ARPES studies of unconventional

26
Hong Ding Institute of Physics, Chinese Academy of Sciences ARPES studies of unconventional superconductors Heavy Fermion Physics Workshop, January 9, 2012

description

Phase diagrams pnictide SC heavy fermion SC organic SC cuprate SC

Transcript of ARPES studies of unconventional

Page 1: ARPES studies of unconventional

Hong Ding

Institute of Physics, Chinese Academy of Sciences

ARPES studies of unconventionalsuperconductors

Heavy Fermion Physics Workshop, January 9, 2012

Page 2: ARPES studies of unconventional

Phase diagrams

cuprate SC

pnictide SC

organic SC

heavy fermion SC

Page 3: ARPES studies of unconventional

0.4

0.3

0.2

0.1

0

0.4

0.3

0.2

0.1

0

Momentum

0

0

π

Unoccupiedstates

Occupied statesBinding energy (eV)

Binding energy (eV)

Fermi surface mapping of cuprates

Tight binding fitting

Large FS, area = 1-x: Luttinger’s theorem

Bi2Sr2CaCu2O8

Page 4: ARPES studies of unconventional

d-wave superconducting gap in cuprates

dx2-y2 + +

-

-

θ

0

10

20

30

40

0 20 40 60 80FS angle

115

MMΓ

Y1 15Half-Integer Flux Quantum Effect

Page 5: ARPES studies of unconventional

0.2 0.1 0.0 -0.1 0.2 0.1 0.0 -0.1 0.2 0.1 0.0 -0.1

0.2 0.1 0.0 -0.1 0.2 0.1 0.0 -0.1 0.2 0.1 0.0 -0.1Binding Energy (eV)

14K 40K 70K

200K120K90K

Tc = 83 K, at Fermi surface along M-Y

pseudogapT* = 170K

Pseudogap in underdoped cuprates

0

100

Doping (e/Cu)

Temperature

AFM S.C.State

underdopedoverdoped

Page 6: ARPES studies of unconventional

Phase diagram of Ba122 system

Hole doping

Electron doping

Electron-hole asymmetry?M. Neupane et al., PRB 83, 094522 (2011)

Page 7: ARPES studies of unconventional

ARPES observation of five bands and five FSs

Page 8: ARPES studies of unconventional

Fermi surface evolution in “122”

Electron doping

Hole dopingParent

Heavily OD Slightly OD OPT UD

OPTUD Heavily OD

Tc = 3 K Tc = 22 K Tc = 37 K Tc = 26 K

Tc = 0 K Tc = 11 K Tc = 25 K Tc = 0 KTN = 135 K

QAF QAF QAF QAF

QAFQAF QAF

8

Page 9: ARPES studies of unconventional

ARPES observation of superconducting gap

2/Tc ~ 7H. Ding et al., EPL 83, 47001 (2008)

Page 10: ARPES studies of unconventional

Nodeless SC gap in Ba0.6K0.4Fe2As2 (Tc = 37K)

K. Nakayama et al., EPL 85, 67002 (2009)H. Ding et al., EPL 83, 47001 (2008)

Page 11: ARPES studies of unconventional

K. Seo, A. B. Bernevig, J. Hu PRL 101, 206404 (2008)

Order parameters in momentum Space

coskxcosky, s±-wave

Real space configuration of pairing symmetry

--

-

-

+++

local interactionsJ1- J2

pnictides: large J2 and FS topology favor

cuprates: large J1 and FS topology favor coskx–cosky)/2, d-wave

J1 – J2 model predicts almost isotropic s± gap

Page 12: ARPES studies of unconventional

I. MazinPRB 79, 060502 (2009)

D.H. Lee EPL 85, 37005 (2009)

S. GraserNJP 11, 025016 (2009)

when

Most weak-coupling theories predict anisotropic s± gap

Page 13: ARPES studies of unconventional

overdoped Ba0.3K0.7Fe2As2 (Tc ~ 20K)

K. Nakayama et al., PRB 83, 020501(R) (2011)

Page 14: ARPES studies of unconventional

underdoped Ba0.75K0.25Fe2As2 (Tc = 26K)

Y.-M. Xu et al., Nature Communications2, 392 (2011)

Page 15: ARPES studies of unconventional

Doping dependence of the SC gaps in Ba1-xKxFe2As2

K. Nakayama et al., PRB 83, 020501(R) (2011)

Page 16: ARPES studies of unconventional

Electron doped BaFe1.85Co0.15As2 (Tc = 25.5K)

K. Terashima et al, PNAS 106, 7330 (2009)

Page 17: ARPES studies of unconventional

kz dependence of SC gapssingle gap function

Y.-M. Xu et al., Nature Physics 7, 198 (2011)

Jab = 30Jc = 5

2/1

≈ Jc/Jab

≈ 0.17

Page 18: ARPES studies of unconventional

“111” - NaFe0.95Co0.05As (Tc = 18K)

Z.-H. Liu et al., arXiv:1008.3265, PRB

Page 19: ARPES studies of unconventional

“11” - FeTe0.55Se0.45 (Tc = 13K)

Page 20: ARPES studies of unconventional

J1 = -34J2 = 22J3 = 6.8

2/3

≈ J2/J3

≈ 0.3

H. Miao et al., arXiv:1107.0985

Page 21: ARPES studies of unconventional

(Tl,K)Fe2-xSe2 (Tc ~ 30K)

T. Qian et al., PRL (2011)

Page 22: ARPES studies of unconventional

Isotropic SC gap on electron FS

X.-P. Wang et al., EPL 93, 57001 (2011)J1 < 0, FM, d-wave is not favored

Page 23: ARPES studies of unconventional

Selection Rules of Pairing Symmetry

Overlap strength between pairing form factor and Fermi surface

OS =

Self-consistent meanfield equation for t-J model

Page 24: ARPES studies of unconventional

Three classes of high-Tc superconductors

J1 J2 J2+J3

Page 25: ARPES studies of unconventional

Three classes of high-Tc superconductors

J1 J2 J2+J3

Page 26: ARPES studies of unconventional

Summary

1.The SC gap of all iron-based superconductors measured by ARPES can by described approximately by J1-J2-J3 model

1.A possible unified paradigm of high-Tc

superconductivity: local AFM magnetic exchange + collaborative FS topology

J.-P. Hu and H. Ding, arXiv:1107.1334