ARM SCR 1 ACC Workshop 20190709€¦ · Bing Li Pierluigi Pisu Beshah Ayalew Yunyi Jia Matthias...

17
V Ve en nk ka at t N N. . K Kr ro ov vi i M Mi ic ch he el li in n E En nd do ow we ed d S Sm ma ar rt tS St ta at te e C Ch ha ai ir r P Pr ro of fe es ss so or r o of f V Ve eh hi ic cl le e A Au ut to om ma at ti io on n D De ep pt ts s. . o of f A Au ut to om mo ot ti iv ve e E En ng gi in ne ee er ri in ng g & & M Me ec ch ha an ni ic ca al l E En ng gi in ne ee er ri in ng g I In nt te er rn na at ti io on na al l C Ce en nt te er r f fo or r A Au ut to om mo ot ti iv ve e R Re es se ea ar rc ch h, , C Cl le em ms so on n U Un ni iv ve er rs si it ty y A AR RM M S SM MA AR RT T C CO OM MP P A AN NI IO ON N R RO OB BO OT T P PR RO OJ JE EC CT T P Ph ha as se e I I : : M Ma ar rc ch h 1 15 5, , 2 20 01 18 8 M Ma ar rc ch h 1 15 5, , 2 20 01 19 9 N Na at th ha an n M Mc cC Ca al ll l I In nn no ov va at ti io on n a an nd d D Di ig gi it ta al li iz za at ti io on n B BM MW W M Ma an nu uf fa ac ct tu ur ri in ng g C Co om mp pa an ny y G Gr re ee en nv vi il ll le e, , S So ou ut th h C Ca ar ro ol li in na a R Ro og ge er r C Ch hr ri is st ti ia an n D Di iv vi is si io on n L Le ea ad de er r , , N Ne ew w B Bu us si in ne es ss s D De ev ve el lo op pm me en nt t V VP P M Ma ar rk ke et ti in ng g a an nd d D De ev ve el lo op pm me en nt t M Mo ot to om ma an n R Ro ob bo ot ti ic cs s D Di iv vi is si io on n J Ju ua an n A Ap pa ar ri ic ci io o H He ea ad d o of f R Re es se ea ar rc ch h G Gr ro ou up p S Si ie em me en ns s C Co or rp po or ra at te e T Te ec ch hn no ol lo og gy y S Si ie em me en ns s B Be er rk ke el le ey y, , C Ca al li if fo or rn ni ia a Presented at ACC 2019 Workshop Robot Assisted Manufacturing: Challenges and Opportunities T Tu ue es sd da ay y J Ju ul ly y 9 9 Yaskawa YMR12 Sm ma al ll l S Sc ca al le e ( (C Cr re ea at te ed d) ) M Mi id d S Sc ca al le e C CO OT TS S F Fu ul ll l S Sc ca al le e C CO OT TS S S Sc ca al le e C Co om mp pl le ex xi it ty y Transbotics AGV Human following Heavy-payload assist YouBot Baxter+Ridgeback ABB YuMi +Ridgeback CU-ICAR Connected Autonomy Systems Manufacturing Deployments: Scale and Complexity

Transcript of ARM SCR 1 ACC Workshop 20190709€¦ · Bing Li Pierluigi Pisu Beshah Ayalew Yunyi Jia Matthias...

Page 1: ARM SCR 1 ACC Workshop 20190709€¦ · Bing Li Pierluigi Pisu Beshah Ayalew Yunyi Jia Matthias Schmid Venkat Krovi CU-ICAR Connected Autonomy Systems People Clemson: Breadth and

VVeennkkaatt NN.. KKrroovviiMMiicchheelliinn EEnnddoowweedd SSmmaarrttSSttaattee CChhaaiirr PPrrooffeessssoorr ooff VVeehhiiccllee AAuuttoommaattiioonn DDeeppttss.. ooff AAuuttoommoottiivvee EEnnggiinneeeerriinngg && MMeecchhaanniiccaall EEnnggiinneeeerriinnggIInntteerrnnaattiioonnaall CCeenntteerr ffoorr AAuuttoommoottiivvee RReesseeaarrcchh,, CClleemmssoonn UUnniivveerrssiittyy

AARRMM SSMMAARRTT CCOOMMPPAANNIIOONN RROOBBOOTT PPRROOJJEECCTTPPhhaassee II :: MMaarrcchh 1155,, 22001188 –– MMaarrcchh 1155,, 22001199

NNaatthhaann MMccCCaallllIInnnnoovvaattiioonn aanndd DDiiggiittaalliizzaattiioonn

BBMMWW MMaannuuffaaccttuurriinngg CCoommppaannyyGGrreeeennvviillllee,, SSoouutthh CCaarroolliinnaa

RRooggeerr CChhrriissttiiaannDDiivviissiioonn LLeeaaddeerr,, NNeeww BBuussiinneessss DDeevveellooppmmeennttVVPP MMaarrkkeettiinngg aanndd DDeevveellooppmmeennttMMoottoommaann RRoobboottiiccss DDiivviissiioonn

JJuuaann AAppaarriicciiooHHeeaadd ooff RReesseeaarrcchh GGrroouuppSSiieemmeennss CCoorrppoorraattee TTeecchhnnoollooggyySSiieemmeennssBBeerrkkeelleeyy,, CCaalliiffoorrnniiaa

Presented at ACC 2019 WorkshopRobot Assisted Manufacturing: Challenges and Opportunities

TTuueessddaayy JJuullyy 99

Yaskawa YMR12

SSmmaallll SSccaallee ((CCrreeaatteedd))MMiidd SSccaallee CCOOTTSS

FFuullll SSccaallee CCOOTTSSSSccaallee

CCoommpplleexxiittyy

Transbotics AGV

Human followingHeavy-payload assist

YouBot

Baxter+RidgebackABB YuMi +Ridgeback

CU-ICAR Connected Autonomy SystemsManufacturing Deployments: Scale and Complexity

Page 2: ARM SCR 1 ACC Workshop 20190709€¦ · Bing Li Pierluigi Pisu Beshah Ayalew Yunyi Jia Matthias Schmid Venkat Krovi CU-ICAR Connected Autonomy Systems People Clemson: Breadth and

Collaborative Smart Companion RobotBefore:

New process:

Lift-assist

Manual

Human following

Heavy-payload assist

Collaborative Robotic Vacuum (CoRV)

Before:

New process:

Simulated

CollaborativeAutomated

BBeeffoorree::

NNeeww pprroocceessss::

Collaborative HATCH SEAL Project

Other Manufacturing Robotics/Automation Activities(Collaborations: Dr. Yunyi Jia, Dr. Bing Li, Dr. Venkat Krovi, Dr. Matthias Schmid)

Manual Manual

Collaborative Robot-AssistedCollaborative

(Sensor enhanced Situational Awareness)Semantic SLAMHuman Machine Interfaces

(Haptics, AR, VR) Video-based Human Activity Recognition

Simulation and Augmented Reality

Advanced Wireless Networking

MMiiddddlleewwaarree FFrraammeewwoorrkkss

CU-ICAR Connected Autonomy SystemsCore Technologies

Human Data Capture & Digital Human Modeling

Page 3: ARM SCR 1 ACC Workshop 20190709€¦ · Bing Li Pierluigi Pisu Beshah Ayalew Yunyi Jia Matthias Schmid Venkat Krovi CU-ICAR Connected Autonomy Systems People Clemson: Breadth and

BBiinngg LLii

BBeesshhaahh AAyyaalleewwPPiieerrlluuiiggii PPiissuu

YYuunnyyii JJiiaa

MMaatttthhiiaass SScchhmmiidd

VVeennkkaatt KKrroovvii

CU-ICAR Connected Autonomy SystemsPeople

Clemson: Breadth and Depth of OfferingCross Disciplinary Expertise

Model Based SystemsEngineering

Advanced Planning, Control & Operations

Materials Innovation:

Composites & Lightweighting

Robotics, Sensors, Wearables and IOT

Autonomous Systems

Intelligent Systems Integration & AI

Supply Chain and Optimization Digital Thread

Dr. Amy AponDr. Johnell BrooksDr. James Martin Dr. Greg MockoDr. Chris ParedisDr. Pierluigi Pisu

Dr. Raj BordiaDr. Hongseok ChoiDr. Stephen FoulgerDr. Srikanth PillaDr. Fadi Abu-Farha

Dr. Beshah AyalewDr. Rae ChoDr. Sarah HarcumDr. Laine MearsDr. Cole SmithDr. Josh Summers

Dr. Bill FerrellDr. Mary KurzDr. Scott MasonDr. Chris Paredis

Dr. Rebecca HartleyDr. Yunyi JiaDr. Gautam KoleyDr. Venkat KroviDr. Kapil MadathilDr. Sophie Wang

Dr. Yunyi JiaDr. Venkat KroviDr. Laine MearsDr. Josh SummersDr. Yue WangDr. Matthias Schmid

Dr. Amy AponDr. Kapil MadathilDr. Venkat KroviDr. Laine Mears Dr. Melissa Smith Dr. Josh Summers

Dr. Philip BrownDr. Srikanth PillaDr. Jianhua TongDr. Chris Paredis

6

Page 4: ARM SCR 1 ACC Workshop 20190709€¦ · Bing Li Pierluigi Pisu Beshah Ayalew Yunyi Jia Matthias Schmid Venkat Krovi CU-ICAR Connected Autonomy Systems People Clemson: Breadth and

Slide 7

Challenge in automotive assembly: Variability and volume• Personalization and customer

experience top trends driving the market (Forbes)

• BMW – 1013 possible product configurations per model

• Premium customers are verydiscerning!o Product without defectso Functionality and finish to exceed

exectations

o Time quality: custom-made and on-demand.

Img Src: Google Images

MOTIVATION

NNEEEEDD FFOORR CCOOGGNNIITTIIVVEE && PPHHYYSSIICCAALL AASSSSIISSTT

Slide 8

MOTIVATION

Strategic Perspective:

Automotive final assembly is handling most variability

• Mostly manual implementation (affects throughput & quality)

• Fenced industrial robots (are inflexible and expensive)

• Emerging collaborative robot use (Industrialization Evaluation needed)

• High volume/High Mix (business evaluation needs use-cases)Img Src: BMW Manufacturing

Operations perspective:

• Automotive final assembly requires a person to build the customer-specific vehicle

• Understand the operation to be carried out the respective vehicle,

• Pick the appropriate parts

• Assemble them to the vehicle using a variety of processes (fastener bolts, clips, adhesives, …) and tools

• Conduct quality check on the operation

Page 5: ARM SCR 1 ACC Workshop 20190709€¦ · Bing Li Pierluigi Pisu Beshah Ayalew Yunyi Jia Matthias Schmid Venkat Krovi CU-ICAR Connected Autonomy Systems People Clemson: Breadth and

Slide 9

SUPPORT WITH OVERHEAD ASSEMBLY: HOLD / FASTEN / INSPECT.

Demonstration with an overhead fixture, navigation through static obstacles

TORSION BAR ASSEMBLY USE CASE

Video(s) of the actual task

on the shopfloor

Even in these two videos we

can see the variability

in task performance each

time the task is done

Benefits Sought (ranked):

Ergonomics, product quality, productivity/headcount

Slide 10

SUPPORT WITH OVERHEAD ASSEMBLY: HOLD / FASTEN / INSPECT.

Torsion-bar overhead assembly use-case scenario

Demonstration with an overhead fixture, navigation through static obstacles

Img Src: BMW Manufacturing

Benefits (ranked):

Ergonomics, product quality, productivity/headcount

Demo 1: TORSION BAR ASSEMBLY USE CASE

(4X Speed)

Page 6: ARM SCR 1 ACC Workshop 20190709€¦ · Bing Li Pierluigi Pisu Beshah Ayalew Yunyi Jia Matthias Schmid Venkat Krovi CU-ICAR Connected Autonomy Systems People Clemson: Breadth and

Slide 11

Core Tasks 1-4

• T1: Situational awarenesso Mapping of assembly-line dynamic environment

• T2: Mobile Base Planning and Controlo Navigation to the part shelf and assembly station

• T3: Manipulator Planning and Controlo Cognition of parts and physical assist

• T4: Digital Twino Human factors and ergonomic analysis

Slide 12

Team Roles

Task 3

M. Tomaszewski

Y. Jia Y. Chen

Task 4

F. A. Niaki

L. Mears

Task 1 Task 2P. PisuV. Krovi

M. TomaszewskiJ. S. Gill

J. Poland V. Krovi

R.Christian, W. EdwardsM.Aranha, R. Gamble

R.ChristianW. EdwardsM.AranhaR. Gamble

S. TamaskarJ. Aparacio

N. McCallH. Stidham

Page 7: ARM SCR 1 ACC Workshop 20190709€¦ · Bing Li Pierluigi Pisu Beshah Ayalew Yunyi Jia Matthias Schmid Venkat Krovi CU-ICAR Connected Autonomy Systems People Clemson: Breadth and

Slide 13

Situational Awareness, Mobile Base Motion Planning & Control

Objectives

Generating mobile base trajectories between the part shelf and the assembly station in an automotive assembly environment

Challenges

• Localizing in a changing environment

• Navigating through obstacles (static)

• Providing consistent results

• Transition from simulation to HIL system

Yaskawa YMR-12 with Clearpath OTTO Base

Simulated Youbot

Clearpath Ridgeback

Slide 14

Situational Awareness and Navigation - Approach

Q1. Simulation environment setup, benchmarking review Q2. Exploring different SLAM and ROS navigation algorithms (gmapping, hector, cartographer)

Q3. Evaluating the robots – YMR12 and RidgebackQ4. Optimizing the robot for consistency and obstacle avoidance

Fetch by fetchRobotics

Yaskawa YMR-12 with Clearpath OTTO Base

G1G2

Clearpath Ridgeback

Youbot

Page 8: ARM SCR 1 ACC Workshop 20190709€¦ · Bing Li Pierluigi Pisu Beshah Ayalew Yunyi Jia Matthias Schmid Venkat Krovi CU-ICAR Connected Autonomy Systems People Clemson: Breadth and

Slide 15

SLAM using offline ROS processing (replayed from LiDAR rosbags of manually driven YMR12)

Mobile Base Motion Planning and Localization in a NIST-rated Benchmark Course with Obstacles

Correction of robot’s belief after map updating in a changed environment Experimental Results Validate Timing Inconsistencies

Slide 16

Challenges in assembly environment

• Operation with humans

• Navigating through unstructured environment

• Time sensitive

• Extended operating times

Assembly Environment – Need for Long Term Autonomy

ASTM standard F3244-17 reference test area designed in Gazebo

Recommended metric for navigation[*]:• Mission success• number of collisions • robustness in navigation through narrow

passages• precision at target• accuracy of goal achievement• repeatability in accuracy• path length• time to collision• execution timeThe focus on these evaluations have primarily been accomplishment of missions without failures as well as safe operations.

Time consistency in execution has been ignored so far

ASTM standard used to provide a reference for a benchmarking arena

*C. Sprunk et al., “An experimental protocol for benchmarking robotic indoor navigation,” in Experimental Robotics, 2016, pp. 487–504. W. Nowak, A. Zakharov, S. Blumenthal, and E. Prassler, “Benchmarks for mobile manipulation and robust obstacle avoidance and navigation,” BRICs Deliv. D, vol. 3, p. 1, 2010. R. Bostelman, T. Hong, and J. Marvel, “Survey of research for performance measurement of mobile manipulators,” J. Res. Natl. Inst. Stand. Technol., vol. 121, pp. 342–366, 2016.

Page 9: ARM SCR 1 ACC Workshop 20190709€¦ · Bing Li Pierluigi Pisu Beshah Ayalew Yunyi Jia Matthias Schmid Venkat Krovi CU-ICAR Connected Autonomy Systems People Clemson: Breadth and

Slide 17

How does the assembly environment look like?

• Operation with humans and carts

• Time sensitive

• Extended operating times

• Moving goals

Benchmarking standards lack robustness metric

ASTM standard used to provide a reference for a benchmarking arena

Assembly Environment – Need for Long Term Autonomy

-1

0

1

2

3

4

5Map comparison

Pose comparison

Quality of maps

RobustnessConvergence time

CPU / memoryconsumption

Theoreticalcomparison

SLAM Benchmarking metrics

Univ Of Coimbra Uni-Freiburg

St. Petersburg St. Electrotech Univ* LETI/MIT

TUM

ASTM standard F3244-17 reference test area designed in Gazebo

Gill, J.S., Tomaszewski, M., Jia, Y., Pisu, P., Krovi, V., “Evaluation of Navigation in Mobile Robots for Long-Term Autonomy in Automotive Manufacturing Environments,” SAE Technical Paper 2019-01-0505, 2019. https://doi.org/10.4271/2019-01-0505

Slide 18

TTeesstt aarreeaa –– SSttaattiicc oobbssttaacclleess;; SSttaattiicc EEnnvviirroonnmmeenntt• Simulated model for YMR12 base unavailable

• Fetch robot high fidelity model was adapted for benchmarking the ROS Navigation stack

• Inconsistency in timed runs observed. Consistency important for assembly environment

• To validate, tests conducted on robots

1

2

3

4

5

Navigation Stack Benchmarking (Simulated Environment)

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10Dur

atio

n be

twee

n go

als

(sec

s)

Repetitions

Variability in the duration of goals

Goal5 to Goal1 Goal1 to Goal2Goal2 to Goal3 Goal3 to Goal4Goal4 to Goal5

Mean Duration Std DevGoal5 to Goal1 55.0536 2.72574643Goal1 to Goal2 68.7308 21.14284212Goal2 to Goal3 29.2132 12.91495016Goal3 to Goal4 63.8461 17.34981768Goal4 to Goal5 43.8468 23.03002309

Across 10 runs

Gill, J.S., Tomaszewski, M., Jia, Y., Pisu, P., Krovi, V., “Evaluation of Navigation in Mobile Robots for Long-Term Autonomy in Automotive Manufacturing Environments,” SAE Technical Paper 2019-01-0505, 2019. https://doi.org/10.4271/2019-01-0505

Page 10: ARM SCR 1 ACC Workshop 20190709€¦ · Bing Li Pierluigi Pisu Beshah Ayalew Yunyi Jia Matthias Schmid Venkat Krovi CU-ICAR Connected Autonomy Systems People Clemson: Breadth and

Slide 19

Goal 1

Goal 2

Experiments with YMR12 (Blackbox)

YMR cycles between Goals 1 to 2 (red arrows) for 50 cycles.

Mean for obstacles (s) 98.36Std dev (s) 6.69

Local costmap of the robot generated by local planner: Left – without obstacle. Right - Static obstacle (a cardboard box) introduced in cycles 14-20

70

75

80

85

90

95

100

105

110

0 10 20 30 40 50 60

Tim

e (s

ecs)

Cycle Number

Time taken for a cycle of path planning in ARMLAB

Mean for no obstacles(s) 76.83Std dev (s) 1.30

Gill, J.S., Tomaszewski, M., Jia, Y., Pisu, P., Krovi, V., “Evaluation of Navigation in Mobile Robots for Long-Term Autonomy in Automotive Manufacturing Environments,” SAE Technical Paper 2019-01-0505, 2019. https://doi.org/10.4271/2019-01-0505

Slide 20

G1 G2

Moving to a Robot with Open Access (Ridgeback)

Occupancy grid map of CMI laboratory

Fine tolerance runs– 2.5 cm.Optimization possible due to open access

Page 11: ARM SCR 1 ACC Workshop 20190709€¦ · Bing Li Pierluigi Pisu Beshah Ayalew Yunyi Jia Matthias Schmid Venkat Krovi CU-ICAR Connected Autonomy Systems People Clemson: Breadth and

Slide 21

Demo 2: Navigation Through Changing Environment

Online map updating not needed

1. Robot using an obstacle-free map to navigate through an environment with obstacles

Map updating needed

1. Robot using a map with obstacles to navigate through an environment without obstacles or with known obstacles but with changed layout

2. Robot using a map to navigate through an environment with changes in structural elements

Robot map Environment

Ridgeback dynamic obstacle avoidance (slow moving) using teb_local_planner

Slide 22

Map updates applied

With updated maps

Environment Robot map

Benefit of Online Map Updating

Page 12: ARM SCR 1 ACC Workshop 20190709€¦ · Bing Li Pierluigi Pisu Beshah Ayalew Yunyi Jia Matthias Schmid Venkat Krovi CU-ICAR Connected Autonomy Systems People Clemson: Breadth and

Slide 23

Task 3: Manipulation Planning and Control

• Objectiveo Generating manipulator trajectories to

pick up and deliver a torsion bar in automotive assembly environment

• Challengeso Detecting and localizing the objectso Planning and controlling the manipulator

motion in the presence of static obstacles

Slide 24

Simulation development using MoveIt! in ROS

Task 3: Manipulation Planning and Control

1st Quarter 2nd Quarter

3rd Quarter 4th Quarter

Manipulation planning and control in realistic context

Manipulation Motion Planning and control in simulation context

KPP Evaluations and validate outcome transitions to other robots

Page 13: ARM SCR 1 ACC Workshop 20190709€¦ · Bing Li Pierluigi Pisu Beshah Ayalew Yunyi Jia Matthias Schmid Venkat Krovi CU-ICAR Connected Autonomy Systems People Clemson: Breadth and

Slide 25

Task 3: Manipulation Planning and Control

• New Manipulation Challenges in Manufacturing Process

o Challenges

• Existing real-time manipulation motion planning algorithms are probabilistic approaches, which leads to inconsistency in time cost and motions

• Different algorithms give different manipulation solutions

• The same algorithm may also give different solutions in different runs

o Manipulation Requirements in Manufacturing Process

• Consistent time cost and consistent motion to accomplish manipulation tasks in human-robot collaboration

• Consistent time cost is for line balancing and consistent motion is for collaboration safety and efficiency

Slide 26

Task 3: Manipulation Planning and Control

• KPP Evaluation

o KPP Evaluation Results: • In hardware test, the robot can reach up 250 mm/s. For safety reasons, we slow down the

robot for safety purpose.

• The planning time to generate a new solution in real time is less than 0.06 second. The path planning update frequency can reach up to 15 Hz if necessary.

• Accuracy to arrive at destination (x, y, z) is +/- 0.1 cm.

• The torsion bar manipulation is evaluated by running for 25 trials. Zero failure was found in obstacle avoidance and handover process.

• The time cost and motion in hardware evaluations are as consistent as simulations

Time consistency

Motion consistency

Page 14: ARM SCR 1 ACC Workshop 20190709€¦ · Bing Li Pierluigi Pisu Beshah Ayalew Yunyi Jia Matthias Schmid Venkat Krovi CU-ICAR Connected Autonomy Systems People Clemson: Breadth and

Slide 27

Task 3: Manipulation Planning and Control

• Outcome Transition Test on HC10 Collaborative Roboto A new HC10 robot is tested in our developed motion planning and control framework for the same tasko Results show that our outcome is not limited by robots and can be easily transited to other robotic applications

SCR1.0a

HC10 (SCR1.0b)

HC10 collaborative robot

Slide 28

Task 4 : Approach

Period 1 (months 1-6) [3D modeling in Siemens NX]• Creating CAD model vehicle assembly center• Model platform, vehicle body, and over head

assembly structure• Design various what-if-scenarios for

simulation/testing

Period 2 (months 7 – 12) [Digital Twin Simulation]• Create digital human model for testing what-if-

scenarios• Conduct human factor, collision, reachability and

process time analysis in digital environment

Img src: 4dsysco

From 2D Design To 3D Detailed Model To Real-Life Digital Environment

Page 15: ARM SCR 1 ACC Workshop 20190709€¦ · Bing Li Pierluigi Pisu Beshah Ayalew Yunyi Jia Matthias Schmid Venkat Krovi CU-ICAR Connected Autonomy Systems People Clemson: Breadth and

Slide 29

Deliverables

• DELIVERABLE 1: CAD model of the simulated environment (generatedwith NX Mach 3 product design software) as well as simulated workplacescenarios with digital model of the associate and the robot (generatedwith PS-Basic and PS-Jack software packages)

o CAD model of the simulated environment is available as part of the Task 4 deliverable package, with files for • Overhead and Torsion Bar

• Robot

• Simulated environment

o Guide on CAD Files.docx

Slide 30

Storyboard

• Human digital twin model is created based on the standardized biomechanical, anthropometric and ergonomics characteristics tables.

• ANSUR database using varying male and female forms.

• DELIVERABLE 2: Detailed experimental protocol for each assembly scenario andEvaluation report of the plant simulation for identification of factors definingproductivity, and cycle time.

Page 16: ARM SCR 1 ACC Workshop 20190709€¦ · Bing Li Pierluigi Pisu Beshah Ayalew Yunyi Jia Matthias Schmid Venkat Krovi CU-ICAR Connected Autonomy Systems People Clemson: Breadth and

Slide 31

Deliverables

• DELIVERABLE 3: Ergonomicevaluation of human operation.o Force analyzer tool for calculating forces and

moments on human joints in static posture andthen ergonomic standards for evaluation ofhuman posture such as ability to carry load, orfatigue are introduced.

o Effect of weight and height on these metrics forboth male and female models.

• National Institute for Occupational Safety and Health (NIOSH): Recommended Weight Limit (RWL) and Lift Index (LI).

• Ovako Working-posture Analyzing System (OWAS): Used for analyzing standard body postures (back, arms, legs, head), reported as work codes (1 = “no correction needed” to 4 = “immediate correction”.

• Fatigue Analysis (Rohmert and Laurig): Time for a given job cycle to avoid worker fatigue. Considers only effect of muscle stress in the calculation of endurance.

• Lower Back Analysis (LBA): Calculates spinal forces acting on the human model’s lower back, under any posture and loading condition.

• Cumulative Lower Back Load (CLB): Considers the impact of task demands that are performed over an entire work shift.

Ergonomic Standards

Slide 32

Deliverables

• DELIVERABLE 4: Evaluation of the developed Smart Companion Robot for humanergonomic aspects and safe interaction using the human associate’s digital twin indifferent assembly scenario.

o Comparison of ergonomic results in human-only and human-robot simulations

o Improvements in OWAS, Fatigue and LBA analysis were discussed in details.

Page 17: ARM SCR 1 ACC Workshop 20190709€¦ · Bing Li Pierluigi Pisu Beshah Ayalew Yunyi Jia Matthias Schmid Venkat Krovi CU-ICAR Connected Autonomy Systems People Clemson: Breadth and

Slide 33

Demo 4: Data Driven Human Motion Simulation & Analysis

DataAcquisition

Data Streaming

IMU Suit

Siemens Process Simulate Human

Slide 39

Venkat N. KroviMichelin Endowed SmartState Chair Professor of Vehicle Automation

Depts. of Automotive Engineering &

Mechanical Engineering

International Center for Automotive Research, Clemson University

AARRMM SSMMAARRTT CCOOMMPPAANNIIOONN RROOBBOOTT PPRROOJJEECCTTPPhhaassee II :: MMaarrcchh 1155,, 22001188 –– MMaarrcchh 1155,, 22001199

Nathan McCallInnovation and Digitalization

BMW Manufacturing Company

Greenville, South Carolina

Roger ChristianDivision Leader, New Business

Development

VP Marketing and Development

Motoman Robotics Division

Juan AparicioHead of Research Group

Siemens Corporate Technology

Siemens

Berkeley, California

Presented at ACC 2019 WorkshopRobot Assisted Manufacturing: Challenges and Opportunities

Tuesday July 9