ars.els-cdn.com · Web view[37] S.H. Jhung, J.-S. Chang, J.S. Hwang, S.-E. Park, Selective...

13
Supplementary Information Supplementary Information is available from the Journal of Membrane Science or from the author. Funding This work was supported by Institute Research Program of Korea Research Institute of Chemical Technology (KRICT), KK-1702- B20; and by the Global Excellent Technology Innovation of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) (No. 20135010100750) under the Ministry of Trade.

Transcript of ars.els-cdn.com · Web view[37] S.H. Jhung, J.-S. Chang, J.S. Hwang, S.-E. Park, Selective...

Supplementary Information

Supplementary Information is available from the Journal of Membrane Science or from the author.

Funding

This work was supported by Institute Research Program of Korea Research Institute of Chemical Technology (KRICT), KK-1702-B20; and by the Global Excellent Technology Innovation of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) (No. 20135010100750) under the Ministry of Trade.

Reference

[1] A. Brunetti, P. Bernardo, E. Drioli, G. Barbieri, Membrane engineering: Progress and potentialities in gas separations, Membrane Gas Separation, (2010) 279-312.

[2] B. Freeman, Y. Yampolskii, Membrane gas separation, John Wiley & Sons, 2011.

[3] R.W. Baker, B.T. Low, Gas Separation Membrane Materials: A Perspective, Macromolecules, 47 (2014) 6999-7013.

[4] C.A. Scholes, G.W. Stevens, S.E. Kentish, Membrane gas separation applications in natural gas processing, Fuel, 96 (2012) 15-28.

[5] C.A. Scholes, K.H. Smith, S.E. Kentish, G.W. Stevens, CO 2 capture from pre-combustion processes—strategies for membrane gas separation, International Journal of Greenhouse Gas Control, 4 (2010) 739-755.

[6] D. Branken, H. Krieg, J. le Roux, G. Lachmann, Separation of NF 3 and CF 4 using amorphous glassy perfluoropolymer Teflon AF and Hyflon AD60 membranes, Journal of Membrane Science, 462 (2014) 75-87.

[7] C.H. Lau, X. Mulet, K. Konstas, C.M. Doherty, M.A. Sani, F. Separovic, M.R. Hill, C.D. Wood, Hypercrosslinked Additives for Ageless Gas‐Separation Membranes, Angewandte Chemie International Edition, 55 (2016) 1998-2001.

[8] C.H. Lau, P.T. Nguyen, M.R. Hill, A.W. Thornton, K. Konstas, C.M. Doherty, R.J. Mulder, L. Bourgeois, A.C. Liu, D.J. Sprouster, Ending aging in super glassy polymer membranes, Angewandte Chemie International Edition, 53 (2014) 5322-5326.

[9] N. Rangnekar, N. Mittal, B. Elyassi, J. Caro, M. Tsapatsis, Zeolite membranes–a review and comparison with MOFs, Chemical Society Reviews, 44 (2015) 7128-7154.

[10] W.N.W. Salleh, A.F. Ismail, T. Matsuura, M.S. Abdullah, Precursor selection and process conditions in the preparation of carbon membrane for gas separation: A review, Separation & Purification Reviews, 40 (2011) 261-311.

[11] O. Shekhah, J. Liu, R. Fischer, C. Wöll, MOF thin films: existing and future applications, Chemical Society Reviews, 40 (2011) 1081-1106.

[12] T. Rodenas, M. van Dalen, E. García‐Pérez, P. Serra‐Crespo, B. Zornoza, F. Kapteijn, J. Gascon, Visualizing MOF Mixed Matrix Membranes at the Nanoscale: Towards Structure‐Performance Relationships in CO2/CH4 Separation Over NH2‐MIL‐53 (Al)@ PI, Advanced Functional Materials, 24 (2014) 249-256.

[13] Y. Huang, L. Wang, Z. Song, S. Li, M. Yu, Growth of High‐Quality, Thickness‐Reduced Zeolite Membranes towards N2/CH4 Separation Using High‐Aspect‐Ratio Seeds, Angewandte Chemie, 127 (2015) 10993-10997.

[14] X. Ma, S. Williams, X. Wei, J. Kniep, Y. Lin, Propylene/Propane Mixture Separation Characteristics and Stability of Carbon Molecular Sieve Membranes, Industrial & Engineering Chemistry Research, 54 (2015) 9824-9831.

[15] H.T. Kwon, H.-K. Jeong, A.S. Lee, H.S. An, J.S. Lee, Heteroepitaxially Grown Zeolitic Imidazolate Framework Membranes with Unprecedented Propylene/Propane Separation Performances, Journal of the American Chemical Society, 137 (2015) 12304-12311.

[16] K.V. Agrawal, B. Topuz, T.C.T. Pham, T.H. Nguyen, N. Sauer, N. Rangnekar, H. Zhang, K. Narasimharao, S.N. Basahel, L.F. Francis, Oriented MFI Membranes by Gel‐Less Secondary Growth of Sub‐100 nm MFI‐Nanosheet Seed Layers, Advanced Materials, 27 (2015) 3243-3249.

[17] M.Y. Jeon, D. Kim, P. Kumar, P.S. Lee, N. Rangnekar, P. Bai, M. Shete, B. Elyassi, H.S. Lee, K. Narasimharao, Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets, Nature, (2017).

[18] S. Li, J.L. Falconer, R.D. Noble, Improved SAPO‐34 Membranes for CO2/CH4 Separations, Advanced Materials, 18 (2006) 2601-2603.

[19] M.A. Carreon, S. Li, J.L. Falconer, R.D. Noble, SAPO‐34 Seeds and Membranes Prepared Using Multiple Structure Directing Agents, Advanced Materials, 20 (2008) 729-732.

[20] S. Li, J.L. Falconer, R.D. Noble, R. Krishna, Modeling Permeation of CO2/CH4, CO2/N2, and N2/CH4 Mixtures Across SAPO-34 Membrane with the Maxwell− Stefan Equations, Industrial & engineering chemistry research, 46 (2007) 3904-3911.

[21] T.L. Chew, A.L. Ahmad, S. Bhatia, Ba-SAPO-34 membrane synthesized from microwave heating and its performance for CO 2/CH 4 gas separation, Chemical engineering journal, 171 (2011) 1053-1059.

[22] S. Li, J.L. Falconer, R.D. Noble, SAPO-34 membranes for CO 2/CH 4 separation, Journal of Membrane Science, 241 (2004) 121-135.

[23] S. Li, M.A. Carreon, Y. Zhang, H.H. Funke, R.D. Noble, J.L. Falconer, Scale-up of SAPO-34 membranes for CO 2/CH 4 separation, Journal of Membrane Science, 352 (2010) 7-13.

[24] E.W. Ping, R. Zhou, H.H. Funke, J.L. Falconer, R.D. Noble, Seeded-gel synthesis of SAPO-34 single channel and monolith membranes, for CO 2/CH 4 separations, Journal of membrane science, 415 (2012) 770-775.

[25] S. Li, J.L. Falconer, R.D. Noble, SAPO-34 membranes for CO 2/CH 4 separations: Effect of Si/Al ratio, Microporous and Mesoporous Materials, 110 (2008) 310-317.

[26] S. Li, C.Q. Fan, High-flux SAPO-34 membrane for CO2/N2 separation, Industrial & Engineering Chemistry Research, 49 (2010) 4399-4404.

[27] S.R. Venna, M.A. Carreon, Amino-functionalized SAPO-34 membranes for CO2/CH4 and CO2/N2 separation, Langmuir, 27 (2011) 2888-2894.

[28] T. Wu, M.C. Diaz, Y. Zheng, R. Zhou, H.H. Funke, J.L. Falconer, R.D. Noble, Influence of propane on CO2/CH4 and N2/CH4 separations in CHA zeolite membranes, Journal of Membrane Science, 473 (2015) 201-209.

[29] S. Li, Z. Zong, S.J. Zhou, Y. Huang, Z. Song, X. Feng, R. Zhou, H.S. Meyer, M. Yu, M.A. Carreon, SAPO-34 Membranes for N2/CH4 separation: Preparation, characterization, separation performance and economic evaluation, Journal of Membrane Science, 487 (2015) 141-151.

[30] Z. Zong, X. Feng, Y. Huang, Z. Song, R. Zhou, S.J. Zhou, M.A. Carreon, M. Yu, S. Li, Highly permeable N 2/CH 4 separation SAPO-34 membranes synthesized by diluted gels and increased crystallization temperature, Microporous and Mesoporous Materials, 224 (2016) 36-42.

[31] X. Feng, Z. Zong, S.K. Elsaidi, J.B. Jasinski, R. Krishna, P.K. Thallapally, M.A. Carreon, Kr/Xe Separation over a Chabazite Zeolite Membrane, Journal of the American Chemical Society, 138 (2016) 9791-9794.

[32] M. Schottler, M. de Wild-Scholten, Carbon footprint of PECVD chamber cleaning, Photovoltaics Int, 2 (2008) 64-69.

[33] Summary Report:Global Anthropogenic Non-CO2 GreenHouse GAs Emissions: 1990 - 2030, EPA website : http://www.epa.gov/climatechange/EPAactivities/economics/nonco2projections.html., (2012).

[34] W.-T. Tsai, Environmental and health risk analysis of nitrogen trifluoride (NF 3), a toxic and potent greenhouse gas, Journal of hazardous materials, 159 (2008) 257-263.

[35] S. Lin, J. Li, R.P. Sharma, J. Yu, R. Xu, Fabrication of SAPO-34 Crystals with Different Morphologies by Microwave Heating, Topics in Catalysis, 53 (2010) 1304-1310.

[36] H.H. Funke, B. Tokay, R. Zhou, E.W. Ping, Y. Zhang, J.L. Falconer, R.D. Noble, Spatially resolved gas permeation through SAPO-34 membranes, Journal of membrane science, 409 (2012) 212-221.

[37] S.H. Jhung, J.-S. Chang, J.S. Hwang, S.-E. Park, Selective formation of SAPO-5 and SAPO-34 molecular sieves with microwave irradiation and hydrothermal heating, Microporous and Mesoporous Materials, 64 (2003) 33-39.

[38] T. Ishikawa, H. Yamaoka, Y. Harada, T. Fujii, T. Nagasawa, A general process for in situ formation of functional surface layers on ceramics, Nature, 416 (2002) 64-67.

[39] W. Xiao, Z. Chen, L. Zhou, J. Yang, J. Lu, J. Wang, A simple seeding method for MFI zeolite membrane synthesis on macroporous support by microwave heating, Microporous and Mesoporous Materials, 142 (2011) 154-160.

A Zeolite Membrane Module Composed of SAPO-34 Hollow Fibers for Use in Fluorinated Gas Enrichment

Pyung Soo Lee a,b,*, Min Soo Lim a, Ahrumi Park a, Hosik Park a,b, Seung-Eun Nam a, and You-in Park a,b,*

a. Advanced Materials Division, Center for Membranes, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 305-606, Republic of Korea

b. University of Science & Technology (UST), 176 Gajung-dong, Yuseong-gu, Daejeon 305-350, Republic of Korea

* Corresponding authors: Pyung Soo Lee: [email protected]

T. +82-42-860-7549, Fax. +82-42-860-7283

You-In Park: [email protected]

T. +82-42-860-7241, Fax. +82-42-860-7283

Figure A1

Figure A1. Schematic of NF3 enrichment system.

Figure A2

Figure A2. SEM images of surface of alumina disk after secondary growth. Surface of alumina disks after a) 5 h, b) 10 h, and c) 24 h at 180 °C. The gel composition was 1.0 Al2O3 : 1.0 P2O5 : 0.4 SiO2 : 1.0 TEAOH : 1.6 DPA : 160 H2O, and the synthesis was carried out at 180 °C under varying reaction time. Scale bars in a), b), and c) represent 15 μm.

Figure A3

Figure A3. SEM images of cleaned alumina hollow fibers after hydrothermal synthesis at 180°C for 6 h. Alumina hollow fibers were immersed in 10% HF solution for 24 h to remove impurities before hydrothermal synthesis. a) outer surface of the hollow fiber and b) inner surface of the hollow fiber. Scale bars in a) and b) represent 30 μm.

Figure A4

Figure A4. SEM images of alumina hollow fiber using low-graded alumina powder after sintering at 1,450 °C. a) Top view of an alumina hollow fiber, b) its high magnification view. c) EDS spectra of alumina hollow fiber, and d) Element maps for C, O, Al, and Pt. Scale bars in a) represent 2 mm and in b) represent 80 μm.

Figure A5

Figure A5. Cross-sectional view of SAPO-34 membrane formed on the inside of hollow fiber membranes after in-situ growth. Growth for a) 5 h, b) 10 h, and c) 24 h. Scale bars in a) b), and c) represent 15 μm.

Figure A6

Figure A6. XRD diffraction of SAPO-34 crystal.

Figure A7

Figure A7. A lab-scale NF3 enrichment system consisting of commercial polysulfone membranes. a) photo of NF3 enrichment system and b) its schematic flow diagram. The total membrane area needed for this system was 15 m2.

Figure A8

Figure A8. Separation performances of membranes toward N2/NF3 separation reported in the literature.1,2

1. Park, S.; Kang, W. R.; Kwon, H. T.; Kim, S.; Seo, M.; Bang, J.; Lee, S. h.; Jeong, H. K.; Lee, J. S., The polymeric upper bound for N2/NF3 separation and beyond; ZIF-8 containing mixed matrix membranes. Journal of Membrane Science 2015, 486, 29-39.

2. Kim, S.-J.; Park, Y.-I.; Nam, S.-E.; Park, H.; Lee, P. S., Separations of F-gases from nitrogen through thin carbon membranes. Separation and Purification Technology 2016, 158, 108-114