ars.els-cdn.com · Web viewY. Xia, K. Sun, J. Ouyang, Highly conductive...

11
Supplementary Information for Spray Coated High Conductivity PEDOT:PSS Transparent Electrodes for Stretchable and Mechanically Robust Organic Solar Cells Jeffrey G. Tait, a,b Brian J. Worfolk, a,b Samuel A. Maloney, a,b Tate C. Hauger, a,b Anastasia L. Elias, a,c Jillian M. Buriak, a,b Kenneth D. Harris a a National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada b Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada c Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada References associated with Fig. 2 – Transmission/Sheet Resistance Data for Transparent Electrodes: F.C. Krebs, Roll-to-roll fabrication of monolithic large-area polymer solar cells free from indium-tin-oxide, Solar Energy Materials and Solar Cells 93 (2009) 1636-1641. F.C. Krebs, All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps, Organic Electronics 10 (2009) 761-768. R. Po, C. Carbonera, A. Bernardi, F. Tinti, N. Camaioni, Polymer- and carbon-based electrodes for polymer solar cells: Toward low-cost, continuous fabrication over large area, Solar Energy Materials and Solar Cells 100 (2012) 97-114. C.-K. Cho, W.-J. Hwang, K. Eun, S.-H. Choa, S.-I. Na, H.-K. Kim, Mechanical flexibility of transparent PEDOT:PSS electrodes prepared by gravure printing for flexible organic solar

Transcript of ars.els-cdn.com · Web viewY. Xia, K. Sun, J. Ouyang, Highly conductive...

Page 1: ars.els-cdn.com · Web viewY. Xia, K. Sun, J. Ouyang, Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) films treated with an amphiphilic fluoro compound

Supplementary Information

for

Spray Coated High Conductivity PEDOT:PSS Transparent Electrodes for Stretchable and Mechanically Robust Organic Solar Cells

Jeffrey G. Tait,a,b Brian J. Worfolk,a,b Samuel A. Maloney,a,b Tate C. Hauger,a,b Anastasia L. Elias,a,c Jillian M. Buriak,a,b Kenneth D. Harrisa

aNational Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, CanadabDepartment of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, CanadacDepartment of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada

References associated with Fig. 2 – Transmission/Sheet Resistance Data for Transparent Electrodes:

F.C. Krebs, Roll-to-roll fabrication of monolithic large-area polymer solar cells free from indium-tin-oxide, Solar Energy Materials and Solar Cells 93 (2009) 1636-1641.

F.C. Krebs, All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps, Organic Electronics 10 (2009) 761-768.

R. Po, C. Carbonera, A. Bernardi, F. Tinti, N. Camaioni, Polymer- and carbon-based electrodes for polymer solar cells: Toward low-cost, continuous fabrication over large area, Solar Energy Materials and Solar Cells 100 (2012) 97-114.

C.-K. Cho, W.-J. Hwang, K. Eun, S.-H. Choa, S.-I. Na, H.-K. Kim, Mechanical flexibility of transparent PEDOT:PSS electrodes prepared by gravure printing for flexible organic solar cells, Solar Energy Materials and Solar Cells 95 (2011) 3269-3275.

E. Ahlswede, W. Mühleisen, M.W. bin Moh Wahi, J. Hanisch, M. Powalla, Highly efficient organic solar cells with printable low-cost transparent contacts, Applied Physics Letters 92 (2008) 143307.

S.-I. Na, S.-S. Kim, J. Jo, D.-Y. Kim, Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes, Advanced Materials 20 (2008) 4061-4067.

S.-I. Na, G. Wang, S.-S. Kim, T.-W. Kim, S.-H. Oh, B.-K. Yu, T. Lee, D.-Y. Kim, Evolution of nanomorphology and anisotropic conductivity in solvent-modified PEDOT:PSS films for polymeric anodes of polymer solar cells, Journal of Materials Chemistry 19 (2009) 9045-9053.

Page 2: ars.els-cdn.com · Web viewY. Xia, K. Sun, J. Ouyang, Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) films treated with an amphiphilic fluoro compound

F. Zhang, M. Johansson, M.R. Andersson, J.C. Hummelen, O. Inganäs, Polymer photovoltaic cells with conducting polymer anodes, Advanced Materials 14 (2002) 662-665.

Y.-S. Hsiao, W.-T. Whang, C.-P. Chen, Y.-C. Chen, High-conductivity poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film for use in ITO-free polymer solar cells, Journal of Materials Chemistry 18 (2008) 5948-5955.

S.-I. Na, B.-K. Yu, S.-S. Kim, D. Vak, T.-S. Kim, J.-S. Yeo, D.-Y. Kim, Fully spray-coated ITO-free organic solar cells for low-cost power generation, Solar Energy Materials and Solar Cells 94 (2010) 1333-1337.

W. Gaynor, G.F. Burkhard, M.D. McGehee, P. Peumans, Smooth nanowire/polymer composite transparent electrodes, Advanced Materials 23 (2011) 2905-2910.

J.-Y. Lee, S.T. Connor, Y. Cui, P. Peumans, Solution-processed metal nanowire mesh transparent electrodes, Nano Letters 8 (2008) 689-692.

A.D. Pasquier, H.E. Unalan, A. Kanwal, S. Miller, M. Chhowalla, Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells, Applied Physics Letters 87 (2005) 203511.

M.W. Rowell, M.A. Topinka, M.D. McGehee, H.-J. Prall, G. Dennler, N.S. Sariciftci, L. Hu, G. Gruner, Organic solar cells with carbon nanotube network electrodes, Applied Physics Letters 88 (2006) 233506.

J. Wu, M. Agrawal, H.A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans, Organic light-emitting diodes on solution-processed graphene transparent electrodes, ACS Nano 4 (2010) 43-48.

Y.H. Kim, C. Sachse, M.L. Machala, C. May, L. Müller-Meskamp, K. Leo, Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells, Advanced Functional Materials 21 (2011) 1076-1081.

Y.-H. Ha, N. Nikolov, S.K. Pollack, J. Mastrangelo, B.D. Martin, R. Shashidhar, Towards a transparent, highly conductive poly(3,4-ethylenedioxythiophene), Advanced Functional Materials 14 (2004) 615-622.

T. Aernouts, P. Vanlaeke, W. Geens, J. Poortmans, P. Heremans, S. Borghs, R. Mertens, R. Andriessen, L. Leenders, Printable anodes for flexible organic solar cell modules, Thin Solid Films 451-452 (2004) 22-25.

Y. Xia, K. Sun, J. Ouyang, Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) films treated with an amphiphilic fluoro compound as the transparent electrode of polymer solar cells, Energy & Environmental Science 5 (2012) 5325-5332.

Page 3: ars.els-cdn.com · Web viewY. Xia, K. Sun, J. Ouyang, Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) films treated with an amphiphilic fluoro compound

C. Badre, L. Marquant, A.M. Alsayed, L.A. Hough, Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films using 1-ethyl-3-methylimidazolium tetracyanoborate ionic liquid, Advanced Functional Materials (2012) DOI:10.1002/adfm.201200225

D.A. Rider, R.T. Tucker, B.J. Worfolk, K.M. Krause, A. Lalany, M.J. Brett, J.M. Buriak, K.D. Harris, Indium tin oxide nanopillar electrodes in polymer/fullerene solar cells, Nanotechnology 22 (2011) 085706.

M. Vosgueritchian, D.J. Lipomi, Z. Bao, Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes, Advanced Functional Materials 22 (2012) 421-428.

T. Akter, W.S. Kim, Reversibly stretchable transparent conductive coatings of spray-deposited silver nanowires, ACS Applied Materials & Interfaces 4 (2012) 1855-1859.

V. Scardaci, R. Coull, J.N. Coleman, Very thin transparent, conductive carbon nanotube films on flexible substrates, Applied Physics Letters 97 (2010) 023114.

A.R. Rathmell, B.J. Wiley, The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates, Advanced Materials 23 (2011) 4798-4803.

Y. Zhu, Z. Sun, Z. Yan, Z. Jin, J.M. Tour, Rational design of hybrid graphene films for high performance transparent electrodes, ACS Nano 5 (2011) 6472-6479.

Y.-M. Chang, L. Wang, W.-F. Su, Polymer solar cells with poly(3,4-ethylenedioxythiophene) as transparent anode, Organic Electronics 9 (2008) 968-973.

A. Colsmann, F. Stenzel, G. Balthasar, H. Do, U. Lemmer, Plasma patterning of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) anodes for efficient polymer solar cells, Thin Solid Films 517 (2009) 1750-1752.

D.J. Lipomi, J.A. Lee, M. Vosgueritchian, B.C.-K. Tee, J.A. Bolander, Z. Bao, Electronic properties of transparent conductive films of PEDOT:PSS on stretchable substrates, Chemistry of Materials 24 (2012) 373-382.

K. Tvingstedt, O. Inganäs, Electrode grids for ITO free organic photovoltaic devices, Advanced Materials 19 (2007) 2893-2897.

M.L. Machala, L. Mueller-Meskamp, S. Gang, S. Olthof, K. Leo, On-substrate polymerization of solution-processed, transparent PEDOT:DDQ thin film electrodes with a hydrophobic polymer matrix, Organic Electronics 12 (2011) 1518-1526.

P.A. Levermore, L. Chen, X. Wang, R. Das, D.D.C. Bradley, Fabrication of highly conductive poly(3,4-ethylenedioxythiophene) films by vapor phase polymerization and their

Page 4: ars.els-cdn.com · Web viewY. Xia, K. Sun, J. Ouyang, Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) films treated with an amphiphilic fluoro compound

application in efficient organic light-emitting diodes, Advanced Materials 19 (2007) 2379-2385.

Y.S. Kim, S.B. Oh, J.H. Park, M.S. Cho, Y. Lee, Highly conductive PEDOT/silicate hybrid anode for ITO-free polymer solar cells, Solar Energy Materials and Solar Cells 94 (2010) 471-477.

H. Jin, C. Tao, M. Velusamy, M. Aljada, Y. Zhang, M. Hambsch, P.L. Burn, P. Meredith, Efficient, Large area ITO-and-PEDOT-free organic solar cell sub-modules, Advanced Materials (2012) DOI:10.1002/adma.201104896.

N. Cho, H.-L. Yip, J.A. Davies, P.D. Kazarinoff, D.F. Zeigler, M.M. Durban, Y. Segawa, K.M. O’Malley, C.K. Luscombe, A.K.-Y. Jen, In-situ crosslinking and n-doping of semiconducting polymers and their application as efficient electron-transporting materials in inverted polymer solar cells, Advanced Energy Materials 1 (2011) 1148-1153

Y. Feng, X. Ju, W. Feng, H. Zhang, Y. Cheng, J. Liu, A. Fujii, M. Ozaki, K. Yoshino, Organic solar cells using few-walled carbon nanotubes electrode controlled by the balance between sheet resistance and the transparency, Applied Physics Letters 94 (2009) 123302.

E. Kymakis, E. Stratakis, E. Koudoumas, Integration of carbon nanotubes as hole transport electrode in polymer/fullerene bulk heterojunction solar cells, Thin Solid Films 515 (2007) 8598-8600.

T.P. Tyler, R.E. Brock, H.J. Karmel, T.J. Marks, M.C. Hersam, Electronically monodisperse single-walled carbon nanotube thin films as transparent conducting anodes in organic photovoltaic devices, Advanced Energy Materials 1 (2011) 785-791.

R.C. Tenent, T.M. Barnes, J.D. Bergeson, A.J. Ferguson, B. To, L.M. Gedvilas, M.J. Heben, J.L. Blackburn, Ultrasmooth, large-area, high-uniformity, conductive transparent single-walled-carbon-nanotube films for photovoltaics produced by ultrasonic spraying, Advanced Materials 21 (2009) 3210-3216.

S. Kim, J. Yim, X. Wang, D.D.C. Bradley, S. Lee, J.C. DeMello, Spin- and spray-deposited single-walled carbon-nanotube electrodes for organic solar cells, Advanced Functional Materials 20 (2010) 2310-2316.

T.M. Barnes, J.D. Bergeson, R.C. Tenent, B.A. Larsen, G. Teeter, K.M. Jones, J.L. Blackburn, J. van de Lagemaat, Carbon nanotube network electrodes enabling efficient organic solar cells without a hole transport layer, Applied Physics Letters 96 (2010) 243309.

H.E. Unalan, P. Hiralal, D. Kuo, B. Parekh, G. Amaratunga, M. Chhowalla, Flexible organic photovoltaics from zinc oxide nanowires grown on transparent and conducting single walled carbon nanotube thin films, Journal of Materials Chemistry 18 (2008) 5909-5912.

Page 5: ars.els-cdn.com · Web viewY. Xia, K. Sun, J. Ouyang, Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) films treated with an amphiphilic fluoro compound

Fig. S1. Thickness of spray-cast PEDOT:PSS films as a function of solution flow rate through the ultrasonic atomizing nozzle.

Page 6: ars.els-cdn.com · Web viewY. Xia, K. Sun, J. Ouyang, Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) films treated with an amphiphilic fluoro compound

Fig. S2. Plot of root mean square roughness measured by AFM for a series spray coated PEDOT:PSS electrodes with different thicknesses.

Page 7: ars.els-cdn.com · Web viewY. Xia, K. Sun, J. Ouyang, Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) films treated with an amphiphilic fluoro compound

0 100 200 300 400 500 6000

20

40

60

80

100

120

Glass - Sample 1Glass - Sample 2ITOPEDOT:PSSPEDOT:PSS - EG Dip - Sample 1PEDOT:PSS - EG Dip - Sample 2

Indentation Depth (nm)

Red

uced

Mod

ulus

(GPa

)ITO

Glass

PEDOT:PSS

Fig. S3. Nanoindentation data for uncoated glass (two distinct samples), thick spray coated PEDOT:PSS layers on glass (three distinct samples, two of which were soaked in EG) and ITO layers on glass.

Page 8: ars.els-cdn.com · Web viewY. Xia, K. Sun, J. Ouyang, Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) films treated with an amphiphilic fluoro compound

Fig. S4. Current density vs. voltage curves for forward mode solar cells with PEDOT:PSS electrodes of various thicknesses.

Page 9: ars.els-cdn.com · Web viewY. Xia, K. Sun, J. Ouyang, Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) films treated with an amphiphilic fluoro compound

Fig. S5. Scanning electron microscopy images of OSC devices with (a,b) PEDOT:PSS bottom electrodes, (c,d) ITO bottom electrodes, and all with LiF/Al top contacts. All images were obtained after bending, where ITO-based devices clearly show cracking visible through the top contact.