Are we going to survive? · Are we going to survive? Economic models of endogenous growth and...

20
Are we going to survive? Economic models of endogenous growth and evidence from global population and CO2 emission trends

Transcript of Are we going to survive? · Are we going to survive? Economic models of endogenous growth and...

Are we going to survive?

Economic models of endogenous growth and evidence from global population and CO2 emission trends

2Andreas HueslerCCSS, 2009-10-24

Outline

Introduction

Economic Model I: IPAT Economic Model II: Cobb-Douglas

Conclusions

Discussion

3Andreas HueslerCCSS, 2009-10-24

Current Economic Footprint

Population (in mio)

Ecological Footprint

Biocapacity Ecological Reserve

High Income Countries 972 6.4 3.7 -2.7

Middle Income Countries 3098 2.2 2.2 -0.0

Low Income Countries 2371 1.0 0.9 -0.1

World 6476 2.7 2.1 -0.6

Soucre

: footp

rintn

etw

ork

.org

4Andreas HueslerCCSS, 2009-10-24

Planetary Boundaries

Soucre

: doi:1

0.1

038

/461

47

2a

5Andreas HueslerCCSS, 2009-10-24

ImPACT equation I: impact P: population A:affluence C:consumption T: technology

Economic Model I

CO2=Population×GDP

Population×EnergyGDP

×CO2Energy

Soucre

: doi: 1

0.1

07

3

6Andreas HueslerCCSS, 2009-10-24

Growth

Growth description:

Solving ODE:

dpdt

∝ p1

p t =p0tc−t −

0

0

=0

rel.

gro

wth

7Andreas HueslerCCSS, 2009-10-24

Results I

≈1.67≈1.72

8Andreas HueslerCCSS, 2009-10-24

Results II: Parameter stability

≈1.67

t c=t

9Andreas HueslerCCSS, 2009-10-24

Results II (cont)

10Andreas HueslerCCSS, 2009-10-24

Economic Models II

Cobb-Douglas: Y: output L: labour K: capital A: technology

Solow equation:

Y t =K t ×[ A t Lt ]1−

dAdt

=b K t ×L t ×A t

dKdt

=sY t =s K t ×A t L t 1−

11Andreas HueslerCCSS, 2009-10-24

Coupling ODE I

Assuming labour is proportional to capital (cf Kremer)

we getdAdt

=a' L t ×A t

dLdt

=b ' L t ×A t 1−

K t ≈L t

12Andreas HueslerCCSS, 2009-10-24

Coupling ODE II

Assuming solutions of the form:

Gives us by coefficient matching

A finite-time singularities can be created from the interplay of several growing variables resulting in a non-trivial behavior: the interplay between different quantities may produce an “explosion” in the population even though the individual dynamics do not!.

A t =A0 tc−t −

L t =L0tc−t −

=11−

=2−−

×

11−

13Andreas HueslerCCSS, 2009-10-24

Coupling ODE III

For the cumulative CO2:

=> φ = -δα+κ

Numerical example:α=0.5, β=0.9, θ=0.9, γ=0.1=> δ=2, κ=1.2=> φ = 0.2 (>0, hence explosive)

dCO2dt

=Y t A t

=A0− L0

1×t c−t

14Andreas HueslerCCSS, 2009-10-24

Coupling ODE III (cont)

exponential g

rowth

L~K: δ=2

A: κ=1.2

dCO2/dt: φ=0.2

15Andreas HueslerCCSS, 2009-10-24

Conclusions

Dynamics of CO2 emissions can have complicated dynamics

The (non-linear) dynamics can lead to finite time singularities

Any scenario for future CO2 emissions should take econmic and population dynamics into account.

16Andreas HueslerCCSS, 2009-10-24

References

More references available at:http://www.citeulike.org/user/ahuesler

17Andreas HueslerCCSS, 2009-10-24

Reserve ....

18Andreas HueslerCCSS, 2009-10-24

Case Study: Easter Islands (II)

Colonization Rapid Growth Collapse

Carrying Capacity / Resources

Economic Activity / GDP

Population

400 AD 1600 AD 1750 AD

Soucre

: wikip

edia

, Dia

mond, o

wn g

raphic

19Andreas HueslerCCSS, 2009-10-24

20Andreas HueslerCCSS, 2009-10-24

Source: xkcd.com