Array of Point Source

download Array of Point Source

of 28

Transcript of Array of Point Source

  • 7/28/2019 Array of Point Source

    1/28

  • 7/28/2019 Array of Point Source

    2/28

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 55

    The far-field approximation of the two-element array problem:

    Assumptions: The array elements are

    Identical, i.e.,

    Oriented in the same way in space(they have identical polarization),i.e.,

    excitation is of the same amplitude,i.e.,

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 66

    Then, the total field is:

    The total field of the array is equal to the product of the fieldcreated by a single element located at the origin and the Ar r a y

    f a c t o r ,AF.

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 77

    The normalizedAF,

    Using the normalized field pattern of a single element, En( ,), thenormalized field pattern of the array is expressed as:

    Since, the array factor does not depend on the directionalcharacteristics of the individual elements, it can beformulated by replacing the actual elements with isotropic(point) sources assuming that each point source hasamplitude, phase and location of the corresponding elementit is replacing.

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 88

    The field pattern of an array of nonThe field pattern of an array of non--isotropic but similar pointisotropic but similar pointsources is thesources is the product ofproduct of thethe pattern of thepattern of the individual sourcesourceand theand the pattern of an array of isotropic point sourcespattern of an array of isotropic point sources havinghavingthe same locations, relative amplitudes and phase as thethe same locations, relative amplitudes and phase as the

    nonnon--isotropic sources.isotropic sources.

    PATTERNMULTIPLICATION

    The total field pattern of an array of non-isotropic but similarpoint sources is the product of the pattern of the individualsource and the pattern of the array of isotropic point sourceshaving the same locations, relative amplitudes and phase,while the total phase pattern is the sum of the phasepatterns of the individual source and the array of isotropicsources.

  • 7/28/2019 Array of Point Source

    3/28

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 99

    Example 1: An array consists of two horizontal infinitesimaldipoles located at a distance d= / 4 from each other. Findthe nulls of the total field, if the excitation magnitudes are thesame and the phase difference is:

    a) = 0;

    b) =/2;c) = /2

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 1010

    The element factor En(,) does not depend on , and it produces thesame null in all three cases. Since En(,) =|cos|, the null is at1 =/ 2.

    TheAFdepends on and produces different results in the 3 cases:

    a) = 0

    A solution with a real-valued angle does not exist.

    In this case, the total field pattern has only 1 null at

    =90.

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 1111 EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 1212

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0

    30

    60

    90

    120

    150

    180

    210

    240

    270

    300

    330

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    d=/2d=/4d=/8

    Array factor for various values of d (=0):

  • 7/28/2019 Array of Point Source

    4/28

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 1313

    b) = /2

    The equation

    does not have a solution.

    The total field pattern has 2 nulls: 1 = 90 and 2 = 0

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 1414

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 1515

    0.0

    0.2

    0.40.6

    0.8

    1.0

    0

    30

    60

    90

    120

    150

    180

    210

    240

    270

    300

    330

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    d=/2d=/4d=/8

    Array factor for various values of d (=/2):

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 1616

    c) = /2

    The total field pattern has 2

    nulls: 1 = 90 and at 2 =180.

  • 7/28/2019 Array of Point Source

    5/28

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 1717

    Example 2: Consider a 2-element array of identical(infinitesimal) dipoles oriented along the y-axis. Find theangles of observation, where the nulls of the pattern occur,as a function of the distance between the dipoles, d, andthe phase difference, .

    In order to find the nulls:

    The element factor, produces one null at 1 =/2

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 1818

    The array factor leads to the following solution:

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 1919

    NN--Element Linear Array: Uniform AmplitudeElement Linear Array: Uniform Amplitude

    and Spacingand Spacing

    d

    d

    r1

    r2

    rN

    1

    2

    3

    N

    r3

    All elements have identical amplitudesbut each succeeding element has aprogressive phase-lead current

    excitation equal to relative to thepreceding one.

    An array of identical elements all ofidentical magnitude and each with aprogressive phase is referred to as aUniform Array

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 2020

    TheThe Array Factor (AF)Array Factor (AF) is given by:is given by:

    ( ) ( ) ( )( )

    ( )( ) ( )

    cos 2 cos 1 cos

    1 cos 1

    1 1

    1

    cos

    j kd j kd j N kd

    N Nj n kd j n

    n n

    AF e e e

    AF e e kd

    + + + + + +

    +

    = =

    = + + + +

    = = = +

    KK

    Since the total array factor for a uniform array is a sum ofexponentials, it can be represented by the vector sum of N phasorseach of unit amplitude and progressive phase = relative to the

    previous one.

    ..(1)

    Phase terms ofthe partialfields:

  • 7/28/2019 Array of Point Source

    6/28

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 2121

    #1

    1 0 o1

    1 2

    1 3

    ( )1 1N

    AF

    #2

    #3

    #4

    2

    3

    It is apparent from thephasor diagram that theamplitude and phase of theAF can be controlled in

    uniform arrays by properlyselecting the relative phasebetween the elements.

    In non-uniform arrays, theamplitude as well as thephase can be used to controlthe formation anddistribution of the total array

    factor

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 2222

    ( )1

    1

    cos

    Nj n

    n

    AF e

    kd

    =

    =

    = +

    The array factor can be expressed in more recognizable form:

    ..(1)

    Multiply both sides of (1) by , subtract the original equationfrom the resulting equation and rearranging,

    je

    ( )[ ] [ ]

    [ ] [ ]

    ( )

    2 21 2

    1 2 1 2

    1 2

    1

    1

    sin

    21sin

    2

    j N j NjNj N

    j j j

    j N

    e e eAF e

    e e e

    N

    AF e

    = =

    =

    ..(2)

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 2323

    sin2

    1sin

    2

    N

    AF

    =

    For small values of , :sin

    2

    2

    N

    AF

    =

    ..(3)

    ..(4)

    Here, Nshows the location of the last element with respect tothe reference point in steps with length d.

    The phase factor exp[j(N1) / 2] represents the phaseshift of the arrays phase centre relative to the origin, and itwould be one if the origin coincides with the array centre.

    Neglecting the phase factor gives (taking physical center ofthe array as phase reference:

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 2424

    To normalize equation (3) or(4), we need the maximum oftheAF. Re-write equation (3)as:

    ( )

    sin

    21

    sin2

    N

    AF N

    N

    =

    The function f(x) has itsmaximum atx= 0, ,, and

    the value of this maximum isfmax =1.

    ( )maxAF N=

    ( )( )

    ( )

    sin

    sin

    Nxf x

    N x=

  • 7/28/2019 Array of Point Source

    7/28

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 2525

    The maximum value of equation 3 or 4 is equal to N. Tonormalize the array factors so that the maximum value isequal to unity, equations 3 and 4 are written in normalizedform as:

    and

    ( )sin

    1 21

    sin2

    n

    N

    AFN

    =

    ..(5)

    ( )sin

    1 2

    2

    n

    N

    AF

    N

    =

    ..(6)

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 2626

    Nulls of the ArrayNulls of the Array: Equations 5 and 6 are set equal to zero.: Equations 5 and 6 are set equal to zero.

    That is,That is,

    1

    sin 02 2

    2cos2

    n

    N Nn

    nd N

    = =

    = 1,2,3,....n =

    ,2 ,3 , ....n N N N with equation 5, because for these values of n,equation 5 attains its maximum value as it reduces toform.

    ( )sin 0 0

    The values of determine the order of the nulls (first, second,etc.). For a zero to exist, the argument of arccosine must be

    between 1 and+1. Thus the number of nulls that can existwill be a functions of element separation and phase excitationdifference.

    n

    ..(7)

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 2727

    TheThe maximum of equation 5maximum of equation 5 occurs when,occurs when,

    ( )

    ( )1

    1cos |

    2 2

    cos 2

    2

    m

    m

    kd m

    m

    d

    =

    = + =

    =

    0,1,2,m = K

    1cos2

    md

    =

    ..(9)

    Equation 6Equation 6 has only one maximum and occurs when,has only one maximum and occurs when,

    That is, the observation angle that makesThat is, the observation angle that makes

    0m =0 =

    ..(8)

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 2828

    TheThe 33--dB pointdB point for the array factor offor the array factor ofequation 6equation 6::

    ( )

    1

    cos | 1.3912 2

    2.782cos

    2

    h

    h

    N Nkd

    d N

    =

    = + =

    =

    which can also be written aswhich can also be written as

    For large values of it reduces to:For large values of it reduces to:

    1 2.782sin2 2

    hd N

    = ( )d d >>

    2.782

    2 2h d N

    ..(10)

    The half power beamwidth for a symmetrical pattern is:

    2h m h = ..(11)

  • 7/28/2019 Array of Point Source

    8/28

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 2929

    Maximum radiation of an array directed normal to the axis of thearray. ( =90 in the present case)

    Broadside Array

    Maximum of the array factor occurs when (equations 5 and 6):

    cos 0kd = + = For broadside array,

    90cos | 0

    0

    kd

    == + =

    =

    o

    For broadside pattern, all elements should have same phase andamplitude excitation.

    To ensure that there are no maxima in other directions, which are

    referred to as grating lobes, the separation between the elementsshould not be equal to multiples of a wavelength when 0 =

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 3030

    Example: N=10

    d=/4 d=

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 3131

    Parameters for Broadside ArrayParameters for Broadside Array

    Nulls

    1cos

    1,2,3,...

    , 2 , 3 ,...

    nn

    N d

    n

    n N N N

    =

    =

    Maxima

    1cos

    0,1,2,...

    m

    m

    d

    m

    =

    =

    1 1.391cos

    1

    hNd

    d

  • 7/28/2019 Array of Point Source

    9/28

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 3333

    AFpattern of an End Fire Array (EFA): N= 10, d= /4

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 3434

    Parameters for Ordinary EndParameters for Ordinary End--Fire ArrayFire Array

    Nulls

    1cos 1

    1,2,3,...

    , 2 , 3 , ...

    nn

    N d

    n

    n N N N

    =

    =

    Maxima

    1cos 1

    0,1,2,...

    m

    m

    d

    m

    =

    =

    1 1.391cos 1

    1

    hNd

    d

  • 7/28/2019 Array of Point Source

    10/28

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 3737

    1 10 0

    2

    2.782 2.782cos cos cos cos

    k

    HPBWNkd Nkd

    =

    = +

    If L is length of the array:

    L dN

    d

    +=

    1 10 0cos cos 0.443 cos cos 0.443HPBW

    L d L d

    = + + +

    These equations can be used to calculate the HPBWof a broadsidearray, too (

    0=90=const ). However, they are not valid for end-

    fire arrays.

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 3838

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 3939

    Hansen-Woodyard End-Fire Array

    End-fire arrays (EFA) have relatively broad HPBW as comparedto broadside arrays Directivity is low.

    To enhance the directivity of an end-fire array, Hansen andWoodyard proposed that the phase shift of an ordinary EFA beincreased:

    2.94

    2.94

    kd kd N

    kd kd N

    = = +

    = + = + +

    For maximum in =0

    For maximum in =180

    Hansen-Woodyard conditions for end-

    fire radiation (do not necessarily yieldthe maximum possible directivity)

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 4040

    Hansen-Woodyard conditions, ensure minimumbeamwidth (maximum directivity) in the end-firedirection.

    There is, however, a trade-off in the side-lobe level,which is higher than that of the ordinary EFA.

    These conditions have to be complemented by additionalrequirements, to ensure low level of the radiation in thedirection opposite to the main lobe:

  • 7/28/2019 Array of Point Source

    11/28

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 4141

    Maximum at = 0

    In order to ensure a maximum in the =180 direction, we musthave:

    0

    180 N

    =

    =

    o

    o

    Hence, Hansen-Woodyard conditions for maximum directivityin the = 0 direction are:

    0

    180

    N

    =

    =

    o

    o

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 4242

    N-Element Linear Array: Directivity

    1. Broadside Array:

    ( )

    sin cos

    1 21sin cos

    2

    n

    Nkd

    AFN

    kd

    =

    0 =

    ( )sin cos

    2

    cos2

    n

    d

    Nkd

    AFN

    kd

  • 7/28/2019 Array of Point Source

    12/28

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 4545

    22

    0 2

    1 sinNkd

    Nkd

    ZU dZ

    Nkd Z

    =

    for a large array the above equation can beapproximated by extending the limits to infinity.

    ( )2 LargeNkd

    2

    01 sinZ

    U dZNkd Z

    +

    2

    sinZdZ

    Z

    +

    =

    0U Nkd

    since

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 4646

    The directivity is then,The directivity is then,

    max0

    0

    2U Nkd d

    D NU

    = =

    ( )1L N d=

    using

    overall length of the array

    0 2 2 1d L d

    D Nd

    +

    For a large array, L d>>

    0 2L

    D

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 4747

    2. Ordinary End-Fire Array:

    For a large array, L d>>

    0 4L

    D

    3. Hansen-Woodyard End-Fire Array:

    0 1.789 4L

    D

    For a large array, L d>>

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 4848

    NN--Element Linear Array: ThreeElement Linear Array: Three--Dimensional CharacteristicsDimensional Characteristics

    Generally, it is assumed that the linear-array elements are locatedalong thez-axis, which is symmetrical around thez-axis.

    If the array axis has an arbitrary orientation, the array factor canbe expressed as

    ( )( ) ( )1 cos 1

    1 1

    cos

    N Nj n kd j n

    n n

    n n

    AF a e a e

    kd

    +

    = =

    = =

    = +

    is the angle subtended between the array axis and theposition vector to the observation point.

  • 7/28/2019 Array of Point Source

    13/28

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 4949

    Thus, if the array axis is along the unit vector a

    sin cos sin sin cosa a a a aa x y z = + +

    and the position vector to the observation point is

    sin cos sin sin cosr x y z = + +

    ( )

    cos sin cos sin cos

    sin sin sin sin cos cos

    cos sin sin cos cos cos

    a a

    a a a

    a a a

    a r x

    y z

    = = +

    +

    = +

    To Do:Express the array factor for elements along x-axis and y-axis.

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 5050

    NN--Element Linear Array: Uniform Spacing, NonElement Linear Array: Uniform Spacing, Non--uniformuniform

    Ampl itudeAmpl itude

    The most often used Broad-Side Arrays (BSAs), are classifiedaccording to the type of their excitation amplitude:

    1. The uniform BSA relatively high directivity, but the side-lobe levels are high;

    2. DolphTschebyscheff BSA for a given number of elementsmaximum directivity is next after that of the uniform BSA;side-lobe levels are the lowest in comparison with the othertwo types of arrays for a given directivity;

    3. Binomial BSA does not have good directivity but has verylow side-lobe levels (when d= /2, there are no side lobes at

    all).

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 5151 EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 5252

    ( )( )

    ( )

    ( )( )

    ( )( )

    ( ) ( )

    2 11 3cos cos cos

    2 2 21 2

    2 11 3cos cos cos

    2 2 21 2

    1

    1

    1

    .....

    .....

    2 12 cos cos

    2

    2 1cos cos

    2

    1cos 2 1 c2

    Mj kd j kd j kde

    M

    Mj kd j kd j kd

    M

    Me

    n

    n

    Me

    nnn

    M

    e nnn

    AF a e a e a e

    a e a e a e

    nAF a kd

    nAF a kd

    AF a n u u kd

    + + +

    =

    =

    =

    = + + + +

    + + +

    =

    =

    = =

    os cosd =

    Even number (2M) of elements, located symmetrically along thez-axis, with excitation symmetrical with respect toz= 0.

    For a broadside array( =0),

  • 7/28/2019 Array of Point Source

    14/28

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 5353

    ( )

    ( ) ( )

    ( ) ( )

    ( ) ( )

    cos 2 cos cos1 2 3 1

    cos 2 cos cos2 3 1

    1

    1

    1

    1

    1

    1

    2 .....

    .....

    2 cos 1 cos

    cos 1 cos

    1cos 2 1 cos c

    2

    o jkd j kd jMkd M

    jkd j kd jMkdM

    Mo

    n

    n

    Mo

    nnn

    Mo

    nnn

    AF a a e a e a e

    a e a e a e

    AF a n kd

    AF a n kd

    dAF a n u u kd

    + + ++

    +

    +

    =+

    =+

    =

    = + + + + +

    + + +

    =

    =

    = = =

    os

    Odd number (2M+1) of elements, located symmetrically alongthez-axis,

    For a broadside array( =0),

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 5454

    Binomial Array

    ( ) ( )( )( ) ( )( )( )1 2 31 2 1 2 31 1 1 ...

    2! 3!

    m m m m m mx m x x x

    + = + + + +

    The positive coefficients of the series expansion:

    m=6

    m=5m=5

    m=4m=4

    m=3m=3

    m=2m=2

    m=1m=1

    15101051

    14641

    1331

    121

    11

    1

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 5555

    An approximate closed-form expression for the HPBW with d= /2:

    1.06 1.06 1.75

    1 2HPBW

    N L L = = =

    The directivity with spacing d= /2 is

    ( )0 1.77 1.77 2 1D N L = = +

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 5656

  • 7/28/2019 Array of Point Source

    15/28

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 5757

    DolphDolph--Tschebyscheff ArrayTschebyscheff Array

    A compromise between uniform and binomial arrays.A compromise between uniform and binomial arrays.

    Excitations coefficients are related to TschebyscheffExcitations coefficients are related to Tschebyscheff

    polynomials.polynomials.

    A DolphA Dolph--Tschebyscheff array with no sidelobes (or sideTschebyscheff array with no sidelobes (or side

    lobes of dB) reduces to the binomial design. Thelobes of dB) reduces to the binomial design. The

    excitation coefficients for this case, as obtained by bothexcitation coefficients for this case, as obtained by both

    methods would be identical.methods would be identical.

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 5858

    Array Factor for symmetric amplitude excitation:Array Factor for symmetric amplitude excitation:

    ( ) ( ) ( )

    ( ) ( ) ( )

    21

    1

    2 1 1

    cos 2 1

    cos 2 1

    cos

    M

    nMn

    M

    nM n

    AF even a n u

    AF odd a n u

    du

    =+

    + =

    =

    =

    =

    Summation of M or (M+1) cosine terms.

    Largest harmonic of the cosine terms is one less than thetotal no. of elements of the array.

    Each cosine term, whose argument is an integer times a

    fundamental frequency, can be rewritten as a series ofcosine functions with the fundamental frequency as theargument..

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 5959

    ( )cos sin cos sinmjmu

    e mu j mu u j u= + = +On taking real parts:

    Expanding as binomial series:

    ( )cos Re cos sinm

    mu u j u= +

    ( ) ( )( )

    ( ) ( )

    ( )( )( )( ) ( )

    2 2

    4 4

    1cos cos cos sin

    2!

    1 2 3cos sin ...

    4!

    m m

    m

    m mmu u u u

    m m m mu u

    =

    +

    Putting and substituting particular values ofm, we have ( ) ( )

    2 2sin 1 cosu u=

    By de Moivres theorem:

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 6060

    ( )

    ( ) ( )

    ( ) ( )

    ( ) ( )

    ( ) ( )( ) ( )

    ( ) ( )

    ( ) ( )

    2

    3

    4 2

    5 3

    6 4 2

    7

    0 cos 1

    1 cos cos

    2 cos cos 2 2cos 1

    3 cos cos 3 4cos 3cos

    4 cos cos 4 8cos 8cos 15 cos cos 5 16cos 20cos 5cos

    6 cos cos 6 32cos 48cos 18cos 1

    7 cos cos 7 64cos

    m mu

    m mu u

    m mu u u

    m mu u u u

    m mu u u um mu u u u u

    m mu u u u u

    m mu u

    = =

    = =

    = = =

    = = =

    = = = += = = +

    = = = +

    = = =

    ( ) ( )

    ( ) ( )

    5 3

    8 6 4 2

    9 7 5 3

    112 cos 56 cos 7 cos

    8 cos cos 8 128cos 256cos 160cos 32cos 1

    9 cos cos 9 256cos 576cos 432cos 120cos 9cos

    u u u u

    m mu u u u u u

    m mu u u u u u u

    +

    = = = + +

    = = = + +

  • 7/28/2019 Array of Point Source

    16/28

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 6161

    If we let above equations can be rewritten as:cosz u=

    ( ) ( )

    ( ) ( )

    ( ) ( )

    ( ) ( )( ) ( )

    ( ) ( )

    ( ) ( )

    ( ) ( )

    ( )

    0

    1

    22

    33

    4 24

    5 35

    6 4 26

    7 5 37

    8 6 4

    0 cos 1

    1 cos

    2 cos 2 1

    3 cos 4 34 cos 8 8 1

    5 cos 16 20 5

    6 cos 32 48 18 1

    7 cos 64 112 56 7

    8 cos 128 256 160 3

    m mu T z

    m mu z T z

    m mu z T z

    m mu z z T z

    m mu z z T z

    m mu z z z T z

    m mu z z z T z

    m mu z z z z T z

    m mu z z z

    = = =

    = = =

    = = =

    = = == = + =

    = = + =

    = = + =

    = = + =

    = = + ( )

    ( ) ( )

    28

    9 7 5 39

    2 1

    9 cos 256 576 432 120 9

    z T z

    m mu z z z z z T z

    + =

    = = + + =

    And each is related to a Tschebyscheff (Chebyshev) polynomial ( )mT z

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 6262

    These relations between cosine functions and Tschebyscheffpolynomials are valid only in the range: 1 1z +

    ( )

    ( )

    cos 1

    1m

    mu

    T z

    Q

    for 1 1z +

    The recursion formula for Tschebyscheff polynomials is:

    ( ) ( ) ( )1 22m m mT z zT z T z =

    The polynomials can also be computed using:

    ( ) ( )

    ( ) ( )

    1

    1

    cos cos 1 1

    cosh cosh 1, 1

    m

    m

    T z m z z

    T z m z z z

    = +

    = < > +

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 6363

    -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

    -10

    -8

    -6

    -4

    -2

    0

    2

    4

    6

    8

    10

    Tm(z)

    z

    T0 T1 T2 T3

    T4 T5 T6 T7

    The first seven TschebyscheffThe first seven Tschebyscheff

    polynomials have been plottedpolynomials have been plotted

    below:below:

    For1 1z +

    ( )1 1mT z +

    All polynomials pass through (1,1)

    All roots occur within 1 1z +

    Properties

    All maxima and minima withinthis range have values 1

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 6464

    Since, the array factor of an even or odd number ofelements (summation of cosine terms) has the same formas the Tschebyscheff polynomials: The unknowncoefficients of the array factor can be determined byequating the cosine series of the array factor to theappropriate Tschebyscheff polynomial.

    The order of the polynomial should be one less than thetotal number of elements of the array.

  • 7/28/2019 Array of Point Source

    17/28

  • 7/28/2019 Array of Point Source

    18/28

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 6969

    The AF of an N-element array is identical with a Tschebyscheffpolynomial if

    ( )

    ( )

    ( )

    11

    1

    cos 2 1 , 2 ,

    cos 2 1 , 2 1,

    1cos cos

    2

    M

    n

    nN M

    n

    n

    a n u N M even

    T z

    a n u N M odd

    du kd

    =

    =

    = =

    = +

    = =

    Let the side-lobe level (voltage ratio) be

    max0

    max

    1 1sl sl sl

    ERE E E AF

    = = =

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 7070

    Then, the maximum ofTN1 is fixed at an argumentz0, where

    ( )max1 0 0NT z R =

    This corresponds to

    ( ) ( )max 0AF u AF u=

    Obviously,z0 must satisfy the condition

    0 1z >

    Then, the portion ofAF(u), which corresponds to TN1

    (z) for |z|

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 7272

    Example of DExample of D--T distribution for an array for Ten sourcesT distribution for an array for Ten sources

    An array of2M=10 in-phase isotropic sources, with spacingbetween the elements d is to have a side-lobe level of 26 dBbelow the main lobe maximum. Find: (a) the amplitude distributionfulfilling this requirement that produces the minimum beamwidthbetween the first nulls.

    SolutionSolution:: The array factor is given by (even case):The array factor is given by (even case):

    ( ) ( )

    ( ) ( ) ( ) ( )

    ( ) ( )

    5

    21

    1 2 310

    4 5

    cos 2 1

    cos cos 3 cos 5

    cos 7 cos 9

    M

    nMn

    AF a n u

    AF a u a u a u

    a u a u

    =

    =

    =

    = + +

    + +

    cosd

    u

    =

  • 7/28/2019 Array of Point Source

    19/28

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 7373

    Replace cosine terms with their expansions:

    ( ) ( ) ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( ) ( )

    3 5 31 2 310

    7 5 34

    9 7 5 3

    5

    cos 4cos 3cos 16cos 20cos 5cos

    64cos 112cos 56cos 7cos

    256cos 576cos 432cos 120cos 9cos

    AF a u a u u a u u u

    a u u u u

    a u u u u u

    = + + +

    + +

    + + +

    ( ) ( )[ ] ( )[ ]

    ( )[ ] ( )[ ] ( )[ ]

    31 2 3 4 5 2 3 4 510

    5 7 93 4 5 4 5 5

    cos 3 5 7 9 cos 4 20 56 120

    cos 16 112 432 cos 64 576 cos 265

    AF u a a a a a u a a a a

    u a a a u a a u a

    = + + + +

    + + + +

    After rearranging we get,

    ( )( )

    0 10 0

    0

    R (dB) = 26 = 20logvoltage ratio 20

    RR =

    Determine Zo by equating R0 to T9(z):

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 7474

    ( ) ( )

    ( ) ( )

    1

    1

    cos cos 1 1

    cosh cosh 1, 1

    m

    m

    T z m z z

    T z m z z z

    = +

    = < > +

    Using

    ( ) ( )

    ( )

    10 9 0 0

    10

    20 cosh 9cosh

    1cosh cosh 20 1.0851

    9

    R T z z

    z

    = = =

    = =

    Substitute:

    ( ) 0cos 1.0851z z

    u z= =

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 7575

    ( ) [ ]

    [ ] [ ]

    [ ] [ ]

    1 2 3 4 510

    3 5

    2 3 4 5 3 4 5

    7 9

    4 5 5

    3 5 7 91.0851

    4 20 56 120 16 112 4321.0851 1.0851

    64 576 2651.0851 1.0851

    zAF a a a a a

    z z

    a a a a a a a

    z za a a

    = + + +

    + + + +

    +

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 7676

    ( ) [ ]

    [ ]

    [ ]

    [ ]

    [ ]

    ( )

    1 2 3 4 510

    3

    2 3 4 5

    5

    3 4 5

    7

    9 7

    4 5

    9

    5

    5 39

    3 5 7 91.0851

    4 20 56 1201.0851

    16 11

    256 57

    2 4321.0851

    64 5761.0851

    2651.08

    6 432 120

    1

    9

    5

    zAF a a a a a

    za a a a

    za a a

    za

    z z z z z

    za

    z T

    a

    = + +

    + +

    + +

    +

    +

    = + +

    =

    Equate this array factor to T9(z):

  • 7/28/2019 Array of Point Source

    20/28

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 7777

    Match similar terms to get the coefficients ans:

    5

    4

    3

    2

    1

    2.0860

    2.8308

    4.1184

    5.20735.8377

    a

    a

    a

    a

    a

    =

    =

    =

    ==

    Normalization 1: Withrespect to amplitude of theelements at the edge

    Normalization 2: Withrespect to amplitude of theelement at the centre

    5

    4

    3

    2

    1

    1

    1.357

    1.974

    2.496

    2.798

    a

    a

    a

    a

    a

    =

    =

    =

    =

    =

    5

    4

    3

    2

    1

    0.357

    0.485

    0.706

    0.890

    1

    a

    a

    a

    a

    a

    =

    =

    =

    ==

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 7878

    The array factor can be written as:

    ( ) ( ) ( ) ( ) ( ) ( )10 2.798cos 2.496cos 3 1.974cos 5 1.357cos 7 cos 9

    cos

    AF u u u u u

    du

    = + + + +

    =

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 7979 EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 8080

    0 0cos cos cos 1.0851cos cosd d

    z z u z

    = = =

  • 7/28/2019 Array of Point Source

    21/28

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 8181

    Examples of AFs of arrays of non-uniform amplitude distribution(N=5, d=/2, 0 = 90)

    Uniform amplitude distribution

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 8282

    Triangular (1:2:3:2:1) amplitude distribution

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 8383

    Binomial (1:4:6:4:1) amplitude distribution

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 8484

    Dolph-Tschebyschev (1:1.61:1.94:1.61:1) amplitude distribution

  • 7/28/2019 Array of Point Source

    22/28

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 8585

    Dolph-Tschebyschev (1:2.41:3.14:2.41:1) amplitude distribution

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 8686

    Calculate beamwidth of a uniform array with same no. of elementsand element spacing:

    multiply it by beam-broadening factor f

    Beamwidth of D-T Array

    ( )

    221 2

    00

    2

    1 0.636 cosh coshf RR

    = +

    For large D-T arrays, scanned near-broadside and side lobes in the -20to -60 dB range:

    1 10 0cos cos 0.443 cos cos 0.443HPBW

    L d L d

    = + + +

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 8787

    The directivity of D-T array, with a given side-lobe level,

    increases as the array size or no. of elements increases.

    For a given array length (or no. of elements in the array), thedirectivity does not necessarily increase as side lobe leveldecreases.

    ( )( )

    20

    02

    0

    2

    1 1

    RD

    R fL d

    =

    + +

    Directivity of D-T Array

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 8888

    Example: For a D-T array of 10 elements with spacing d=/2and side lobe level of 26 dB, calculate HPBW and thedirectivity.

    R0 = 26 dB R0 = 20 (voltage ratio)

    The beam broadening factor f=1.079

    Beamwidth for uniform BSA with L+d=5 = 10.17Beamwidth for DT array = 10.17f = 10.97

    Directivity = 9.18 (dimensionless) = 9.63 dB

  • 7/28/2019 Array of Point Source

    23/28

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 8989

    PLANAR ARRAYS

    Planar arrays provide directional beams, symmetricalpatterns with low side lobes, much higher directivity (narrowmain beam) than that of their individual element.

    In principle, they can point the main beam toward anydirection.

    Applications tracking radars, remote sensing,communications, etc.

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 9090

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 9191

    The AF of a linear array ofMelements along thex-axis is

    ( )( )1 sin cos1

    1

    sin cos cos

    x x

    Mj m kd

    m

    m

    x

    AF I e

    +

    =

    =

    =

    directional cosine with respect tox-axis.

    All elements are equispaced with an interval ofdxand aprogressive shift x.

    Im denotes the excitation amplitude of the element at thepoint with coordinates: x=(m-1)dx, y=0.

    This is the element of the m-th row and the 1st column ofthe array matrix.

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 9292

    IfNsuch arrays are placed next to each other in the ydirection, a rectangular array is formed.

    We assume again that they are equispaced at a distancedyand there is a progressive phase shift along each row ofy.

    We also assume that the normalized current distributionalong each of thex-directed arrays is the same but theabsolute values correspond to a factor of I1n (n=1,...,N).

    Th tt f t l i th d t f th

  • 7/28/2019 Array of Point Source

    24/28

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 9393

    ( )( ) ( )( )

    ( )( )

    ( )( )

    1 sin sin1 sin cos1 1

    1 1

    1 sin cos1 1

    1

    1 sin sin1 1

    1

    sin cos cos

    sin sin cos

    y yx x

    M N

    x x

    M

    y y

    MN

    N Mj n kdj m kd

    n m

    n m

    x y

    Mj m kd

    x x m

    m

    Nj n kd

    y y n

    n

    x

    y

    AF I I e e

    AF S S

    S AF I e

    S AF I e

    x r

    y r

    + +

    = =

    +

    =

    +

    =

    =

    =

    = =

    = =

    = =

    = =

    Then, the AF of the entire MNarray is

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 9494

    The pattern of a rectangular array is the product of thearray factors of the linear arrays in thexand ydirections.

    In the case of a uniform planar (rectangular) array, allelements have the same excitation amplitudes: m1 1 0I nI I= =

    ( )( ) ( )( )1 sin sin1 sin cos01 1

    y yx xM N j n kdj m kd

    m n

    AF I e e + +

    = =

    =

    The normalized array factor is obtained as:

    ( )sin sin

    1 12 2,

    1 1sin sin

    2 2

    sin cos

    sin sin

    x y

    n

    x y

    x x x

    y y y

    M N

    AFM N

    kd

    kd

    =

    = +

    = +

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 9595

    The major lobe (principal maximum) and grating lobes of are

    located at angles such that

    sin sin1 12 2

    1 1sin sin

    2 2

    M N

    x y

    x y

    x y

    M N

    S SM N

    = =

    sin cos 2 0,1,...

    sin sin 2 0,1,...

    x m m x

    y n n y

    kd m m

    kd n n

    + = =

    + = =

    The principal maxima correspond to m=0, n=0.

    In general, x and y are independent from each other.

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 9696

    If it is required that the main beams ofSxMand SyN intersect(which is usually the case), then the common main beam isin the direction:

    0 0 0m n = = = =

    If the principal maximum is specified by (0,0) , then theprogressive phases x and y must satisfy

    0 0

    0 0

    sin cos

    sin sin

    x x

    y y

    kd

    kd

    =

    =

    h d f d h b d

    3 D PATTERN OF A 5 ELEMENT SQUARE PLANAR UNIFORM ARRAY

  • 7/28/2019 Array of Point Source

    25/28

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 9797

    When x and y are specified, the main beam directioncan be found by:

    22

    0 0tan siny x yx

    x y x y

    d

    d kd kd

    = = +

    The grating lobes can be located by

    0 0

    0 0

    0 0

    0 0

    sin sin

    tansin cos

    sin cossin

    cos

    sin sin

    sin

    ymn

    x

    xmn

    mn

    y

    mn

    nd

    md

    md

    nd

    =

    =

    =

    In order a true grating lobeto occur, these equationsmust have a real solution(mn,mn).

    To avoid grating lobes, thespacing between theelements must be less than

    (dx

  • 7/28/2019 Array of Point Source

    26/28

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 101101

    For a square array (M=N, x0=y0) with amplitudedistributions of the same type along thexand yaxes,

    0 0 0 0

    0 0

    sec sech x y

    h x y

    = =

    = =

    The beam solid angle of the planar array can be approximated by

    0 0 0

    1 2 1 22 202 2 2 20

    0 0 0 02 20 0

    sec

    sin cos sin cos

    A h h

    x yA

    y x

    x y

    =

    =

    + +

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 102102

    Directivity of Planar Array

    The general expression for the calculation of the directivity ofan array is:

    ( )

    ( )

    20 0

    0 2 2

    0 00 0

    ,4

    , sin

    AFD

    AF d d

    =

    For large planar arrays, which are nearly broadside:

    0 0cos x yD D D =

    Dx is the directivity of the respective linear BSA,x-axis;Dy is the directivity of the respective linear BSA, y-axis.

    Approximate directivity of a nearly broadside planar array:

    ( ) ( )2

    0 2 232,400

    degA A

    Drads

    =

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 103103

    ARRAYS

    9The main beam direction is controlled throughthe phase shifts, xand y.

    9The beamwidth and side-lobe levels are

    controlled through the amplitude distribution.

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 104104

    Example: Compute the HPBWs, beam solid angle anddirectivity of a planar square array of 100 isotropic elements(10 10). Assume a D-T distribution, /2 spacing betweenelements, -26 dB side lobe level, and the maximum orientedalong 0 = 30, 0 = 45.

    S l i 6 10

  • 7/28/2019 Array of Point Source

    27/28

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 105105

    1. number of elements,2. overall length of the array (in wavelengths),3. approximate half-power beamwidth (in

    degrees),4. amplitude level (compared to the maximum of

    the major lobe) of the first minor lobe (in dB)5. progressive phase between the elements (in

    degrees).

    Problem 6.10: Design an ordinary end-fire uniform lineararray with only one maximum so that itsdirectivity is 20 dBi (above isotropic). Thespacing between the elements is d= /4, andits length is much greater than the spacing.

    Determine the:

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 106106

    Solution 6.10:

    0 4d

    D N

    =

    0 20 100 100D dB N= = =

    ( )1 24.75L N d L = =

    1 1.391cos 1 10.8

    2 21.6

    h h

    h

    N d

    HPBW

    = =

    = =

    o

    o

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 107107

    Problem 6.15: Show that in order for a uniform array ofNelements not to have any minor lobes, thespacing and the progressive phase shiftbetween the elements must be:

    1. d=/N, =0 for a broadside array,2. d=/(2N), =kdfor an ordinary end-firearray.

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 108108

    ( )sin

    1 2cos

    1sin

    2

    n

    N

    AF kdN

    = = +

    Solution 6.15:

    For =0:

    ( )sin cos1 2

    1sin cos

    2

    n

    N

    kdAF

    Nkd

    =

    In order for the array not to have any minor lobes, we canassume that its first null occurs at = 0 or 180. Thus,

    ( )sin

    1 20

    12sin 2

    n

    Nkd

    NAF kd d

    N Nkd

    = = = =

    Fo kd ma ima occ s at 180

  • 7/28/2019 Array of Point Source

    28/28

    EEL 338 2008EEL 338 2008--0909 Antennas & PropagationAntennas & Propagation 109109

    For =kd, maxima occurs at =180:

    ( )( )

    ( )

    sin cos 11 2

    1sin cos 1

    2

    n

    Nkd

    AFN

    kd

    + = +

    In order for the array not to have any minor lobes, we canassume that its first null occurs at = 0. Thus,

    ( )( )

    ( )

    sin10

    sin 2nNkd

    AF Nkd dN kd N

    = = = =