NOF; OBF; OFXOther quinolonesCNO; FMQ; NLA; OXA; PPA

CPF=185-613; DNF=nd; ERF=nd-52; MBF=nd-39; NOF=nd-327; OBF=nd; OFX=73-524; CNO=nd; FMQ=nd-<LOQ; NLA=nd; OXA=nd; PPA=nd

CPF=nd-147; DNF=nd; ERF=nd-58; MBF=nd-96; NOF=nd-385; OBF=nd; OFX=63-101; CNO=nd; FMQ=nd-<LOQ; NLA=nd; OXA=nd; PPA=nd-<LOQ

CPF=5,329-7,494; DNF=nd; ERF=nd; MBF=nd; NOF=nd-107; OBF=nd; OFX=2,978-10,368; CNO=nd; FMQ=nd-<LOQ; NLA=<LOQ; OXA=nd; PPA=nd

CPF=nd-250; DNF=nd; ERF=nd-30; MBF=nd; NOF=nd-30; OBF=nd; OFX=15-55; CNO=nd; FMQ=10-15; NLA=nd; OXA=nd; PPA=nd

CPF=1.71-13.58; DNF=11.93-47.43; ERF=0.54-8.42; MBF=2.23-4.31; NOF=2.53-77.71; OBF=0.65- .82; OFX=2.54-15.70; CNO=1.80-15.64; FMQ=0.73-4.25; NLA=1.71-10.56; OXA=2.45-19.60; PPA=3.31-16.87

CPF=5.70-34.51 DNF=39.78-158.11; ERF=1.81-28.06; MBF=7.45-14.37; NOF=8.44-272.50; OBF=2.17-12.75; OFX=8.47-52.32; CNO=6.00-40.83; FMQ=2.44-14.15; NLA=5.71-35.19; OXA=8.15-65.34; PPA=7.40-56.24

Sulfonamides:SBZ; SDM; SDZ; SMP; SMR; SMT; SMX; SNT; SPD; SSD; SSX; STA

SBZ=nd; SDM=nd; SDZ=nd; SMP=nd; SMR=nd; SMT=nd; SMX=43-528; SNT=nd; SPD=<LOQ-159; SSD=nd; SSX=nd; STA=nd

SBZ=nd; SDM=nd; SDZ=nd; SMP=nd; SMR=nd; SMT=nd; SMX=19-198; SNT=nd; SPD=nd-98; SSD=nd; SSX=nd; STA=nd

SBZ=nd; SDM=nd; SDZ=nd; SMP=nd; SMR=nd; SMT=nd; SMX=65-200; SNT=nd; SPD=nd-<LOQ; SSD=nd; SSX=nd; STA=nd

SBZ=nd; SDM=nd-2; SDZ=nd; SMP=nd; SMR=nd; SMT=nd; SMX=10-45; SNT=nd; SPD=nd-25; SSD=nd; SSX=nd-5; STA=nd

SBZ=0.75-3.06; SDM=0.41-16.17; SDZ=3.35- 1.25; SMP=0.81-7.97; SMR=2.37-19.24; SMT=5.16-18.00; SMX=1.39-8.07; SNT=5.16-16.86; SPD=1.82-4.33; SSD=5.16-17.58; SSX=0.87-6.62; STA=2.03-14.40

SBZ=2.50-10.21; SDM=1.38-53.90; SDZ=11.16-37.49; SMP=2.69-26.56; SMR=7.90-64.14; SMT=17.21-51.82; SMX=2.60-26.88; SNT=17.20-56.21; SPD=6.00-14.43; SSD=17.21-51.82; SSX=2.90-22.08; STA=6.70-48.00

Table S1. (Continuation).Study (Reference)

Matrices (location)

Antibiotic classes:Active agents

Concentrations (ng L-1) Analytical methods

Analytical parameters (ng L-1)LOD LOQ

Tetracyclines:CTC; DXC; OXT; TTC

CTC=nd; DXC=nd; OXT=nd; TTC=nd-<LOQ

CTC=nd; DXC=nd; OXT=nd; TTC=nd-<LOQ

CTC, DXC, OXT, TTC=nd

CTC, DXC, OXT, TTC=nd

CTC=11.20-24.02; DXC=9.79-77.49; OXT=3.75-6.01; TTC=4.72-24.30

CTC=37.35-80.06; DXC=37.43-258.29; OXT=12.51-20.05; TTC=15.72-81.00

(Iglesias et al. 2013)

RW (Miño River, Galician)

Diaminopyrimidine:TMT

Min-max RW:TMT=1.1-85.4

SPE-HPLC-MS/MS TMT=0.2 TMT=0.5

Sulfonamides:SMP; SMX

SMP=0.5-11.2; SMX=0.5-63.6 SMP=0.1; SMX=0.2

SMP, SMX=0.5

(Cabeza et al. 2012)

WWTPE (Depurbaix); GW (Llobregat River Aquifer)

Macrolide:ERT

Mean WWTPE:ERT=24-39

GW:ERT=nd-154.33

LC-(Q-IT)MS/MS na na

Quinolones:FluoroquinolonesCPF; OFX

CPF=nd-52; OFX=158-341 CPF=14-323.75; OFX=nd-6 na na

Sulfonamides:SMX; SMZ; SPD

SMX=56-102.25; SMZ=3-74.33; SPD=21-54

SMX=9-46; SMZ=23.16-83.9; SPD=16.5-21.33

na na

(Galán et al. 2012)

WWTPI; WWTPE (22 locations Catalonia)

Sulfonamides:SBZ; SDM; SDX; SDZ; SMP; SMR; SMT; SMX; SMZ; SNT; SPD; SQN; SSD; SSX; STA

Min-max WWTPI:SBZ=0.4-1.17; SDM=0.35-4.92; SDX=nd-1; SDZ=49.1-1,240; SMP=39.6-518; SMR=2.13-7.37; SMT=2.92-33.7; SMX=17.4-665; SMZ=3.36-145; SNT=32.1-62.3; SPD=12.2-3,270; SQN=3.81-210; SSD=nr; SSX=0.607-2.87; STA=7.31-142

WWTPE:SBZ=nd-29.9; SDM=0.08-1.58; SDX=0.1-0.47; SDZ=8.75-286; SMP=0.223-47; SMR=0.205-1.93; SMT=1.06-70.7; SMX=10.8-284; SMZ=0.458-36.4; SNT=17-512; SPD=3.35-177; SQN=0.246-14.6; SSD=1.7-6.52; SSX=0.3-1.18; STA=0.7-73

SPE-LC-(QqQ-LIT)MS/MS

SBZ=0.01-0.20; SDM=0.01-0.02; SDX=0.11-0.16; SDZ=0.40-1.38; SMP=0.08-0.71; SMR=0.12-0.61; SMT=0.16-0.57; SMX=0.16-0.19; SMZ=0.19-2.35; SNT=0.06-0.26; SPD=0.24-0.98; SQN=0.04-0.15; SSD=nr-0.05; SSX=0.13-0.18; STA=0.21-0.24

SBZ=0.03-0.66; SDM=0.02-0.08; SDX=0.38-0.54; SDZ=1.32-4.58; SMP=0.27-2.38; SMR=0.39-2.05; SMT=0.53-1.91; SMX=0.54-0.64; SMZ=0.62-7.83; SNT=0.20-0.86; SPD=0.79-3.27; SQN=0.14-0.49; SSD=nr-0.18; SSX=0.44-0.60; STA=0.69-0.81

(Gros et al. 2012)

WWTPI; WWTPE (Girona, Catalonia); RW (Onyar and Ter Rivers); ResW (Foix); DW (Girona, Catalonia); SeaW (Mediterranean Sea)

β-lactam:Cephalosporin CLX

Min-max WWTPI:CLX=nd

WWTPE:CLX=nd

RW:CLX=nd

ResW:CLX=nd

DW:CLX=nr

SeaW:CLX=nr

SPE-UPLC-(QqQ-LIT)MS/MS

CLX=nr-8.0 CLX=nr-35.0

Diaminopyrimidine:TMT

TMT=11-204

TMT=nd-100

TMT=3-9

TMT=nd

TMT=nd TMT=1 TMT=0.1-7.1 TMT=0.3-20.0

Table S1. (Continuation).Study (Reference)

Matrices (location)

Antibiotic classes:Active agents

Concentrations (ng L-1) Analytical methods

Analytical parameters (ng L-1)LOD LOQ

Macrolides:AZT; CTR; ERT

AZT=44-205; CTR=55-459; ERT=35-63

AZT=20-170; CTR=<LOQ-192; ERT=<LOQ-17

AZT=1-41; CTR=<LOQ-59; ERT=nd-<LOQ

AZT, CTR, ERT=nd

AZT=<LOQ; CTR=nd; ERT=nd

AZT=<LOQ; CTR=17; ERT=nd

AZT=0.1-2.0; CTR=0.4-3.1; ERT=0.2-2.1

AZT=0.5-6.6; CTR=1.3-10.4; ERT=0.5-6.9

Nitroimidazoles:DTZ; MND; RND

DTZ=nd; MND=152; RND=nd

DTZ=nd; MND=121; RND=nd

DTZ, MND, RND=nd

DTZ, MND, RND=nd

DTZ=nd; MND=nr; RND=nd

DTZ, MND, RND=nd

DTZ=1.0-20.0; MND=nr-50.0; RND=0.5-17.0

DTZ=2.8-68.0; MND=nr-70.0; RND=1.8-53.0

Quinolones:FluoroquinolonesCPF; OFX

CPF=230-252; OFX=202-309

CPF=87-245; OFX=169-191

CPF=<LOQ-23; OFX=20-33

CPF=nd; OFX=6

CPF, OFX=nr

CPF=nr; OFX=2

CPF=nr-10.0; OFX=nr-3.7

CPF=nr-35.0; OFX=nr-12.1

Sulfonamide:SMX

SMX=nd-768

SMX=nd-222

SMX=10-79

SMX=4 SMX=0.5

SMX=9 SMX=0.1-7.1 SMX=0.3-23.7

Tetracycline:TTC

TTC=nd TTC=nd TTC=nd-<LOQ

TTC=nd TTC=nd TTC=nd TTC=7.0-26.0 TTC=20.0-60.0

(Lor et al. 2012) WWTPI; WWTPE (Castellon de la Plana; Benicassim; Burriana)

Amphenicol:CRP

Min-max WWTPI:CRP=nd

WWTPE:CRP=nd

SPE-UHPLC-(QqQ)MS/MS

na CRP=20-30

Diaminopyrimidine:TMT

TMT=60-160 TMT=60-100 na TMT=10-40

Lincosamide:CDM; LCM

CDM=nd; LCM =100-880 CDM=10-20; LCM=10-160 na CDM=6-40; LCM=2-10

Macrolides:CTR; ERT; RXT; TLS

CTR=130-620; ERT=nd; RXT=nd; TLS=nd

CTR=10-60; ERT=50-120; RXT=<LOQ; TLS=nd

na CTR=3-10; ERT=8-20; RXT=20-30; TLS=2-10

Quinolones:FluoroquinolonesCPF; ERF; MBF; MXF; NOF; OFX; PEF; SRF Other quinolonesFMQ; NLA; OXA; PPA

CPF=1,210–3,850; ERF=nd; MBF=nd; MXF=nd; NOF=290-1,070; OFX=290-960; PEF=nd; SRF=nd; FMQ=nd; NLA=nd; OXA=nd; PPA=<LOQ-540

CPF=520-1,080; ERF=nd; MBF=nd; MXF=120-180; NOF=90-150; OFX=330-500; PEF=nd; SRF=nd; FMQ=nd; NLA=nd; OXA=nd; PPA=<LOQ-120

na CPF=50-320; ERF=20-40; MBF=110-120; MXF=110-330; NOF=30-160; OFX=10; PEF=50-80; SRF=30-40; FMQ=10-60; NLA=6-20; OXA =10-20; PPA=90-210

Table S1. (Continuation).Study (Reference)

Matrices (location)

Antibiotic classes:Active agents

Concentrations (ng L-1) Analytical methods

Analytical parameters (ng L-1)LOD LOQ

Sulfonamides:SDZ; SMX; SMZ; STA

SDZ=nd; SMX =220-640; SMZ=nd; STA=60-70

SDZ=nd; SMX =40-60; SMZ=nd; STA=nd

na SDZ=50-80; SMX=10-20; SMZ=1-3; STA=10-40

(Osorio et al. 2012)

RW (LlobregatRiver)

Amphenicol:CRP

Min-max RW:CRP=nd-1.36

SPE-LC-(QqQ-LIT)MS/MS

na na

Diaminopyrimidine:TMT

TMT=nd-35.56 na na

Macrolides:AZT; CTR; ERT; JSM; RXT; SPR; TLS; TMC

AZT=nd-37.46; CTR=nd-232.13; ERT=0.02-362.49; JSM=0.01-11.09; RXT=nd-8.11; SPR=0.04-152.09; TLS=nd-30.27; TMC=nd-95.77

na na

Nitroimidazoles:MND

MND=nd-48.8 na na

Quinolones:FluoroquinolonesCPF; DNF; ENX; ERF; NOF; OFX

CPF=0.56-271.04; DNF=nd-279.89; ENX=nd-279.19; ERF=nd-313.21; NOF=0.73-404.8; OFX=nd-488.38

na na

Sulfonamides:SDZ; SMX; SMZ

SDZ=0.06-106.67; SMX=0.21-1,500; SMZ=nd-280.9 na na

Tetracyclines:CTC; DXC; OXT; TTC

CTC=<LOQ-11.23; DXC=nd-18.16; OXT=nd-81.6; TTC=nd-712.4 na na

(Roig et al. 2012)

RW (Pego–Oliva Marsh)

Diaminopyrimidine:TMT

Min-max RW:TMT=nd-2.97

SPE-LC-(QqQ)MS/MS

na na

Quinolones:FluoroquinolonesCPF; NOF; OFX

CPF=nd-34.6; NOF=nd-37.16; OFX=nd-50.19 na CPF=12; NOF=9.6; OFX=8.1

Sulfonamide:SMX

SMX=nd-15.58 na SMX=0.9

Tetracyclines:OXT; TTC

TTC, OXT=nd na TTC=10; OXT=9.4

(Serna et al. 2012)

RW (Ebro River and tributaries)

Amphenicol:CRP

Min-max RW:CRP=nd

SPE-LC-(QqQ)MS/MS

CRP=<10 na

Diaminopyrimidine:TMT

TMT=nd-59.9 TMT=<10 na

Macrolides:AZT; CTR; JSM; RXT

AZT=nd-41.1; CTR=6.12-141; JSM=nd; RXT=nd AZT, CTR, JSM, RXT

na

Nitroimidazole:MND

MND=nd-<LOQ MND=<10 na

Quinolones:FluoroquinolonesCPF; DNF; ENX; NOF; OFXOther quinolone:FMQ

CPF=nd-<LOQ; DNF=nd-<LOQ; ENX=nd-<LOQ; NOF=nd; OFX=nd-79.9; FMQ=nd-<LOQ

CPF, DNF, ENX, NOF, OFX, FMQ=<10

na

Table S1. (Continuation).Study (Reference)

Matrices (location)

Antibiotic classes:Active agents

Concentrations (ng L-1) Analytical methods

Analytical parameters (ng L-1)LOD LOQ

Sulfonamides:SDZ; SMX; SMZ

SDZ=<LOQ-136; SMX=nd-17.2; SMZ=nd-641 SDZ, SMX, SMZ=<10

na

(Galán et al. 2011)

RW (Ebro River) Sulfonamides:SBZ; SDM; SDX; SDZ; SMP; SMR; SMT; SMX; SMZ; SNT; SPD; SQN; SSD; SSX; STA

Min-max RW:SBZ=1.8–14.6; SDM=0.5–23.1; SDX=2.7–43.3 ; SDZ=0.7–6.4; SMP=0.6–18.1; SMR=1-42.2; SMT=2.3–4.6; SMX=0.2–35.6; SMZ=2.5–65.2; SNT=nd–127; SPD=0.1–42.5; SQN=4.5–40.4; SSD=1-40.4; SSX=0.1–12.5; STA=1.5–9.6

SPE-LC-(QqQ-LIT)MS/MS

SBZ=0.05; SDM=0.13; SDX=0.21; SDZ=0.39; SMP=0.11; SMR=1.53; SMT=0.37; SMX=1.11; SMZ=0.12; SNT=0.46; SPD=0.27; SQN=0.59; SSD=0.10; SSX=0.51; STA=0.23

SBZ=0.15; SDM=0.45; SDX=0.69; SDZ=1.29; SMP=0.38; SMR=5.11; SMT=1.24; SMX=3.69; SMZ=0.40; SNT=1.53; SPD=0.91; SQN=1.97; SSD=0.32; SSX=1.71; STA=0.77

(Lor et al. 2011) WWTPE; SW (Castellon; Valencia)

Amphenicol:CRP

Max WWTPE:CRP=nd

SW:CRP=nd

SPE-UHPLC-(QqQ)MS/MS

na CRP=7-19

Diaminopyrimidine:TMT

TMT=232 TMT=151 na TMT=2-9

Lincosamide:CDM; LCM

CDM=nd; LCM=142 CDM=nd; LCM=47 na CDM=1-6; LCM=2-2

Macrolides:CTR; ERT; RXT; TLS

CTR=247; ERT=82; RXT=18; TLS=nd

CTR=91; ERT=78; RXT=12; TLS=nd

na CTR=2-3; ERT=0.4-8; RXT=2-17; TLS=0.7-2

Quinolones:FluoroquinolonesCPF; ERF; MBF; MXF; NOF; OFX; PEF; SRF Other quinolonesFMQ; NLA; OXA; PPA

CPF=2,292; ERF=220; MBF=540; MXF=nd; NOF=310; OFX=925; PEF=112; SRF=52; FMQ=41; NLA=60; OXA=nd; PPA=430

CPF=740; ERF=70; MBF=205; MXF=nd; NOF=54; OFX=400; PEF=64; SRF=55; FMQ=20; NLA=14; OXA=23; PPA=245

na CPF=18-46; ERF=9-21; MBF=19-110; MXF=55-114; NOF=11-25; NOF=2-13; PEF=13-50; SRF=10-25; FMQ=2-9; NLA=3-6; OXA=2-10; PPA=36-91

Table S1. (Continuation).Study (Reference)

Matrices (location)

Antibiotic classes:Active agents

Concentrations (ng L-1) Analytical methods

Analytical parameters (ng L-1)LOD LOQ

Sulfonamides:SDZ; SMX; SMZ; STA

SDZ=nd; SMX=432; SMZ=11; STA=30

SDZ=nd; SMX=33; SMZ=nd; STA=nd

na SDZ=4-45; SMX=3-13; SMZ=0.5-0.8; STA=2-9

(Serna et al. 2011)

RW (Ebro River) Amphenicol:CRP

Min-max RW:CRP=<LOQ

SPE-UHPLC-(QqQ)MS/MS

CRP=0.13 CRP=0.43

Diaminopyrimidine:TMT

TMT=<LOQ-29.90 TMT=0.11 TMT=0.38

Macrolides:AZT; CTR; ERT; JSM; RXT; SPR ; TLS; TMC

AZT=<LOQ-36.70; CTR=<LOQ-36.93; ERT=<LOQ-51.60; JSM=<LOQ-0.52; RXT=<LOQ-0.32; SPR=<LOQ-488.0; TLS=<LOQ-0.77; TMC=<LOQ-227.0

AZT=2.29; CTR=0.74; ERT=8.36; JSM=0.69; RXT=0.48; SPR=3.38; TLS=9.41; TMC=0.15

AZT=7.65; CTR=2.48; ERT=27.87; JSM=2.28; RXT=1.59; SPR=11.27; TLS=31.37; TMC=0.50

Nitroimidazole:MND

MND=nd-30.20 MND=0.64 MND=2.14

Quinolones:FluoroquinolonesCPF; DNF; ENX; ERF; NOFOFXOther quinoloneFMQ

CPF=<LOQ-115.0; DNF=<LOQ-207.0; ENX=<LOQ-140.0; ERF=13.10-178.0; NOF=<LOQ-89.80; OFX=4.84-105.0; FMQ=<LOQ-30.29

CPF=7.95; DNF=1.17; ENX=53.97; ERF=17.17; NOF=38.01; OFX=1.51 FMQ=1.03

CPF=26.51; DNF=3.89; ENX=179.89; ERF=57.22; NOF=126.68; OFX=5.05; FMQ=3.42

Sulfonamides:SDZ; SMX; SMZ

SDZ=<LOQ-23.48; SMX=<LOQ-55.01; SMZ=<LOQ SDZ=0.41; SMX=0.97; SMZ=1.10

SDZ=1.36; SMX=3.23; SMZ=3.66

Tetracyclines:CTC; DXC; OXT; TTC

CTC=<LOQ-59.30; DXC=<LOQ-47.70; OXT=<LOQ-37.10; TTC=<LOQ-228.0

CTC=2.40; DXC=1.39; OXT=3.60; TTC=1.43

CTC=7.99; DXC=4.63; OXT=12.01; TTC=4.77

(Silva et al. 2011)

WWTPE (Tudela; Lleida; Logroño; Zaragoza; Tudela; Pamplona; Tortosa); RW (Ebro River)

Amphenicol:CRP

Min-max WWTPE:CRP=nd

RW:CRP=nd-<LOQ

SPE-LC-(QqQ-LIT)MS/MS

CRP=0.02-0.66 CRP=0.1-2

Diaminopyrimidine:TMT

TMT=16.4-249 TMT=nd-29.9 TMT=0.2-0.4 TMT=0.8-1

Macrolides:CTR; ERT; JSM; RXT; TLS

CTR=19.8-212; ERT=nd-24.5; JSM=nd-18.9; RXT=nd-63.8; TLS=nd-266.9

CTR=<LOQ-36.9; ERT=nd-42.4; JSM=nd-0.52; RXT=nd; TLS=nd-<LOQ

CTR=0.5-4; ERT=0.4-1.8; JSM=1; RXT=0.5-1;TLS=1-2

CTR=2-15; ERT=0.6-6; JSM=2-5; RXT=2; TLS=4

Table S1. (Continuation).Study (Reference)

Matrices (location)

Antibiotic classes:Active agents

Concentrations (ng L-1) Analytical methods

Analytical parameters (ng L-1)LOD LOQ

Nitroimidazole:MND

MND=20.4-138 MND=nd-30.2 MND=0.3-0.7 MND=1-2

Sulfonamides:SDZ; SMZ

SDZ=nd; SMZ=nd-26.8 SDZ=nd-<LOQ; SMZ=nd-<LOQ SDZ=0.4-2; SMZ=0.8-1

SDZ=2-5; SMZ=1.6-3

(Valcárcel et al. 2011)

RW (Jarama, Manzanares, Guadarrama,Henares, and Tagus Rivers)

Diaminopyrimidine:TMT

Min-max RW:TMT=38-690

SPE-LC-(Q-IT)MS/MS

na TMT=2

Macrolides:AZT; CTR; ERT

AZT=<LOQ-569; CTR=132-1,727; ERT=<LOQ-3,847 na AZT=13; CTR=6; ERT=1

Nitroimidazole:MND

MND=<LOQ-1,834 na MND=3

Quinolones:FluoroquinolonesCPF; NOF; OFX

CPF=<LOQ-224; NOF=<LOQ; OFX=<LOQ-552 na CPF=6; NOF=10; OFX=3

Sulfonamide:SMX

SMX=32-952 na SMX=1

Tetracycline:TTC

TTC=<LOQ na TTC=23

(Galán, Cruz, et al. 2010)

WWTPI; WWTPE (Catalonia); RW (Ebro River); GW (Catalonia)

Sulfonamides:SBZ; SCT; SDM; SDX; SDZ; SGD; SMP; SMR; SMT; SMX; SMZ; SNT; SPD; SQN; SSD; SSX; STA

Min-max WWPI:SBZ=nd; SCT=nd; SDM=nd-20.1; SDX=nd-<LOQ; SDZ=nd-181; SGD=nd-<LOQ; SMP=nd; SMR=nd; SMT=nd-247; SMX=nd-89; SMZ=nd; SNT=nd-<LOQ; SPD=<LOQ-855; SQN=nd; SSD=nd; SSX=nd<LOQ; STA=nd-37.5

WWTPE:SBZ=nd-<LOQ; SCT=nd; SDM=nd-10; SDX=nd-<LOQ; SDZ=nd-104; SGD=nd-1.88; SMP=nd; SMR=nd-34.6; SMT=nd-<LOQ; SMX=12.4-302; SMZ=nd-18; SNT=nd; SPD=<LOQ-133; SQN=nd-<LOQ; SSD=nd-<LOQ; SSX=nd-8.17; STA=nd-9.21

RW:SBZ=nd-1.78; SCT=nd; SDM=nd-18.01; SDX=nd-20.00; SDZ=nd; SGD=nd; SMP=nd-15.50; SMR=nd-15.50; SMT=nd-2.65; SMX=nd-32.20; SMZ=nd-20.10; SNT=nd; SPD=0.16-11.20; SQN=nd-20.80; ; SD=nd-3.70; SSX=nd-12.50; STA=nd-13.90

GW:SBZ=nd-3.41; SCT=nd-<LOQ; SDM=nd-1.65; SDX=nd-4.48; SDZ=nd-0.81; SGD=nd; SMP=nd-0.77; SMR=nd-3.22; SMT=nd-<LOQ; SMX=nd-63.90; SMZ=nd-3.71; SNT=nd-0.82; SPD=nd-1.11; SQN=nd-1.17; SSD=nd-1.89; SSX=nd-<LOQ; STA=nd

SPE-LC-(Q-IT)MS/MS

SBZ=0.05-0.41; SCT=4.06-6.90; SDM=0.01-0.16; SDX=0.02-0.19; SDZ=0.18-1.12; SGD=1.01-12.00; SMP=0.03-0.14; SMR=0.12-0.25; SMT=1.04-4.52; SMX=0.77-1.14; SMZ=0.04-0.40; SNT=0.03-0.56; SPD=0.02-0.32; SQN=0.02-0.55; SSD=0.03-0.13; SSX=0.31-2.15; STA=0.21-0.45

SBZ=0.17-1.38; SCT=13.50-23.00; SDM=0.02-0.54; SDX=0.08-0.63; SDZ=0.59-3.72; SGD=3.37-40.00; SMP=0.09-0.47; SMR=0.40-0.83; SMT=3.47-15.10; SMX=2.55-3.79; SMZ=0.13-1.33; SNT=0.10-1.87; SPD=0.05-1.08; SQN=0.08-1.83; SSD=0.11-0.43; SSX=1.03-7.16; STA=0.70-1.48

Table S1. (Continuation).Study (Reference)

Matrices (location)

Antibiotic classes:Active agents

Concentrations (ng L-1) Analytical methods

Analytical parameters (ng L-1)LOD LOQ

(Galán, Garrido, et al. 2010)

GW (La Plana de Vic; La Selva)

Sulfonamides:SBZ; SCT; SDM; SDX; SDZ; SGD; SMP; SMR; SMT; SMX; SMZ; SNT; SPD; SQN; SSD; SSX; STA

Min-max GW:SBZ=0.09-10.32; SCT=1.77-3,461; SDM=0.01-91.48; SDX=0.02-53.63; SDZ=0.14-6.98; SGD=3.30-91.78; SMP=0.02-68.70; SMR=0.11-744.7; SMT=0.22-9.29; SMX=0.08-312.2; SMZ=0.03-106.8; SNT=0.04-568.8; SPD=0.07-72.45; SQN=0.01-112.1; SSD=0.01-64.40; SSX=0.21-4.43; STA=0.01-16.78

SPE-LC-(QqQ-LIT)MS/MS

SBZ=0.019; SCT=8.876; SDM=0.039; SDX=0.019; SDZ=0.021; SGD=0.796; SMP=0.036; SMR=0.086; SMT=0.366; SMX=0.050; SMZ=0.034; SNT=0.058; SPD=0.023; SQN=0.016; SSD=0.012; SSX=0.049; STA=0.005

SBZ=0.062; SCT=29.586; SDM=0.131; SDX=0.064; SDZ=0.069; SGD=2.653; SMP=0.118; SMR=0.286; SMT=1.221; SMX=0.167; SMZ=0.113; SNT=0.195; SPD=0.077; SQN=0.055; SSD=0.042; SSX=0.140; STA=0.018

(Galán, Villagrasa, et al. 2010)

RW (Llobregat and Anoia Rivers)

Sulfonamides:SDM; SDZ; SMP; SMT; SMX; SMZ; SPD; SSX; STA

Min-max RW:SDM=nd-136.0; SDZ=nd->5,000; SMP=nd->5,000; SMT=nd-10.3; SMX=nd-652.7; SMZ=nd->5,000; SPD=nd->5,000; SSX=nd-24.7; STA=nd-960.6

SPE-LC-(QqQ-LIT)MS/MS

SDM=0.11; SDZ=0.05; SMP=0.05; SMT=0.21; SMX=0.17; SMZ=0.22; SPD=0.16; SSX=0.06; STA=0.13

SDM=0.37; SDZ=0.17; SMP=0.17; SMT=0.70; SMX=0.57; SMZ=0.73; SPD=0.53; SSX=0.20; STA=0.43

(Muñoz et al. 2010)

WWTPE; RW (Doñana Natural Park)

Sulfonamides:SMX

Min-max WWTPE:SMX=nd-1,620

RW:SMX=nd

SPE-HPLC-DAD SMX=8 SMX=28

(Roldán et al. 2010)

RW (Llobregat River)

Diaminopyrimidine:TMT

Min-max RW:TMT=2.4-252.0

SPE-LC-(QqQ)MS/MS

TMT=0.3 TMT=0.5

Macrolide:ERT

ERT=6.9-119.9 ERT=1.6 ERT=2.3

Quinolone:FluoroquinoloneOFX

OFX=8.0-1,903.6 OFX=0.9 OFX=2.3

Sulfonamide:SMX

SMX=4.1-119.3 SMX=0.4 SMX=0.9

(Rosal et al. 2010)

WWTPI; WWTPE (Alcalá de Henares, (Madrid)

Diaminopyrimidine:TMT

Min-max WWTPI:TMT=78-197

WWTPE:TMT=<LOQ-148

SPE-LC-(Q-IT)MS/MS

na TMT=29

Macrolides:ERT

ERT=<LOQ-2,310 ERT=<LOQ-760 na ERT=99

Table S1. (Continuation).Study (Reference)

Matrices (location)

Antibiotic classes:Active agents

Concentrations (ng L-1) Analytical methods

Analytical parameters (ng L-1)LOD LOQ

Nitroimidazole:MND

MND=44-165 MND=<LOQ-127 na MND=17

Quinolones:FluoroquinolonesCPF; OFX

CPF=160-13,625; OFX=848-5,286

CPF=<LOQ-5,692; OFX=<LOQ-1,641

na CPF=10; OFX=33

Sulfonamide:SMX

SMX=162-530 SMX=104-370 na SMX=15

(Serna et al. 2010)

WWTPE (Barcelona); RW (Llobregat River); DW (Barcelona)

Amphenicol:CRP

Mean WWTPE:CRP=nd

RW:CRP=nd

DW:CRP=nd

SPE-LC-(QqQ-LIT)MS/MS

CRP=0.35-1.10 CRP=1.16-3.68

Diaminopyrimidine:TMT

TMT=65.92 TMT=16.43-33.53 TMT=0.51 TMT=0.33-2.81 TMT=1.09-9.37

Macrolides:AZT; CTR; ERT; JSM; RXT; SPR ; TLS; TMC

AZT=1,031.67; CTR=3.90; ERT=677.00; JSM=237.83; RXT=nd; SPR=7.17; TLS=3.03; TMC=141.58

AZT=14.73-71.67; CTR=nd; ERT=50.38-174.73; JSM=88.83-42.60; RXT=nd; SPR=nd; TLS=0.81-1.82; TMC=39.90-68.32

AZT=17.00; CTR=nd; ERT=nd; JSM=3.67; RXT=nd; SPR=nd; TLS=1.41; TMC=20.54

AZT=0.16-2.71; CTR=0.13-0.48; ERT=7.34-10.21; JSM=0.33-0.47; RXT=0.32-10.14; SPR=0.36-1.34; TLS=0.22-0.41; TMC=0.43-1.24

AZT=0.53-9.04; CTR=0.44-1.59; ERT=24.48-34.03; JSM=1.09-1.58; RXT=1.07-33.81; SPR=1.19-4.46; TLS=0.74-1.36; TMC=1.44-4.15

Nitroimidazole:MND

MND=211.83 MND=nd-4.88 MND=nd MND=3.39-43.84 MND=11.29-146.14

Quinolones:FluoroquinolonesCPF; DNF; ENX; ERF; NOFOFXOther quinoloneFMQ

CPF=8.27; DNF=255.67; ENX=63.72; ERF=276.67; NOF=151.25; OFX=nd; FMQ=nd

CPF=4.65-4.83; DNF=5.82-40.12; ENX=15.17-15.83; ERF=23.28-75.017; NOF=8.32-28.02; OFX=nd; FMQ=nd

CPF=16.04; DNF=18.93; ENX=32.88; ERF=15.30; NOF=13.28; OFX=nd; FMQ=nd

CPF=2.47-4.57; DNF=4.41-5.65; ENX=4.88-26.95; ERF=1.15-4.73; NOF=2.09-4.07; OFX=0.60-1.35; FMQ=0.44-3.59

CPF=8.23-15.24; DNF=14.69-18.84; ENX=16.28-89.83; ERF=3.83-15.77; NOF=6.97-13.55; OFX=2.01-4.49; FMQ=1.45-11.96

Sulfonamides:SDZ; SMX; SMZ

SDZ=20.38; SMX=140.48; SMZ=373.84

SDZ=nd-3.40; SMX=39.70-78.38; SMZ=1.68-112.27

SDZ=nd; SMX=nd; SMZ= nd-4.08

SDZ=2.86-73.91; SMX=0.89-2.53; SMZ=0.81-3.88

SDZ=9.54-246.36; SMX=2.97-8.43; SMZ=2.69-12.94

Tetracyclines:CTC; DXC; OXT; TTC

CTC=nd; DXC=nd; OXT=42.12; TTC=171.47

CTC=nd; DXC=nd; OXT=nd; TTC=nd-29.00

CTC, DXC, OXT, TTC=nd

CTC=6.02-11.38; DXC=21.14-23.60; OXT=8.07-12.81; TTC=2.65-6.52

CTC=20.08-37.93; DXC=70.45-78.65; OXT=26.90-42.71; TTC=8.83-21.75

(Muñoz et al. 2009)

WWTPI; WWTPE; RW (Seville)

Diaminopyrimidine:TMT

WWTPI:TMT=nd

WWTPE:TMT=nd

RW:TMT=nd

SPE-HPLC-DAD TMT=8-17 TMT=28-56

Sulfonamide:SMX

SMX=nd SMX=nd SMX=nd SMX=6-12 SMX=20-40

Table S1. (Continuation).Study (Reference)

Matrices (location)

Antibiotic classes:Active agents

Concentrations (ng L-1) Analytical methods

Analytical parameters (ng L-1)LOD LOQ

(Cruz et al. 2008)

WWTPE (Lleida); RW (Llobregat, Segre, and Anoia Rivers, Barcelona); GW (Barcelona); DW (Bottled mineral water, supermarket)

Sulfonamides:SDM; SDZ; SMP; SMT; SMX; SMZ ; SPD; SSX; STA

Min-max WWTPE:SDM=12; SDZ=34.3; SMP=nr; SMT=48.5; SMX=241.6; SMZ=10.7; SPD=28.8; SSX=1.6; STA=53.7

RW:SDM=1.5-182.4; SDZ=nd-2,312; SMP=nd-3,704; SMT=nd-7; SMX=nd-1,488; SMZ=nd-6,192; SPD=1.2-12,000; SSX=nd-2.8; STA=1.5-38.1

GW:SDM=0.2; SDZ=nd; SMP=<LOQ; SMT=<LOQ; SMX=9.9; SMZ=<LOQ; SPD=<LOQ; SSX=nd; STA=<LOQ

DW:SDM=0.164; SDZ=<LOQ; SMP=<LOQ; SMT=<LOQ; SMX=<LOQ; SMZ=<LOQ; SPD=<LOQ; SSX=<LOQ; STA=<LOQ

SPE-LC-(Q-LIT)MS/MS

SDM=0.01-0.31; SDZ=0.09-1.02; SMP=0.02-0.77; SMT=0.02-0.42; SMX=0.05-1.13; SMZ=0.03-43.09; SPD=0.04-0.18; SSX=0.01-0.29; STA=nr-0.20

SDM=0.05-1.02; SDZ=0.31-3.41; SMP=0.07-2.57; SMT=0.06-1.41; SMX=0.15-3.77; SMZ=0.11-143.65; SPD=0.14-0.62; SSX=0.04-0.97; STA=nr-0.67

(Gros et al. 2007)

RW (Vallas, Ebro, Iregua, Arga, and Segre Rivers)

Diaminopyrimidine:TMT

Min-max RW:TMT=10-69

SPE-LC-(QqQ)MS/MS

TMT=1 TMT=4

Macrolide:AZT; ERT

AZT=9-68; ERT=nd-71 AZT=1; ERT=4 AZT=3; ERT=14

Quinolone:FluoroquinoloneOFX

OFX=nd-146 OFX=16 OFX=56

Sulfonamide:SMX

SMX=22-169 SMX=5 SMX=16

(Gómez et al. 2006)

HWWTPE (Almería) Diaminopyrimidine:TMT

Min-max HWWTPE:TMT=1.8-9.4

SPE-LC-(QqQ)MS/MS

TMT=40 TMT=112

Macrolide:ERT

ERT=0.01-0.03 ERT=9.2 ERT=26

Nitroimidazole:MND

MND=0.01-0.03 MND=3.8 MND=11

(Gros et al. 2006)

RW (Ebro River and tributaries)

Diaminopyrimidine:TMT

Min-max RW:TMT=nd-20

SPE-LC-(QqQ)MS/MS

TMT=1 TMT=4

Macrolide:AZT; ERT

AZT=nd-20; ERT=nd-30 AZT=1; ERT=4 AZT=3; ERT=14

Quinolone:FluoroquinoloneOFX

OFX=nd OFX=16 OFX=56

Sulfonamide:SMX

SMX=nd-<LOQ SMX=5 SMX=16

(Gros et al. 2006)

WWTPI; WWTPE (Rubí)

Diaminopyrimidine:TMT

Min-max WWTPI:TMT=nd-4,220

WWTPE:TMT=70-310

SPE-LC-(QqQ)MS/MS

TMT=10-25 na

Macrolides:ERTAZT

WWTPI:AZT=nd-300; ERT=nd

WWTPE: AZT=50-210; ERT=nd

AZT=1-3; ERT=4-6

na

Table S1. (Continuation).Study (Reference)

Matrices (location)

Antibiotic classes:Active agents

Concentrations (ng L-1) Analytical methods

Analytical parameters (ng L-1)LOD LOQ

Quinolone:FluoroquinoloneOFX

WWTPI:OFX=nd

WWTPE: OFX=nd

OFX=43-43 na

Sulfonamide:SMX

WWTPI:SMX=nd-870

WWTPE: SMX=nd-820

SMX=20-42 na

(Reverté et al. 2003)

WWTPI; WWTPE (Tarragona); RW (Ebro River); WellW

Quinolones:FluoroquinolonesCPF; ERF

WWTPI:CPF, ERF=nd

WWTPE:CPF, ERF=nd

RW:CPF, ERF=nd

WellW:CPF, ERF=nd

SPE-HPLC-MS CPF, ERF=4 na

Tetracycline:CTC; DXC; OXT; TTC

CTC, DXC, OXT, TTC=nd

CTC, DXC, OXT, TTC=nd

CTC, DXC, OXT, TTC=nd

CTC, DXC, OXT, TTC=nd

CTC=6; DXC=6; OXT=4; TTC=4

na

Sweden(Grabic et al. 2012)

WWTPE (Alvesta; Lessebo; Ljungby; Markaryd; Uppvidinge; Älmhult)

Diaminopyrimidine:TMT

Min-max WWTPE:TMT=27-101

SPE-LC-(QqQ)MS/MS

na TMT=0.10

Lincosamide:CDM

CDM=<LOQ-154 na CDM=0.98

Macrolides:AZT; CTR; RXT

AZT=<LOQ; CTR=14-78; RXT=<LOQ na AZT=4.6; CTR=11; RXT=47

Quinolones:FluoroquinolonesCPF; NOF; OFX

CPF=<LOQ-10.5; NOF=<LOQ-10.6; OFX=<LOQ na CPF=0.62; NOF=9.2; OFX=14

Sulfonamide:SMX

SMX=15-203 na SMX=5.1

(Zorita et al. 2009)

WWTPI; WWTPE (Kristianstad); DWWTE; HWWTPE;

Quinolones:FluoroquinolonesCPF; NOF; OFX

WWTPI:CPF=320; NOF=18.0; OFX=22.5

WWTPE:CPF=31.5; NOF=nd; OFX=10.0

DWWTPE:CPF=3,700; NOF=nd; OFX=16.7

HWWTPE:CPF=3,300; NOF=22.0; OFX=840

SPE-LC-(QqQ)MS/MS

CPF=4.9; NOF=5.5; OFX=3.3

na

(Bendz et al. 2005)

WWTPI; WWTPE (Källby); RW (Höje River)

Diaminopyrimidine:TMT

Min-max WWTPI:TMT=80

WWTPE:TMT=40

RW:TMT=<LOQ-40

SPE-LC-MS/MS na na

Sulfonamide:SMX

SMX=20 SMX=70 SMX=<LOQ-50 na na

(R. H. Lindberg et al. 2005)

WWTPI; WWTPE (Stockholm; Gothenburg; Umeå; Floda)

β-lactams: CephalosporinCDXPenicillins AMP; AMX

Min-max WWTPI:CDX, AMP, AMX=nd

WWTPE:CDX, AMP, AMX=nd

SPE-LC-(IT)MS/MS

na CDX=77; AMP=60; AMX=74

Diaminopyrimidine:TMT

TMT=99-1,300 TMT=66-1,340 na TMT=8

Nitroimidazole:MND

MND=nd MND=nd na MND=33

Quinolones: FluoroquinolonesCPF; NOF; OFX

CPF=90-300; NOF=66-174; OFX=<LOQ-287

CPF=<LOQ-60; NOF=<LOQ-37; OFX=<LOQ-52

na CPF=6; NOF=7; OFX=6

Sulfonamide:SMX

SMX=<LOQ-674 SMX=<LOQ-304 na SMX=80

Table S1. (Continuation).Study (Reference)

Matrices (location)

Antibiotic classes:Active agents

Concentrations (ng L-1) Analytical methods

Analytical parameters (ng L-1)LOD LOQ

Tetracycline:DXC

DXC=<LOQ-2,480 DXC=<LOQ 64-915 na DXC=64

(R. Lindberg et al. 2004)

HWWTPE (Kalmar) β-lactams: CephalosporinCDXPenicillins AMP; AMX

Min-max HWWTPE:CDX, AMP, AMX =nd

SPE-LC-(IT)MS/MS

na CDX=42,000; AMP=33,000; AMX =37,000

Diaminopyrimidine:TMT

TMT=<LOQ-7,600 na TMT=1,000

Nitroimidazole:MND

MND=<LOQ-90,200 na MND=13,000

Quinolones: FluoroquinolonesCPF; NOF; OFX

CPF=3,600-101,000; NOF=nd; OFX=<LOQ-7,600 na CPF=3,000; NOF=4,000; OFX=5,000

Sulfonamide:SMX

SMX=<LOQ-13,000 na SMX=68,000

Tetracycline:DXC

DXC=<LOQ na DXC=68,000

(Andreozzi et al. 2003)

WWTPE (Göteborg) Diaminopyrimidine:TMT

Min-max WWTPE:TMT=50

SPE-HPLC-MS/MS na na

Quinolones:FluoroquinolonesCPF; ENX; LMF; NOF; OFX

CPF=30; ENX=10; LMF=130; NOF=30; OFX=120 na na

Sulfonamide:SMX

SMX=20 na na

Swiss(Joss et al. 2005) WWTPE

(Kloten/Opfiko, Zurich; Altenrhein, St. Gall)

Macrolide:RXT

Min-max WWTPE:RTX=9-60

SPE-HPLC-(QqQ)MS/MS

na 0.4-1.4

Sulfonamide:SMX

SMX=98-990 na 6-15

(Göbel et al. 2004)

WWTPE (Kloten/Opfiko, Zurich; Altenrhein, St. Gall)

Diaminopyrimidine:TMT

Min-max WWTPE:TMT=68-81

SPE-HPLC-(QqQ)MS/MS

na TMT=3-7

Macrolides:AZT; CTR; ERT; RXT

AZT=85-255; CTR=220-329; ERT=55-75; RXT=10-23 na AZT=1.6-2.6; CTR=1.3-3.1; ERT=3.4-9.5; RXT=0.4-1.4

Sulfonamides:SDZ; SMX; SMZ; SPD; STA

SDZ=<LOQ; SMX=352; SMZ=<LOQ-19; SPD=85-86; STA=<LOQ na SDZ=5-11; SMX=6-15; SMZ=4-17; SPD=6-19; STA=10-22

Table S1. (Continuation).Study (Reference)

Matrices (location)

Antibiotic classes:Active agents

Concentrations (ng L-1) Analytical methods

Analytical parameters (ng L-1)LOD LOQ

Switzerland(Coutu et al. 2013)

WWTPI (Vidy, Lausanne)

Diaminopyrimidine:TMT

Min-max WWTPE:TMT=6.8-169

SPE-LC-MS/MS TMT=1.3 TMT=4

Lincosamide:CDM

CDM=nd-23.5 CDM=1.1 CDM=3.3

Nitroimidazole:MND

MND=nd-3,809.8 MND=1 MND=3

Quinolones:FluoroquinolonesCPF; NOF; OFX

CPF=97.65-4,186.1; NOF=<LOQ-1,283.8; OFX=10.9-1,865.3 CPF=1.2; NOF=1.3; OFX=1.2

CPF=3.5; NOF=4; OFX=3.5

(Huntscha et al. 2012)

GW (Thur River) Macrolide:CTR

Min-max GW:CTR=nd-3.7

SPE-HPLC-(QqQ)MS/MS

na CTR=0.2

Sulfonamides:SMX; SMZ

SMX=8.8-15; SMZ=5.2-6.1 na SMX=7.0; SMZ=0.2

(McArdell et al. 2003)

WWTPE (Zurich-Werdhoelzli; Kloten-Opfikon; Debendorf)

Macrolides:CTR; ERT; RXT; SPR; TLS

Min-max WWTPE:CTR=57-194; ERT=<LOQ-199; RXT=<LOQ-31; SPR=nd; TLS=nd

SPE-HPLC-(Q)MS na CTR=10; ERT=20; RXT=5; SPR=70; TLS=25

(Golet et al. 2002)

WWTPI; WWTPE (Fällanden; Kloten-Opfikon; Niederglatt; Bulach); RW (Glatt River)

Quinolones:FluoroquinolonesCPF; DIF; DNF; ERF; FRX; LMF; NOF; OFX/LVF; PPA

Min-max WWTPI:CPF=313-568; DIF=nd; DNF=nd; ERF=nd; FRX=nd; LMF=nd; NOF=255-553; OFX/LVF=nd; PPA=nd

WWTPE:CPF=62-106; DIF=nd; DNF=nd; ERF=nd; FRX=nd; LMF=nd; NOF=36-73; OFX/LVF=nd; PPA=nd

RW:CPF=5-18; DIF=nd; DNF=nd; ERF=nd; FRX=nd; LMF=nd; NOF=5-18; OFX/LVF=nd; PPA=nd

SPE-HPLC-FL CPF=2.5; DIF=2.5; DNF=0.5; ERF=3.0; FRX=2.5; LMF=3.0; NOF=2.5; OFX/LVF=5.0; PPA=3.0

CPF=9; DIF=9; DNF=5; ERF=10; FRX=9; LMF=10; NOF=9; OFX/LVF=17; PPA=10

UK(Miller et al. 2015)

RW (Thames River) Diaminopyrimidine:TMT

Min-max RW:TMT=nd-289

SPE-LC-(QqQ)MS/MS

TMT=2 TMT=5

Sulfonamides:SMZ; SPN

SMZ, SPN=nd SMZ=4; SPN=11 SMZ=15; SPN=36

(Gardner et al. 2012)

WWTPE (162 different locations)

Macrolide:ERT

Min-max WWTPE:ERT=nd-8,000

SPE-LC-MS/MS ERT=10 na

Quinolone:FluoroquinoloneOFX

OFX=nd-300 OFX=10 na

Tetracycline:OXT

OXT=nd-3,000 OXT=10 na

(Hordern et al. 2009)

WWTPI; WWTPE (Cilfynydd; Coslech); RW (Ely and Taff Rivers)

Amphenicol:CRP

Min-max WWTPI:CRP=<LOQ-452

WWTPE:CRP=<LOQ-69

RW:CRP=<LOQ-40

SPE-UPLC-(QqQ)MS/MS

CRP=0.5 CRP=2-6

Diaminopyrimidine:TMT

TMT=464-6,796 TMT=385-3,052 TMT=<LOQ-183 TMT=0.5 TMT=1.5-3

Macrolides:ERT

ERT=144-10,025 ERT=23-2,841 ERT=<LOQ-121 ERT=0.1 ERT=0.5-15

Table S1. (Continuation).Study (Reference)

Matrices (location)

Antibiotic classes:Active agents

Concentrations (ng L-1) Analytical methods

Analytical parameters (ng L-1)LOD LOQ

Nitroimidazole:MND

MND=158-1,583 MND=60-561 MND=<LOQ-24 MND=0.5 MND=1.5-16

Sulfonamide:SMX

SMX=<LOQ-274 SMX=<LOQ-44 SMX=<LOQ-8 SMX=0.1 SMX=0.5-3

(Hordern et al. 2008a)

WWTPI; WWTPE (Cilfynydd); RW (Taff Rivers)

Amphenicol:CRP

Min-max WWTPI:CRP=<LOQ

WWTPE:CRP=<LOQ

RW:CRP=<LOQ

SPE-UPLC-(QqQ)MS/MS

CRP=0.5 CRP=2-6

β-lactam: PenicillinAMX

AMX =<LOQ AMX =<LOQ AMX =<LOQ AMX =2.5 AMX =10-87

Diaminopyrimidine:TMT

TMT=1,879 TMT=1,004 TMT=<LOQ-108 TMT=0.5 TMT=1.5-3

Macrolides:ERT

ERT=404 ERT=830 ERT=<LOQ-40 ERT=0.1 ERT=0.5-15

Nitroimidazole:MND

MND=2,608 MND=373 MND=<LOQ-5 MND=0.5 MND=1.5-16

Sulfonamide:SMX

SMX=<LOQ SMX=12 SMX=<LOQ-1 SMX=0.1 SMX=0.5-3

(Hordern et al. 2008b)

RW (Taff River) Amphenicol:CRP

RW:CRP=<LOQ

SPE-UPLC-(QqQ)MS/MS

CRP=0.5 CRP=2.0

Sulfonamide:SMX

SMX=<LOQ SMX=0.5 SMX=2.0

(Hordern et al. 2008c)

RW (Ely and Taff Rivers)

Amphenicol:CRP

Min-max RW:CRP=<LOQ-40

SPE-UPLC-(QqQ)MS/MS

CRP=0.5 CRP=2

β-lactam: PenicillinAMX

AMX =<LOQ-552 AMX =2.5 AMX =10

Diaminopyrimidine:TMT

TMT=<LOQ-183 TMT=0.5 TMT=1.5

Macrolides:ERT

ERT=<LOQ-351 ERT=0.1 ERT=0.5

Nitroimidazole:MND

MND=<LOQ-24 MND=0.5 MND=1.5

Sulfonamide:SMX

SMX=<LOQ-4 SMX=0.1 SMX=0.5

(Nebot et al. 2007)

WWTPE; RW; TW; SeaW (North Scotland)

Diaminopyrimidine:TMT

WWTPE:TMT=362

RW:TMT=nd

TW:TMT=nd

SeaW:TMT=nd

SPE-HPLC-MS/MS TMT=0.07 TMT=0.25

Macrolides:ERT

ERT=186 ERT=nd ERT=nd ERT=nd ERT=0.07 ERT=0.22

Sulfonamide:SMX

SMX=nd SMX=nd SMX=nd SMX=nd SMX=0.13 SMX=0.43

(Zhang and Zhou 2007)

RW (Ouse River) Sulfonamides:SMX

Min-max RW:SMX=<LOQ-20.6

SPE-LC-(QqQ)MS/MS

SMX=0.084 SMX=0.079

Table S1. (Continuation).Study (Reference)

Matrices (location)

Antibiotic classes:Active agents

Concentrations (ng L-1) Analytical methods

Analytical parameters (ng L-1)LOD LOQ

(Roberts and Thomas 2006)

WWTPI; WWTPE (Howdon); RW (Tyne River)

Diaminopyrimidine:TMT

Min-max WWTPI:TMT=213-300

WWTPE:TMT=218-322

RW:TMT=4-19

SPE-HPLC-MS/MS TMT=10 na

Macrolides:ERT

ERT=71-141 ERT=145-290 ERT=nd-70 ERT=4 na

Sulfonamide:SMX

SMX=<LOQ SMX=<LOQ SMX=nd SMX=20 na

(Blackwell et al. 2004)

RW (Trent River, Shardlow)

Macrolides:TLS

RW:TLS=nd

SPE-HPLC-UV/Vis TLS=350 na

Sulfonamide:SCP

SCP=613,200 SCP=250 na

Tetracycline:OXT

OXT=36,100 OXT=350 na

(Thomas and Hilton 2004)

RW (Tyne, Tees, Mersey, Thames, and Belfast Lough Rivers)

Diaminopyrimidine:TMT

Min-max RW:TMT=nd-569

SPE-HPLC-MS/MS TMT=10 na

Macrolides:ERT

ERT=nd ERT=4 na

Sulfonamide:SMX

SMX=nd SMX=20 na

(Hilton and Thomas 2003)

WWTPE; SW (16 different locations)

Diaminopyrimidine:TMT

Min-max WWTPE:TMT=83-140

SW:TMT=nd-39

SPE-HPLC-MS/MS TMT=10 na

Macrolides:ERT

ERT=130-180 ERT=57-1,000 ERT=10 na

Sulfonamide:SMX

SMX=nd SMX=nd SMX=50 na

Various countries(A)

(Ruff et al. 2015)

RW (Rhine River) Diaminopyrimidine:TMT

RW:TMT=nd-25

SPE-LC-(Q-LIT-ORBITRAP)MS/MS

na TMT=1

Macrolides:AZT; CTR; ERT; TLS

AZT=nd-2; CTR=2-21; ERT=nd-13; TLS=nd na AZT=1; CTR=1; ERT=10; TLS=50

Nitroimidazole:MND

MND=nd na MND=5

Quinolones:FluoroquinolonesCPF; NOF; RXT

CPF=nd; NOF=nd; RXT=nd-8 na CPF=100; NOF=100; RXT=5

Sulfonamides:SDM; SDZ; SMX; SMZ; SPD; STA

SDM=nd; SDZ=nd; SMX=3-47; SMZ=nd; SPD=nd-9; STA=nd-101 na SDM=5; SDZ=10; SMX=1; SMZ=10; SPD=5; STA=10

Table S1. (Continuation).Study (Reference)

Matrices (location)

Antibiotic classes:Active agents

Concentrations (ng L-1) Analytical methods

Analytical parameters (ng L-1)LOD LOQ

(B)(Loos et al. 2013)

WWTPE Amphenicol:FFN

Max WWTPE:FFN=nd

SPE-LC-(QqQ)MS/MS

na FFN=100

β-lactams: PenicillinsAMX; PNG; PNV

AMP=nd; AMX=nd; PNG=nd; PNV=33 na AMP=25; AMX=25; PNG=50; PNV=50

Diaminopyrimidine:TMT

TMT=800 na TMT=10

Lincosamides:CDM; LCM

CDM=277; LCM=317 na CDM=10; LCM=15

Macrolides:TLS; TMC

TLS=nd; TMC=93.2 na TLS=50; TMC=20

Pleuromutilin:TAM

TAM=44.5 na TAM=20

Quinolones:FluoroquinolonesCPF; ERFOther quinolonesFMQ

CPF=264; ERF=nd; FMQ=25.7 na CPF=15; ERF=20; FMQ=20

Sulfonamides:SDX; SDZ; SMX

SDX=nd; SDZ=105; SMX=1,691 na SDX=20; SDZ=30; SMX=50

Tetracyclines:DXC; OXT

DXC, OXT=nd na DXC=50; OXT=30

(C)(Loos, Locoro, Comero, et al. 2010)

GW Sulfonamide:SMX

Max GW:SMX=38

SPE-LC-(QqQ)MS/MS

SMX=0.5 na

(D)(Loos, Locoro, and Contini 2010)

RW (Danube River and tributaries)

Sulfonamide:SMX

Max RW:SMX=28-204

SPE-LC-(QqQ)MS/MS

SMX=1 na

(E)(Terzić et al. 2008)

WWTPI Diaminopyrimidine:TMT

Min-max WWTPI:TMT=nd-2,550

SPE-LC-(QqQ)MS/MS

TMT=12 na

Macrolides:AZT; ERT; JSM; RXT

AZT=nd-1,140; ERT=nd-420; JSM=nd-16; RXT=nd-50 AZT=2; ERT=1; JSM=8; RXT=2

na

Quinolones:FluoroquinolonesCPF; ERF; NOF; OFX

CPF=nd-2,610; ERF=nd-18; NOF=nd-2,940; OFX=nd-<LOQ CPF=7; ERF=2; NOF=3; OFX=42

na

Sulfonamides:SDZ; SMR; SMX; SMZ; SPD; STA

SDZ=nd-132; SMR=nd-20; SMX=nd-11,600; SMZ=nd-186; SPD=nd-931; STA=nd-4

SDZ=1; SMR=1; SMX=1; SMZ=2; SPD=4; STA=1

na

Table S1. (Continuation).Study (Reference)

Matrices (location)

Antibiotic classes:Active agents

Concentrations (ng L-1) Analytical methods

Analytical parameters (ng L-1)LOD LOQ

(F)(Hordern et al. 2007)

RW (Taff River and Warta Rivers)

Amphenicol:CRP

Min-max RW:CRP=<LOQ

SPE-UPLC-(QqQ)MS/MS

CRP=2.5 na

β-lactam:Penicillin AMX

AMX=<LOQ-245 AMX=2.5 na

Diaminopyrimidine:TMT

TMT=<LOQ-27 TMT=0.5 na

Macrolide:ERT

ERT=<LOQ-22 ERT=0.1 na

Nitroimidazole:MND

MND=<LOQ MND=0.5 na

Quinolone:FluoroquinoloneCPF

CPF=nr CPF=nr na

Sulfonamides:SMX; SPD

SMX=<LOQ-39; SPD=<LOQ-60 SMX=0.5; SPD=0.1

na

Tetracyclines:DXC

DXC=nr DXC=nr na

(G)(Petrovic et al. 2006)

WWTPI; WWTPE Diaminopyrimidine:TMT

Min-max WWTPI:TMT=40-650

WWTPE:TMT=nd-230

SPE-UPLC-(Q-TOF)MS/MS

TMT=10 na

Macrolides:AZT; ERT

AZT=nd-450; ERT=nd-250 AZT=nd-300; ERT=nd-280 AZT=70; ERT=100 na

Quinolone:FluoroquinoloneOFX

OFX=nd OFX=nd OFX=500 na

Sulfonamide:SMX

SMX=nd-960 SMX=nd-800 SMX=150 na

AbbreviationsStudy: Various countries: (A) - Germany and Netherlands border; (B) - Austria, Belgium, Cyprus, Czech Republic, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Lithuania, Netherlands,

Portugal, Slovenia, Spain, Sweden, and Switzerland; (C) - Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Luxembourg, Netherlands, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, UK; (D) - Austria, Bulgaria, Czech Republic, Denmark, Germany, Hungary, Romania, Serbia, and Slovakia; E - Bosnia and Herzegovina, Croatia, and Serbia; (F) - Poland and UK; (G) - Croatia and Spain.

Matrices: DW - drinking water; DWWTPE - domestic wastewater treatment plant effluent; GW - groundwater; HWWTPE - hospital wastewater treatment plant effluent; HWWTPI - hospital wastewater treatment plant influent; LW - lake water; ResW - reservoir water; RW - river water; SeaW - sea water; SW - surface water; TW - tap water; WLW - wetland water; WTPE - water treatment plant effluent; WW - wastewater; WWTPE - wastewater treatment plant effluent; WWTPI - wastewater treatment plant influent.

Active agents: aminoglycoside: streptomycins: DST - dihydrostreptomycin, STM - streptomycin; other aminoglycosides: NMC - neomycin; amphenicols: CRP - chloramphenicol, FFN - florfenicol, TAP - thiamphenicol; β-lactams: cephalosporins: CDX - cefadroxil, CLX - cefalexin, CPD - cefpodoxime, CPR - cefapirin, CPZ - cefoperazone, CQN - cefquinome, CRX - cefuroxime, CTF - ceftiofur, CTN - ceftriaxone, CTX - cefotaxime, CTZ – ceftazidime, CZL - cefazolin; penicillins: AMP - ampicillin, AMX - amoxicillin, BZP - benzylpenicillin, CXC - cloxacillin, DCX - dicloxacillin, FCX - flucloxacillin, MTC - meticillin, MZC - mezlocillin, NFC - nafcillin, OXC - oxacillin, PNG - penicillin G, PNV - penicillin V, PNX - phenoxymethylpenicillin, PPR – piperacillin; diaminopyrimidines: TMT - trimethoprim, OMT - ormethoprim; glycopeptides: VCM - vancomycin; lincosamides: CDM - clindamycin, LCM - lincomycin; macrolides: AZT - azithromycin, CTR - clarithromycin, ERT - erythromycin, JSM - josamycin, OLD - oleandomycin, RXT - roxithromycin, SPR - spiramycin, TLS - tylosin, TMC - tilmicosin; nitroimidazoles: DTZ - dimetridazole, MND - metronidazole, OND - ornidazole, RND - ronidazole; pleuromutilins: TAM - tiamulin, VNM - valnemulin; quinolones: fluoroquinolones: BSF - besifloxacin, CPF - ciprofloxacin, DIF - difloxacin, DNF - danofloxacin, ENX - enoxacin, ERF - enrofloxacin, FRX - fleroxacin, GTF - gatifloxacin, LMF - lomefloxacin, LVF - levofloxacin, MBF - marbofloxacin, MXF - moxifloxacin, NOF - norfloxacin, OBF - orbifloxacin, OFX - ofloxacin, PEF -

pefloxacin, SRF - sarafloxacin; other quinolones: CNO - cinoxacin, FMQ - flumequine, NLA - nalidixic acid, OXA - oxolinic acid, PPA - pipemidic acid; steroid antibacterials: FSA - fusidic acid; streptogramin: VGN - virginiamycin; sulfonamides: SBZ - sulfabenzamide, SCP - sulfachlorpyridazine, SCT - sulfacetamide, SCZ - sulfachloropyrazine, SDD - sulfadimidine, SDM - sulfadimethoxine, SDX - sulfadoxine, SDZ - sulfadiazine, SGD - sulfaguanidine, SMM - sulfamonomethoxine, SMP - sulfamethoxypyridazine, SMR - sulfamerazine, SMT - sulfamethizole, SMX - sulfamethoxazole, SMZ - sulfamethazine, SNL - sulfanilamide, SNT - sulfanitran, SPD - sulfapyridine, SPN - sulfaphenazole, SQN - sulfaquinoxaline, SSD - sulfisomidine, SSL - sulfasalazine, SSX - sulfisoxazole, STA - sulfathiazole, STZ - sulfamethiazole, SXL - sulfamoxole; tetracyclines: CTC - chlortetracycline, DMC - demeclocycline, DXC - doxycycline, OXT - oxytetracycline, TTC - tetracycline; other antibacterials: MNN - monensine, SLN - salinomycin, SPT - spectinomycin.

Concentrations: max - maximum detected value; min – minimum detected value; nd - not detected; nr - not recovered; nq - not quantified.Analytical methods: sample preparation methods: DLLME - dispersive liquid-liquid microextraction, SPE - solid phase extraction; SPME - solid-phase microextraction; chromatography

separation methods: HPLC - high performance liquid chromatography; HRMS - high resolution mass spectrometry, LC - liquid chromatography, RRLC - rapid resolution liquid chromatography, UHPLC - ultra high performance liquid chromatography, UPLC - ultra-performance liquid chromatography; detection methods: DAD - diode array detector, FL - fluorescence detector, MS - mass spectrometry (IT - ion trap; LIT - linear ion trap; HRMS - high resolution mass spectrometry; Q - single quadrupole; QqQ - triple quadrupole; TOF - time of fligh; UIT - ultra ion trap), UV/Vis - ultraviolet/visible.

Analytical parameters: LOD - limit of detection; LOQ - limit of quantification; na - information not available.

ReferencesAl Aukidy, M., Verlicchi, P., Jelic, A., Petrovic, M., & Barcelò, D. (2012). Monitoring release of pharmaceutical

compounds: occurrence and environmental risk assessment of two WWTP effluents and their receiving bodies

in the Po Valley, Italy. The Science of the Total Environment, 438, 15–25. doi:10.1016/j.scitotenv.2012.08.061

Alygizakis, N. A., Ferrero, P. G., Borova, V. L., Pavlidou, A., Hatzianestis, I., & Thomaidis, N. S. (2016).

Occurrence and spatial distribution of 158 pharmaceuticals, drugs of abuse and related metabolites in offshore

seawater. The Science of the Total Environment, 541, 1097–105. doi:10.1016/j.scitotenv.2015.09.145

Andreozzi, R., Caprio, V., Ciniglia, C., Champdoré, M., Lo Giudice, R., Marotta, R., & Zuccato, E. (2004).

Antibiotics in the environment: Occurrence in Italian STPs, fate, and preliminary assessment on algal toxicity

of amoxicillin. Environmental Science & Technology, 38(24), 6832–6838. doi:10.1021/es049509a

Andreozzi, R., Raffaele, M., & Nicklas, P. (2003). Pharmaceuticals in STP effluents and their solar photodegradation

in aquatic environment. Chemosphere, 50(10), 1319–1330. doi:10.1016/S0045-6535(02)00769-5

Babić, S., Asperger, D., Mutavdzić, D., Horvat, A. J. M., & Macan, M. K. (2006). Solid phase extraction and HPLC

determination of veterinary pharmaceuticals in wastewater. Talanta, 70(4), 732–738.

doi:10.1016/j.talanta.2006.07.003

Baumann, M., Weiss, K., Maletzki, D., Schüssler, W., Schudoma, D., Kopf, W., & Kühnen, U. (2015). Aquatic

toxicity of the macrolide antibiotic clarithromycin and its metabolites. Chemosphere, 120, 192–198.

doi:10.1016/j.chemosphere.2014.05.089

Bendz, D., Paxéus, N. A., Ginn, T. R., & Loge, F. J. (2005). Occurrence and fate of pharmaceutically active

compounds in the environment, a case study: Höje River in Sweden. Journal of Hazardous Materials, 122(3),

195–204. doi:10.1016/j.jhazmat.2005.03.012

Birošová, L., Mackulak, T., Bodík, I., Ryba, J., Škubák, J., & Grabic, R. (2014). Pilot study of seasonal occurrence

and distribution of antibiotics and drug resistant bacteria in wastewater treatment plants in Slovakia. The

Science of the Total Environment, 490, 440–444. doi:10.1016/j.scitotenv.2014.05.030

Blackwell, P. A., Lützhøft, H. C. H., Ma, H. P., Sørensen, B. H., Boxall, A. B. A., & Kay, P. (2004). Fast and robust

simultaneous determination of three veterinary antibiotics in groundwater and surface water using a tandem

solid-phase extraction with high-performance liquid chromatography–UV detection. Journal of

Chromatography A, 1045(1-2), 111–117. doi:10.1016/j.chroma.2004.05.063

Boix, C., Ibáñez, M., Sancho, J. V., Rambla, J., Aranda, J. L., Ballester, S., & Hernández, F. (2015). Fast

determination of 40 drugs in water using large volume direct injection liquid chromatography-tandem mass

spectrometry. Talanta, 131, 719–727. doi:10.1016/j.talanta.2014.08.005

Boleda, M. R., Galceran, M. T., & Ventura, F. (2013). Validation and uncertainty estimation of a multiresidue

method for pharmaceuticals in surface and treated waters by liquid chromatography-tandem mass

spectrometry. Journal of Chromatography A, 1286, 146–158. doi:10.1016/j.chroma.2013.02.077

Borecka, M., Bielińska, A. B., Siedlewicz, G., Kornowska, K., Kumirska, J., Stepnowski, P., & Pazdro, K. (2013). A

new approach for the estimation of expanded uncertainty of results of an analytical method developed for

determining antibiotics in seawater using solid-phase extraction disks and liquid chromatography coupled with

tandem mass spectrometry technique. Journal of Chromatography A, 1304, 138–146.

doi:10.1016/j.chroma.2013.07.018

Cabeza, Y., Candela, L., Ronen, D., & Teijon, G. (2012). Monitoring the occurrence of emerging contaminants in

treated wastewater and groundwater between 2008 and 2010. The Baix Llobregat (Barcelona, Spain). Journal

of Hazardous Materials, 239-240, 32–39. doi:10.1016/j.jhazmat.2012.07.032

Castiglioni, S., Bagnati, R., Calamari, D., Fanelli, R., & Zuccato, E. (2005). A multiresidue analytical method using

solid-phase extraction and high-pressure liquid chromatography tandem mass spectrometry to measure

pharmaceuticals of different therapeutic classes in urban wastewaters. Journal of Chromatography A, 1092(2),

206–215. doi:10.1016/j.chroma.2005.07.012

Celano, R., Piccinelli, A. L., Campone, L., & Rastrelli, L. (2014). Ultra-preconcentration and determination of

selected pharmaceutical and personal care products in different water matrices by solid-phase extraction

combined with dispersive liquid-liquid microextraction prior to ultra high pressure liquid chromatography.

Journal of Chromatography A, 1355, 26–35. doi:10.1016/j.chroma.2014.06.009

Chitescu, C. L., Kaklamanos, G., Nicolau, A. I., & Stolker, A. A. M. L. (2015). High sensitive multiresidue analysis

of pharmaceuticals and antifungals in surface water using U-HPLC-Q-Exactive Orbitrap HRMS. Application

to the Danube river basin on the Romanian territory. The Science of the Total Environment, 532, 501–511.

doi:10.1016/j.scitotenv.2015.06.010

Chițescu, C. L., & Nicolau, A. I. (2014). Preliminary survey of pharmaceutical residues in some important Romanian

rivers. Toxicological & Environmental Chemistry, 96(9), 1333–1345. doi:10.1080/02772248.2015.1005092

Chitescu, C. L., Oosterink, E., Jong, J., & Stolker, A. A. M. L. (2012). Accurate mass screening of pharmaceuticals

and fungicides in water by U-HPLC-Exactive Orbitrap MS. Analytical and bioanalytical chemistry, 403(10),

2997–3011. doi:10.1007/s00216-012-5888-8

Christian, T., Schneider, R. J., Färber, H. A., Skutlarek, D., Meyer, M. T., & Goldbach, H. E. (2003). Determination

of Antibiotic Residues in Manure, Soil, and Surface Waters. Acta Hydrochimica et Hydrobiologica, 31(1), 36–

44. doi:10.1002/aheh.200390014

Clara, M., Strenn, B., Gans, O., Martinez, E., Kreuzinger, N., & Kroiss, H. (2005). Removal of selected

pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional

wastewater treatment plants. Water research, 39(19), 4797–4807. doi:10.1016/j.watres.2005.09.015

Climent, L. F., Mozaz, S. R., & Barceló, D. (2014). Incidence of anticancer drugs in an aquatic urban system: from

hospital effluents through urban wastewater to natural environment. Environmental Pollution, 193, 216–223.

doi:10.1016/j.envpol.2014.07.002

Collado, N., Mozaz, S. R., Gros, M., Rubirola, A., Barceló, D., Comas, J., et al. (2014). Pharmaceuticals occurrence

in a WWTP with significant industrial contribution and its input into the river system. Environmental

Pollution, 185, 202–212. doi:10.1016/j.envpol.2013.10.040

Coutu, S., Wyrsch, V., Wynn, H. K., Rossi, L., & Barry, D. A. (2013). Temporal dynamics of antibiotics in

wastewater treatment plant influent. The Science of the Total Environment, 458-460, 20–26.

doi:10.1016/j.scitotenv.2013.04.017

Cruz, M. S. D., Galán, M. J. G., & Barceló, D. (2008). Highly sensitive simultaneous determination of sulfonamide

antibiotics and one metabolite in environmental waters by liquid chromatography–quadrupole linear ion trap–

mass spectrometry. Journal of Chromatography A, 1193(1-2), 50–59. doi:10.1016/j.chroma.2008.03.029

Dévier, M. H., Le Menach, K., Viglino, L., Di Gioia, L., Lachassagne, P., & Budzinski, H. (2013). Ultra-trace

analysis of hormones, pharmaceutical substances, alkylphenols and phthalates in two French natural mineral

waters. The Science of the Total Environment, 443, 621–632. doi:10.1016/j.scitotenv.2012.10.015

Dinh, Q. T., Alliot, F., Guigon, E. M., Eurin, J., Chevreuil, M., & Labadie, P. (2011). Measurement of trace levels of

antibiotics in river water using on-line enrichment and triple-quadrupole LC-MS/MS. Talanta, 85(3), 1238–

1245. doi:10.1016/j.talanta.2011.05.013

Felizzola, J. F., & Chiron, S. (2009). Occurrence and distribution of selected antibiotics in a small Mediterranean

stream (Arc River, Southern France). Journal of Hydrology, 364(1-2), 50–57.

doi:10.1016/j.jhydrol.2008.10.006

Gaffney, V. J., Almeida, C. M. M., Rodrigues, A., Ferreira, E., Benoliel, M. J., & Cardoso, V. V. (2015). Occurrence

of pharmaceuticals in a water supply system and related human health risk assessment. Water Research, 72,

199–208. doi:10.1016/j.watres.2014.10.027

Galán, M. J. G., Blanco, S. G., Roldán, R. L., Cruz, S. D., & Barceló, D. (2012). Ecotoxicity evaluation and removal

of sulfonamides and their acetylated metabolites during conventional wastewater treatment. The Science of the

Total Environment, 437, 403–412. doi:10.1016/j.scitotenv.2012.08.038

Galán, M. J. G., Cruz, M. S. D., & Barceló, D. (2010). Determination of 19 sulfonamides in environmental water

samples by automated on-line solid-phase extraction-liquid chromatography-tandem mass spectrometry (SPE-

LC-MS/MS). Talanta, 81(1-2), 355–366. doi:10.1016/j.talanta.2009.12.009

Galán, M. J. G., Cruz, M. S. D., & Barceló, D. (2011). Occurrence of sulfonamide residues along the Ebro River

basin: removal in wastewater treatment plants and environmental impact assessment. Environment

International, 37(2), 462–473. doi:10.1016/j.envint.2010.11.011

Galán, M. J. G., Garrido, T., Fraile, J., Ginebreda, A., Cruz, M. S. D., & Barceló, D. (2010). Simultaneous occurrence

of nitrates and sulfonamide antibiotics in two ground water bodies of Catalonia (Spain). Journal of Hydrology,

383(1-2), 93–101. doi:10.1016/j.jhydrol.2009.06.042

Galán, M. J. G., Villagrasa, M., Cruz, M. S. D., & Barceló, D. (2010). LC-QqLIT MS analysis of nine sulfonamides

and one of their acetylated metabolites in the Llobregat River basin. Quantitative determination and qualitative

evaluation by IDA experiments. Analytical and Bioanalytical Chemistry, 397(3), 1325–1334.

doi:10.1007/s00216-010-3630-y

Gardner, M., Comber, S., Scrimshaw, M. D., Cartmell, E., Lester, J., & Ellor, B. (2012). The significance of

hazardous chemicals in wastewater treatment works effluents. Science of The Total Environment, 437, 363–

372. doi:10.1016/j.scitotenv.2012.07.086

Göbel, A., McArdell, C. S., Suter, M. J. F., & Giger, W. (2004). Trace determination of macrolide and sulfonamide

antimicrobials, a human sulfonamide metabolite, and trimethoprim in wastewater using liquid chromatography

coupled to electrospray tandem mass spectrometry. Analytical Chemistry, 76(16), 4756–4764.

doi:10.1021/ac0496603

Golet, E. M., Alder, A. C., & Giger, W. (2002). Environmental exposure and risk assessment of fluoroquinolone

antibacterial agents in wastewater and river water of the Glatt Valley Watershed, Switzerland. Environmental

Science & Technology, 36(17), 3645–3651. doi:10.1021/es0256212

Golovko, O., Kumar, V., Fedorova, G., Randak, T., & Grabic, R. (2014). Seasonal changes in antibiotics,

antidepressants/psychiatric drugs, antihistamines and lipid regulators in a wastewater treatment plant.

Chemosphere, 111, 418–426. doi:10.1016/j.chemosphere.2014.03.132

Gómez, M. J., Petrović, M., Alba, A. R. F., & Barceló, D. (2006). Determination of pharmaceuticals of various

therapeutic classes by solid-phase extraction and liquid chromatography-tandem mass spectrometry analysis in

hospital effluent wastewaters. Journal of Chromatography A, 1114(2), 224–233.

doi:10.1016/j.chroma.2006.02.038

González, R. M., Mozaz, S. R., Gros, M., Barceló, D., & León, V. M. (2015). Seasonal distribution of

pharmaceuticals in marine water and sediment from a Mediterranean coastal lagoon (SE Spain).

Environmental Research, 138, 326–344. doi:10.1016/j.envres.2015.02.016

González, R. M., Mozaz, S. R., Gros, M., Cánovas, E. P., Barceló, D., & León, V. M. (2014). Input of

pharmaceuticals through coastal surface watercourses into a Mediterranean Lagoon (Mar Menor, SE Spain):

Sources and seasonal variations. The Science of the Total Environment, 490, 59–72.

doi:10.1016/j.scitotenv.2014.04.097

Grabic, R., Fick, J., Lindberg, R. H., Fedorova, G., & Tysklind, M. (2012). Multi-residue method for trace level

determination of pharmaceuticals in environmental samples using liquid chromatography coupled to triple

quadrupole mass spectrometry. Talanta, 100, 183–195. doi:10.1016/j.talanta.2012.08.032

Gros, M., Mozaz, S. R., & Barceló, D. (2012). Fast and comprehensive multi-residue analysis of a broad range of

human and veterinary pharmaceuticals and some of their metabolites in surface and treated waters by ultra-

high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem. Journal of

Chromatography A, 1248, 104–121. doi:10.1016/j.chroma.2012.05.084

Gros, M., Mozaz, S. R., & Barceló, D. (2013). Rapid analysis of multiclass antibiotic residues and some of their

metabolites in hospital, urban wastewater and river water by ultra-high performance liquid chromatography

coupled to quadrupole-linear ion trap tandem mass spectrometry. Journal of Chromatography A, 1292, 173–

188. doi:10.1016/j.chroma.2012.12.072

Gros, M., Petrović, M., & Barceló, D. (2006). Development of a multi-residue analytical methodology based on

liquid chromatography-tandem mass spectrometry (LC-MS/MS) for screening and trace level determination of

pharmaceuticals in surface and wastewaters. Talanta, 70(4), 678–690. doi:10.1016/j.talanta.2006.05.024

Gros, M., Petrović, M., & Barceló, D. (2007). Wastewater treatment plants as a pathway for aquatic contamination by

pharmaceuticals in the Ebro River Basin (Northeast Spain). Environmental Toxicology and Chemistry, 26(8),

1553–1562. doi:10.1897/06-495R.1

Hilton, M. J., & Thomas, K. V. (2003). Determination of selected human pharmaceutical compounds in effluent and

surface water samples by high-performance liquid chromatography–electrospray tandem mass spectrometry.

Journal of Chromatography A, 1015(1-2), 129–141. doi:10.1016/S0021-9673(03)01213-5

Hordern, B. K., Dinsdale, R. M., & Guwy, A. J. (2007). Multiresidue method for the determination of basic/neutral

pharmaceuticals and illicit drugs in surface water by solid-phase extraction and ultra performance liquid

chromatography-positive electrospray ionisation tandem mass spectrometry. Journal of Chromatography A,

1161(1-2), 132–145. doi:10.1016/j.chroma.2007.05.074

Hordern, B. K., Dinsdale, R. M., & Guwy, A. J. (2008a). Multiresidue methods for the analysis of pharmaceuticals,

personal care products and illicit drugs in surface water and wastewater by solid-phase extraction and ultra

performance liquid chromatography-electrospray tandem mass spectrometry. Analytical and Bioanalytical

Chemistry, 391, 1293–1308. doi:10.1007/s00216-008-1854-x

Hordern, B. K., Dinsdale, R. M., & Guwy, A. J. (2008b). The effect of signal suppression and mobile phase

composition on the simultaneous analysis of multiple classes of acidic/neutral pharmaceuticals and personal

care products in surface water by solid-phase extraction and ultra performance liquid chromatogra. Talanta,

74(5), 1299–1312. doi:10.1016/j.talanta.2007.08.037

Hordern, B. K., Dinsdale, R. M., & Guwy, A. J. (2008c). The occurrence of pharmaceuticals, personal care products,

endocrine disruptors and illicit drugs in surface water in South Wales, UK. Water Research, 42(13), 3498–

3518. doi:10.1016/j.watres.2008.04.026

Hordern, B. K., Dinsdale, R. M., & Guwy, A. J. (2009). The removal of pharmaceuticals, personal care products,

endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving

waters. Water Research, 43(2), 363–380. doi:10.1016/j.watres.2008.10.047

Huntscha, S., Singer, H. P., McArdell, C. S., Frank, C. E., & Hollender, J. (2012). Multiresidue analysis of 88 polar

organic micropollutants in ground, surface and wastewater using online mixed-bed multilayer solid-phase

extraction coupled to high performance liquid chromatography–tandem mass spectrometry. Journal of

Chromatography A, 1268, 74–83. doi:10.1016/j.chroma.2012.10.032

Iglesias, A., Nebot, C., Miranda, J. M., Vázquez, B. I., Abuín, C. M. F., & Cepeda, A. (2013). Determination of the

presence of three antimicrobials in surface water collected from urban and rural areas. Antibiotics, 2(1), 46–57.

doi:10.3390/antibiotics2010046

Jeanton, H. C., Schemberg, D., Mohammed, N., Huneau, F., Bertrand, G., Lavastre, V., & Le Coustumer, P. (2014).

Evaluation of pharmaceuticals in surface water: reliability of PECs compared to MECs. Environment

International, 73, 10–21. doi:10.1016/j.envint.2014.06.015

Jongh, C. M., Kooij, P. J. F., Voogt, P., & Laak, T. L. (2012). Screening and human health risk assessment of

pharmaceuticals and their transformation products in Dutch surface waters and drinking water. The Science of

the Total Environment, 427-428, 70–77. doi:10.1016/j.scitotenv.2012.04.010

Joss, A., Keller, E., Alder, A. C., Göbel, A., McArdell, C. S., Ternes, T., & Siegrist, H. (2005). Removal of

pharmaceuticals and fragrances in biological wastewater treatment. Water Research, 39(14), 3139–3152.

doi:10.1016/j.watres.2005.05.031

Kosma, C. I., Lambropoulou, D. A., & Albanis, T. A. (2014). Investigation of PPCPs in wastewater treatment plants

in Greece: occurrence, removal and environmental risk assessment. The Science of the Total Environment,

466-467, 421–438. doi:10.1016/j.scitotenv.2013.07.044

Laak, T. L., Aa, M., Houtman, C. J., Stoks, P. G., & Wezel, A. P. (2010). Relating environmental concentrations of

pharmaceuticals to consumption: A mass balance approach for the River Rhine. Environment International,

36(5), 403–9. doi:10.1016/j.envint.2010.02.009

Lindberg, R. H., Wennberg, P., Johansson, M. I., Tysklind, M., & Andersson, B. A. V. (2005). Screening of human

antibiotic substances and determination of weekly mass flows in five sewage treatment plants in Sweden.

Environmental Science & Technology, 39(10), 3421–3429. doi:10.1021/es048143z

Lindberg, R., Jarnheimer, P. A., Olsen, B., Johansson, M., & Tysklind, M. (2004). Determination of antibiotic

substances in hospital sewage water using solid phase extraction and liquid chromatography/mass

spectrometry and group analogue internal standards. Chemosphere, 57(10), 1479–1488.

doi:10.1016/j.chemosphere.2004.09.015

Loos, R., Carvalho, R., António, D. C., Comero, S., Locoro, G., Tavazzi, S., et al. (2013). EU-wide monitoring

survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water research,

47(17), 6475–6487. doi:10.1016/j.watres.2013.08.024

Loos, R., Locoro, G., Comero, S., Contini, S., Schwesig, D., Werres, F., et al. (2010). Pan-European survey on the

occurrence of selected polar organic persistent pollutants in ground water. Water Research, 44(14), 4115–

4126. doi:10.1016/j.watres.2010.05.032

Loos, R., Locoro, G., & Contini, S. (2010). Occurrence of polar organic contaminants in the dissolved water phase of

the Danube River and its major tributaries using SPE-LC-MS(2) analysis. Water Research, 44(7), 2325–2335.

doi:10.1016/j.watres.2009.12.035

Lor, E. G., Sancho, J. V., & Hernández, F. (2011). Multi-class determination of around 50 pharmaceuticals, including

26 antibiotics, in environmental and wastewater samples by ultra-high performance liquid chromatography-

tandem mass spectrometry. Journal of Chromatography A, 1218(16), 2264–2275.

doi:10.1016/j.chroma.2011.02.026

Lor, E. G., Sancho, J. V., Serrano, R., & Hernández, F. (2012). Occurrence and removal of pharmaceuticals in

wastewater treatment plants at the Spanish Mediterranean area of Valencia. Chemosphere, 87(5), 453–462.

doi:10.1016/j.chemosphere.2011.12.025

Madureira, T. V., Barreiro, J. C., Rocha, M. J., Cass, Q. B., & Tiritan, M. E. (2009). Pharmaceutical trace analysis in

aqueous environmental matrices by liquid chromatography-ion trap tandem mass spectrometry. Journal of

Chromatography A, 1216(42), 7033–7042. doi:10.1016/j.chroma.2009.08.060

Maier, D., Blaha, L., Giesy, J. P., Henneberg, A., Köhler, H. R., Kuch, B., et al. (2015). Biological plausibility as a

tool to associate analytical data for micropollutants and effect potentials in wastewater, surface water, and

sediments with effects in fishes. Water Research, 72, 127–144. doi:10.1016/j.watres.2014.08.050

McArdell, C. S., Molnar, E., Suter, M. J. F., & Giger, W. (2003). Occurrence and fate of macrolide antibiotics in

wastewater treatment plants and in the Glatt Valley Watershed, Switzerland. Environmental Science &

Technology, 37(24), 5479–5486. doi:10.1021/es034368i

McEneff, G., Barron, L., Kelleher, B., Paull, B., & Quinn, B. (2014). A year-long study of the spatial occurrence and

relative distribution of pharmaceutical residues in sewage effluent, receiving marine waters and marine

bivalves. The Science of the Total Environment, 476-477, 317–326. doi:10.1016/j.scitotenv.2013.12.123

Mendoza, A., Aceña, J., Pérez, S., Alda, M. L., Barceló, D., Gil, A., & Valcárcel, Y. (2015). Pharmaceuticals and

iodinated contrast media in a hospital wastewater: A case study to analyse their presence and characterise their

environmental risk and hazard. Environmental Research, 140, 225–41. doi:10.1016/j.envres.2015.04.003

Miller, T. H., McEneff, G. L., Brown, R. J., Owen, S. F., Bury, N. R., & Barron, L. P. (2015). Pharmaceuticals in the

freshwater invertebrate, Gammarus pulex, determined using pulverised liquid extraction, solid phase extraction

and liquid chromatography-tandem mass spectrometry. The Science of the Total Environment, 511, 153–160.

doi:10.1016/j.scitotenv.2014.12.034

Molina, J. R., López, B. G., Reyes, J. F. G., & Díaz, A. M. (2014). Monitoring of selected priority and emerging

contaminants in the Guadalquivir River and other related surface waters in the province of Jaén, South East

Spain. The Science of the Total Environment, 479-480, 247–257. doi:10.1016/j.scitotenv.2014.01.121

Muñoz, D. C., Martín, J., Santos, J. L., Aparicio, I., & Alonso, E. (2009). An affordable method for the simultaneous

determination of the most studied pharmaceutical compounds as wastewater and surface water pollutants.

Journal of Separation Science, 32(18), 3064–3073. doi:10.1002/jssc.200900128

Muñoz, D. C., Martín, J., Santos, J. L., Aparicio, I., & Alonso, E. (2010). Occurrence, temporal evolution and risk

assessment of pharmaceutically active compounds in Doñana Park (Spain). Journal of Hazardous Materials,

183(1-3), 602–608. doi:10.1016/j.jhazmat.2010.07.067

Nebot, C., Gibb, S. W., & Boyd, K. G. (2007). Quantification of human pharmaceuticals in water samples by high

performance liquid chromatography-tandem mass spectrometry. Analytica Chimica Acta, 598(1), 87–94.

doi:10.1016/j.aca.2007.07.029

Nödler, K., Licha, T., Bester, K., & Sauter, M. (2010). Development of a multi-residue analytical method, based on

liquid chromatography-tandem mass spectrometry, for the simultaneous determination of 46 micro-

contaminants in aqueous samples. Journal of Chromatography A, 1217(42), 6511–6521.

doi:10.1016/j.chroma.2010.08.048

Opriş, O., Soran, M. L., Coman, V., Copaciu, F., & Ristoiu, D. (2013). Determination of some frequently used

antibiotics in waste waters using solid phase extraction followed by high performance liquid chromatography

with diode array and mass spectrometry detection. Central European Journal of Chemistry, 11(8), 1343–1351.

doi:10.2478/s11532-013-0263-y

Osorio, V., Larrañaga, A., Aceña, J., Pérez, S., & Barceló, D. (2015). Concentration and risk of pharmaceuticals in

freshwater systems are related to the population density and the livestock units in Iberian Rivers. The Science

of the Total Environment, 540, 267–277. doi:10.1016/j.scitotenv.2015.06.143

Osorio, V., Marcé, R., Pérez, S., Ginebreda, A., Cortina, J. L., & Barceló, D. (2012). Occurrence and modeling of

pharmaceuticals on a sewage-impacted Mediterranean River and their dynamics under different hydrological

conditions. The Science of the Total Environment, 440, 3–13. doi:10.1016/j.scitotenv.2012.08.040

Pailler, J. Y., Krein, A., Pfister, L., Hoffmann, L., & Guignard, C. (2009). Solid phase extraction coupled to liquid

chromatography-tandem mass spectrometry analysis of sulfonamides, tetracyclines, analgesics and hormones

in surface water and wastewater in Luxembourg. The Science of the Total Environment, 407(16), 4736–4743.

doi:10.1016/j.scitotenv.2009.04.042

Papageorgiou, M., Kosma, C., & Lambropoulou, D. (2016). Seasonal occurrence, removal, mass loading and

environmental risk assessment of 55 pharmaceuticals and personal care products in a municipal wastewater

treatment plant in Central Greece. The Science of the Total Environment, 543, 547–569.

doi:10.1016/j.scitotenv.2015.11.047

Pasquini, L., Munoz, J. F., Pons, M. N., Yvon, J., Dauchy, X., France, X., et al. (2014). Occurrence of eight

household micropollutants in urban wastewater and their fate in a wastewater treatment plant. Statistical

evaluation. The Science of the Total Environment, 481, 459–468. doi:10.1016/j.scitotenv.2014.02.075

Pena, A., Chmielova, D., Lino, C. M., & Solich, P. (2007). Determination of fluoroquinolone antibiotics in surface

waters from Mondego River by high performance liquid chromatography using a monolithic column. Journal

of Separation Science, 30(17), 2924–4928. doi:10.1002/jssc.200700363

Pereira, A. M. P. T., Silva, L. J. G., Meisel, L. M., Lino, C. M., & Pena, A. (2015). Environmental impact of

pharmaceuticals from Portuguese wastewaters: geographical and seasonal occurrence, removal and risk

assessment. Environmental Research, 136, 108–119. doi:10.1016/j.envres.2014.09.041

Petrovic, M., Gros, M., & Barcelo, D. (2006). Multi-residue analysis of pharmaceuticals in wastewater by ultra-

performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. Journal of Chromatography

A, 1124(1-2), 68–81. doi:10.1016/j.chroma.2006.05.024

Reverté, S., Borrull, F., Pocurull, E., & Marcé, R. M. (2003). Determination of antibiotic compounds in water by

solid-phase extraction–high-performance liquid chromatography–(electrospray) mass spectrometry. Journal of

Chromatography A, 1010(2), 225–232. doi:10.1016/S0021-9673(03)01064-1

Roberts, P. H., & Thomas, K. V. (2006). The occurrence of selected pharmaceuticals in wastewater effluent and

surface waters of the lower Tyne catchment. The Science of the Total Environment, 356(1-3), 143–153.

doi:10.1016/j.scitotenv.2005.04.031

Roig, P. V., Andreu, V., Blasco, C., & Picó, Y. (2012). Risk assessment on the presence of pharmaceuticals in

sediments, soils and waters of the Pego-Oliva Marshlands (Valencia, eastern Spain). The Science of the Total

Environment, 440, 24–32. doi:10.1016/j.scitotenv.2012.08.036

Roldán, R. L., Alda, M. L., Gros, M., Petrovic, M., Alonso, J. M., & Barceló, D. (2010). Advanced monitoring of

pharmaceuticals and estrogens in the Llobregat River Basin (Spain) by liquid chromatography-triple

quadrupole-tandem mass spectrometry in combination with ultra performance liquid chromatography-time of

flight-mass spectrometry. Chemosphere, 80(11), 1337–1344. doi:10.1016/j.chemosphere.2010.06.042

Rosal, R., Rodríguez, A., Melón, J. A. P., Petre, A., Calvo, E. G., Gómez, M. J., et al. (2010). Occurrence of

emerging pollutants in urban wastewater and their removal through biological treatment followed by

ozonation. Water Research, 44(2), 578–588. doi:10.1016/j.watres.2009.07.004

Rossmann, J., Schubert, S., Gurke, R., Oertel, R., & Kirch, W. (2014). Simultaneous determination of most

prescribed antibiotics in multiple urban wastewater by SPE-LC-MS/MS. Journal of Chromatography B, 969,

162–170. doi:10.1016/j.jchromb.2014.08.008

Ruff, M., Mueller, M. S., Loos, M., & Singer, H. P. (2015). Quantitative target and systematic non-target analysis of

polar organic micro-pollutants along the river Rhine using high-resolution mass-spectrometry – identification

of unknown sources and compounds. Water Research, 87, 145–154. doi:10.1016/j.watres.2015.09.017

Santos, L. H. M. L. M., Gros, M., Mozaz, S. R., Matos, C. D., Pena, A., Barceló, D., & Montenegro, M. C. B. S. M.

(2013). Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: identification of

ecologically relevant pharmaceuticals. The Science of the Total Environment, 461-462, 302–316.

doi:10.1016/j.scitotenv.2013.04.077

Seifrtová, M., Aufartová, J., Vytlacilová, J., Pena, A., Solich, P., & Nováková, L. (2010). Determination of

fluoroquinolone antibiotics in wastewater using ultra high-performance liquid chromatography with mass

spectrometry and fluorescence detection. Journal of Separation Science, 33(14), 2094–2108.

doi:10.1002/jssc.201000215

Senta, I., Terzic, S., & Ahel, M. (2013). Occurrence and fate of dissolved and particulate antimicrobials in municipal

wastewater treatment. Water Research, 47(2), 705–714. doi:10.1016/j.watres.2012.10.041

Serna, R. L., Pérez, S., Ginebreda, A., Petrović, M., & Barceló, D. (2010). Fully automated determination of 74

pharmaceuticals in environmental and waste waters by online solid phase extraction–liquid chromatography-

electrospray–tandem mass spectrometry. Talanta, 83(2), 410–424. doi:10.1016/j.talanta.2010.09.046

Serna, R. L., Petrović, M., & Barceló, D. (2011). Development of a fast instrumental method for the analysis of

pharmaceuticals in environmental and wastewaters based on ultra high performance liquid chromatography

(UHPLC)-tandem mass spectrometry (MS/MS). Chemosphere, 85(8), 1390–1399.

doi:10.1016/j.chemosphere.2011.07.071

Serna, R. L., Petrović, M., & Barceló, D. (2012). Occurrence and distribution of multi-class pharmaceuticals and their

active metabolites and transformation products in the Ebro river basin (NE Spain). The Science of the Total

Environment, 440, 280–289. doi:10.1016/j.scitotenv.2012.06.027

Sikorska, M. G., Posyniak, A., Sniegocki, T., & Zmudzki, J. (2015). Liquid chromatography-tandem mass

spectrometry multiclass method for the determination of antibiotics residues in water samples from water

supply systems in food-producing animal farms. Chemosphere, 119, 8–15.

doi:10.1016/j.chemosphere.2014.04.105

Silva, B. F., Jelic, A., Serna, R. L., Mozeto, A. A., Petrovic, M., & Barceló, D. (2011). Occurrence and distribution of

pharmaceuticals in surface water, suspended solids and sediments of the Ebro river basin, Spain.

Chemosphere, 85(8), 1331–1339. doi:10.1016/j.chemosphere.2011.07.051

Tamtam, F., Mercier, F., Le Bot, B., Eurin, J., Dinh, Q. T., Clément, M., & Chevreuil, M. (2008). Occurrence and

fate of antibiotics in the Seine River in various hydrological conditions. The Science of the Total Environment,

393(1), 84–95. doi:10.1016/j.scitotenv.2007.12.009

Terzić, S., Senta, I., Ahel, M., Gros, M., Petrović, M., Barceló, D., et al. (2008). Occurrence and fate of emerging

wastewater contaminants in Western Balkan Region. The Science of the Total Environment, 399(1-3), 66–77.

doi:10.1016/j.scitotenv.2008.03.003

Thomas, K. V., & Hilton, M. J. (2004). The occurrence of selected human pharmaceutical compounds in UK

estuaries. Marine Pollution Bulletin, 49(5-6), 436–444. doi:10.1016/j.marpolbul.2004.02.028

Tylová, T., Flieger, M., & Olšovská, J. (2013). Determination of antibiotics in influents and effluents of wastewater-

treatment-plants in the Czech Republic-development and application of the SPE and a UHPLC-ToFMS

method. Analytical Methods, 5(8), 2110–2118. doi:10.1039/c3ay00048f

Valcárcel, Y., Alonso, S. G., Gil, J. L. R., Gil, A., & Catalá, M. (2011). Detection of pharmaceutically active

compounds in the rivers and tap water of the Madrid Region (Spain) and potential ecotoxicological risk.

Chemosphere, 84(10), 1336–1348. doi:10.1016/j.chemosphere.2011.05.014

Vergeynst, L., Haeck, A., Wispelaere, P., Langenhove, H., & Demeestere, K. (2015). Multiresidue analysis of

pharmaceuticals in wastewater by liquid chromatography-magnetic sector mass spectrometry: Method quality

assessment and application in a Belgian case study. Chemosphere, 119, S2–S8.

doi:10.1016/j.chemosphere.2014.03.069

Verlicchi, P., Al Aukidy, M., Galletti, A., Petrovic, M., & Barceló, D. (2012). Hospital effluent: Investigation of the

concentrations and distribution of pharmaceuticals and environmental risk assessment. The Science of the Total

Environment, 430, 109–118. doi:10.1016/j.scitotenv.2012.04.055

Verlicchi, P., Al Aukidy, M., Jelic, A., Petrović, M., & Barceló, D. (2014). Comparison of measured and predicted

concentrations of selected pharmaceuticals in wastewater and surface water: A case study of a catchment area

in the Po Valley (Italy). The Science of the Total Environment, 470-471, 844–854.

doi:10.1016/j.scitotenv.2013.10.026

Vieno, N. M., Härkki, H., Tuhkanen, T., & Kronberg, L. (2007). Occurrence of pharmaceuticals in river water and

their elimination in a pilot-scale drinking water treatment plant. Environmental Science & Technology, 41(14),

5077–5084. doi:10.1021/es062720x

Vieno, N. M., Tuhkanen, T., & Kronberg, L. (2006). Analysis of neutral and basic pharmaceuticals in sewage

treatment plants and in recipient rivers using solid phase extraction and liquid chromatography-tandem mass

spectrometry detection. Journal of Chromatography A, 1134(1-2), 101–111.

doi:10.1016/j.chroma.2006.08.077

Vieno, N. M., Tuhkanen, T., & Kronberg, L. (2007). Elimination of pharmaceuticals in sewage treatment plants in

Finland. Water Research, 41(5), 1001–1012. doi:10.1016/j.watres.2006.12.017

Wagil, M., Kumirska, J., Stolte, S., Puckowski, A., Maszkowska, J., Stepnowski, P., & Białk-Bielińska, A. (2014).

Development of sensitive and reliable LC-MS/MS methods for the determination of three fluoroquinolones in

water and fish tissue samples and preliminary environmental risk assessment of their presence in two rivers in

northern Poland. The Science of the Total Environment, 493, 1006–1013. doi:10.1016/j.scitotenv.2014.06.082

Wagil, M., Maszkowska, J., Białk-Bielińska, A., Caban, M., Stepnowski, P., & Kumirska, J. (2015). Determination of

metronidazole residues in water, sediment and fish tissue samples. Chemosphere, 119, S28–S34.

doi:10.1016/j.chemosphere.2013.12.061

Zhang, Z. L., & Zhou, J. L. (2007). Simultaneous determination of various pharmaceutical compounds in water by

solid-phase extraction-liquid chromatography-tandem mass spectrometry. Journal of Chromatography A,

1154(1-2), 205–213. doi:10.1016/j.chroma.2007.03.105

Zorita, S., Mårtensson, L., & Mathiasson, L. (2009). Occurrence and removal of pharmaceuticals in a municipal

sewage treatment system in the south of Sweden. The Science of the Total Environment, 407(8), 2760–2770.

doi:10.1016/j.scitotenv.2008.12.030

Zuccato, E., Castiglioni, S., Bagnati, R., Melis, M., & Fanelli, R. (2010). Source, occurrence and fate of antibiotics in

the Italian aquatic environment. Journal of Hazardous Materials, 179(1-3), 1042–1048.

doi:10.1016/j.jhazmat.2010.03.110

Zuccato, E., Castiglioni, S., & Fanelli, R. (2005). Identification of the pharmaceuticals for human use contaminating

the Italian aquatic environment. Journal of Hazardous Materials, 122(3), 205–209.

doi:10.1016/j.jhazmat.2005.03.001