Araneae Biodiversity in the Amazonian Foothills: An ...

23
SIT Graduate Institute/SIT Study Abroad SIT Graduate Institute/SIT Study Abroad SIT Digital Collections SIT Digital Collections Independent Study Project (ISP) Collection SIT Study Abroad Fall 2019 Araneae Biodiversity in the Amazonian Foothills: An analysis of Araneae Biodiversity in the Amazonian Foothills: An analysis of family and guild presence across habitat types family and guild presence across habitat types Rae Lewark SIT Study Abroad Follow this and additional works at: https://digitalcollections.sit.edu/isp_collection Part of the Biodiversity Commons, Environmental Indicators and Impact Assessment Commons, Forest Sciences Commons, Research Methods in Life Sciences Commons, and the Zoology Commons Recommended Citation Recommended Citation Lewark, Rae, "Araneae Biodiversity in the Amazonian Foothills: An analysis of family and guild presence across habitat types" (2019). Independent Study Project (ISP) Collection. 3265. https://digitalcollections.sit.edu/isp_collection/3265 This Unpublished Paper is brought to you for free and open access by the SIT Study Abroad at SIT Digital Collections. It has been accepted for inclusion in Independent Study Project (ISP) Collection by an authorized administrator of SIT Digital Collections. For more information, please contact [email protected].

Transcript of Araneae Biodiversity in the Amazonian Foothills: An ...

Page 1: Araneae Biodiversity in the Amazonian Foothills: An ...

SIT Graduate Institute/SIT Study Abroad SIT Graduate Institute/SIT Study Abroad

SIT Digital Collections SIT Digital Collections

Independent Study Project (ISP) Collection SIT Study Abroad

Fall 2019

Araneae Biodiversity in the Amazonian Foothills: An analysis of Araneae Biodiversity in the Amazonian Foothills: An analysis of

family and guild presence across habitat types family and guild presence across habitat types

Rae Lewark SIT Study Abroad

Follow this and additional works at: https://digitalcollections.sit.edu/isp_collection

Part of the Biodiversity Commons, Environmental Indicators and Impact Assessment Commons,

Forest Sciences Commons, Research Methods in Life Sciences Commons, and the Zoology Commons

Recommended Citation Recommended Citation Lewark, Rae, "Araneae Biodiversity in the Amazonian Foothills: An analysis of family and guild presence across habitat types" (2019). Independent Study Project (ISP) Collection. 3265. https://digitalcollections.sit.edu/isp_collection/3265

This Unpublished Paper is brought to you for free and open access by the SIT Study Abroad at SIT Digital Collections. It has been accepted for inclusion in Independent Study Project (ISP) Collection by an authorized administrator of SIT Digital Collections. For more information, please contact [email protected].

Page 2: Araneae Biodiversity in the Amazonian Foothills: An ...

AraneaeBiodiversityintheAmazonianFoothillsAnanalysisoffamilyandguildpresenceacrosshabitattypes

Lewark,RaeAcademicDirector:Xavier,SilvaPhD

ProjectAdvisor:GermaniaEstevez,PhDFieldAdvisor:AlexBentleyHawaiiPacificUniversityEnvironmentalStudies

SouthAmerica,Ecuador,PastazaProvince,EcomingaRioAnzuSumakKawsayinSitu

SubmittedinPartialFulfillmentoftherequirementsforEcuador:ComparativeEcologyandConservation,SITStudyAbroad,Fall2019

Page 3: Araneae Biodiversity in the Amazonian Foothills: An ...

AbstractTheactivityoftheorderAraneaewithinecosystemsisoftenconsideredanecologicalmystery.Consideredtop-leveltrophicpredators,spidersactasregulatorsofinsectpopulationsandhaveinfluenceuponthefoundationofthetrophicweb.IntheEcuadorianAmazonianfoothills,itisimportanttoaddressthelackofknowledgeofthebiodiversityofspidersintheregion.Conductingbiodiversitystudiesacrosslandusegradientscanbegintocharacterizeanthropogenicimpactsonneotropicalspiderspecies.ThisstudyquantifiesthearaneaebiodiversityinthetransitionbetweentheCloudandAmazonforestsinEcuador.Populationsinprimaryforest,secondaryforest,cultivatedfieldsandcavesystemswereanalyzedtoidentifythefamiliesandguildspresentintheecosystems.Thebiodiversityofspiderfamiliesandguildtypewerefoundtodiminishwithincreasinglanduseimpactandthedecreaseofvegetationcomplexity.ResumenLaactividaddelordenAraneaeentrelosecosistemasfrecuentementeseconsideraunmisterio.Consideradepredadoresimportantesarañassonreguladoresdelaspoblacionesdeinsectosytieneninfluenciasobrelabasedelaredtrófica.PorlasestribacionesdelaAmazonia,esimportanteaenfocarenlafaltadeinformacióndelabiodiversidaddearañasenelregión.Larealizacióndemásestudiosentrelosgradientesdelusodelatierrapuedeempezaracaracterizarlosimpactoshumanosenlasarañasdelosalotrópicos.EsteestudiocuantificólabiodiversidaddearaneaeenlatransicióndelBosqueNubladoylaAmazoniandeEcuador.Laspoblacionesdebosqueprimario,bosquesecundario,camposcultivados,ylossistemasdecuevasfueronanalizadosaidentificarlasfamiliasylosgremiosquesepresentenenlosecosistemas.Labiodiversidaddelasfamiliasylosgremiosdearañasseencontraronadisminuirconelcrecimientodelusodetierrayconeldecrecimientodelacomplejidaddelavegetación.AcknowledgementsTheauthorwouldliketoextendgratitudetoGermaniaEstevezforadvisementandguidancethroughoutthestudy,toAlexBentleyforadvisementinthefieldandAnaMariaOrtez,XavierSilvaandDianaSerranoforaidthroughoutthedevelopmentandcompletionofthestudy.TothestaffofSumakKawsayinSituandthefellowAnzuteamresearchers,ReneeHeller,TeoCarr,andZaneLibkefortheircompanionship,theirresilienceandtheirconstantabilitytoinspireeveninthehardestconditions.ToalltherepresentativesofSITstudyabroad.IntroductionSpidersrepresentamegadiverseorderwithinthearthropodphylum,with48,262currentlydescribedspecies(TheWorldSpiderCatalog20.5).Spidersposeataxonomicchallenge,asmorphologicalvariationwithinspeciesisabundantandcanbeduetogeneticdeviationorgeographicaldifference(Coddington&Levi1991).Thecurrentnumberofdescribedspeciesisspeculatedtoonlyconstitute35%ofthetotalspiderspeciespresentonearth.Incomparisontoothernon-invertebrategroups,spidersandotherarachnidsrepresentbothalackofresearchandanareafornewdiscovery(Pinzon2010,Brooks2004.)Whileresearchintotheecologicalimportanceofspidersisincreasing,onlyanaverageof605newspeciesaredescribedeachyear.Atthisrateofdescription,itwouldtakemorethan150yearstodevelopasufficientdatabaseontheplanet’sspiderbiodiversity(Platnick2013).Intheneotropics,wherebiodiversityisnotablyhigherthantemperateregions,researchintospiderbiodiversityisneededand

Page 4: Araneae Biodiversity in the Amazonian Foothills: An ...

presentsafrontierforthediscoveryanddescriptionofnewspecies.SpidersoftropicalregionssuchasinEcuador,presentanunder-exploredworldofecologicalandphysiologicalpotential(Basset2012.)Spidervenomcontainsneurotoxinsthatarebecomingimportantinneurobiologicalinnovation,studiesintopropertiesofspiderwebforfiberresearch,andalsointhedevelopmentoflessenvironmentallydamaginginsecticides(Coddington&Levi1991).Spidersmaybenefittheeffectivenessofpestcontrolinagroforestry.Increaseddiversityofspiderpopulationshasbeenfoundtobenefitthemitigationofpestimpactoncrops.Arangeofspeciesfromdifferentguildscreatesaneffectivenetworktotargetpestsacrosstheirlifecycles.Thispromoteslandmanagementwithlesschemicalimpactandfocusesonharnessingthenaturalecosystemtopromotecropproductivity(Marc&Conrad1997).Inordertoquantifytheimpactoflanduse,spiderpopulationsmustbethoroughlysurveyed.Themosteffectivetechniqueforspidercollectingis“nocturnalhandcollecting.”Thisisduetohigherprobabilityofencountersinthenighthourswhenmanyspeciesaremorelikelytobehunting.ThisstudyfocusedonhandcollectingasthemainsamplingmethodasadvisedbyRego(2009)whenothermethodsarenotavailable.Thismethodwasthefocusofthestudyinordertoencounterarangeofspidersacrossguildsandvegetationtypes,aswellastoobserveeachindividual’secologicalinteractionsandbehaviorwhileintheirnaturalenvironments.Nightcollectingsessionswereavitalcomponentofthestudyasspidersareoftenobservedinhigherquantityinhoursofnolightintheneo-tropics,withsomespeciesexclusivelyrecordedasnocturnallyactive(Green1999).Thisisoftenduetospider’smainpredatorsbeingactiveduringdaylighthours,andinordertohuntspidersmustputthemselvesatrisk.Buildingaweborambushhuntingdemandshighlevelsofenergyandrequiresindividualstoleavelocationswheretheyaresafefrompredators(Venner2005).Huntinginlowornolighthoursdecreasestheriskofpredationandalsoincreasestheindividual’spotentialforcatchingunsuspectinginsectswhomaynotbeabletodetectthespider’spresenceaswellatnight(Rypstra1986).Spidersareconsideredtopleveltrophicpredatorswithintheirhabitats.Spidersfilltheecologicalregulatorrolewithintheirecosystems,withthecapacitytodictatethecompositionandbalanceofinsectpopulations(Martin1982).Throughouttheplanet’secosystems,predatorsaredistinguishedaskeystonecomponentsinoverallhealth.Thedisproportionatelackofresearchintospider’simpactonecosystemfunctionalitydrawsastarkcomparisontopredatorsonlargertrophiclevels.Whilesmallinphysicalsize,spidershavethecapacitytoactasimportantcontrolagentsinthebalanceofinsectpopulations(Silva1992).Spiderfamiliespresentadiverserangeofguilds.Guildsareclassifiedasgroupsofspecieswhocompeteforthesameresourcesinanecosystem.Identifyingtheguildspresentinanecosystemcanleadtoabetterunderstandingoftheecologicalimpactspidercommunitiesarehavingonthetrophicweb.Classifyingguildscanalsodevelopanunderstandoftheimpactoflanduseinahabitat.ThedescriptionsofspiderguildsbyCardosoetal(2011)characterizedspiderguildsby8definitions:sensingwebweavers,sheetwebweavers,spacewebweavers,orbwebweavers,specialists,ambushhunters,groundhuntersandotherhunters.

Page 5: Araneae Biodiversity in the Amazonian Foothills: An ...

Thestratosphericrangeofaspidercanhelpidentifythetaxonomyaswellastheguilditbelongsto(Yanoviak2013).Spidersthatrelyonspecificvegetationstructureforwebbuildingorforhuntingwillbemorevulnerabletochangesinvegetation.Spiderswhorelyoncamouflageforhuntingmayalsobenegativelyimpactedbychangesinvegetationtype(Thery2002).Spiderswillutilizevegetationstructuretobuildwebs,forage,oruseambushhunting.Webbuildingspiderswillelectlocationsofhigherinsecttraffic,inlocationswheretheycanattractspecificindividuals,orlocationswheretheycanutilizesurprisetoentrapprey(Venner2005).Thisstudycollectedspecimensacrossfourdistincthabitats.Withineachhabitata200mtransectorientedaroundabodyofwateranda200mtransectinadryregionweresampled.Thefourecosystemssampledwereprimaryforest,secondaryforest,cultivatedfields,andsubterraneancaves.Thefirstthreeecosystemtypeswereselectedinordertocomparethebiodiversitygradientacrosstheregionwithincreasinganthropogenicimpact.Thecavetransectswereselectedinordertoobservetheimpactsoftheecologicalpressuresofsubterraneanecosystemsonspiderdiversity(Mammola&Isaia2017).Theprimaryforesttransectswereconsideredregionsunalteredbyanthropogenicactivity,withlittletonodisturbance.Thefirsttransectselectedwassituatedinavalleyandcutthroughthepathofastream.Thesecondtransectselectedwassituatedalongtherideofthesamevalley,andcutthroughtheforest.Bothtransectshadlittletonohumanimpactexceptforcollectingreasons.Thestructureofvegetationhasasignificantimpactonspiders.Astheyrelyheavilyoninfrastructureforhunting,areaswithmorediverseflorawilloftenprovidethefoundationfordiversespiderpopulations(Schüpbach2013).Thesecondaryforesttransectsweredefinedasareaswereprimaryforesthadbeencleared,buthadthenbeenabandonedandsuccessionalgrowthwaspermitted.Thefirsttransectselectedwasorientedclosetoariveralongastreamtributary.Thesecondtransectcutthroughtheforest,andcrossedthedryportionofthefirsttransectsstream.Secondaryforestgrowthisdenserwhilelessdiversethanprimaryforests,andiffoundadjacenttoprimaryforestswilloftenpresentidealconditionsforspiderdiversity(Floren&Deeleman-Reinhold2005).Thecultivatedtransectswerecharacterizedasareaswhereprimaryforesthadbeenremovedtoopenthelandforagriculturalactivity.Thetransectsselectedweredominatedbygrassesandsomesuccessionalforestflora.Cultivatedhabitatsoftenexhibitpatchworklikeregions,withthealtercationsoflandcausingfragmentationofhabitatsforthespeciespresent.Spidersareadaptivepredators,oftenexhibitingresiliencewhenimpactedbyhabitatdisturbance.Oftenabletoadapt,spidersthriveinareaswithhighinsectpopulations,suchasagriculturalsites,orhabitatsaroundbodiesofwater.Theycanadapttheirhuntingmethods,whetherweborientedorambushhunting,toalteredecosystems(Schüpbach2003).Ithasbeenobservedhoweverthatoveralldiversityofspecieswilldecreaseinareasofdisturbanceimpactedbyagricultureorotheranthropogeniclanduse.Thisusuallyresultsinafewspeciesthrivinganddominatingtheecosystem(Cardosoetal2011).

Page 6: Araneae Biodiversity in the Amazonian Foothills: An ...

Thecaveswerecharacterizedassubterraneangeologicalformations.Subterraneanhabitatscreateextremeenvironments,exposinginhabitantstohighlevelsofecologicalpressure.Duetolowresourceavailabilityaswellaslowlightlevels,specieslivingincaveecosystemswilloftenevolveawayfromtheirterrestrialcounterparts(Mammola&Isaia2017).ThisstudyaimedtoevaluatethebiodiversityofspidersinthetransitionalhabitatsbetweentheEcuadorianCloudForestandAmazonForest.Bydevelopinganunderstandingofthespeciesintheregionandbysamplingvarioushabitatstypes,theimpactofhumanlanduseonspiderdiversitywasalsoevaluatedacrossincreasinglevelsofaltercation.MethodsIntheFieldThestudywasconductedinNovember,2019inthetransitionbetweenthedryandthewetseasoninEcuador.ThestudysitewasintheRioAnzuregionofthePastazaProvince,intheEcomingaandSumakKawsaybiologicalreserves.Collectionsessionswereperformedfor16daysbetweenthe12thandthe29thofNovember.Thefourhabitatssampledwereprimaryforest,secondaryforest,cultivatedfields,andsubterraneancaves(cavesnotmapped).Foreachtypeofhabitat,excludingthecavesystems,two200mtransectswereused,onethatwasorientedaroundabodyofwater(wettransect)andonethatwasnotimpactedbywater(drytransect)(figure1).Thecavetransectswereevaluatedinsearchhoursinsteadofdistancesurveyed.

Figure1.Mapofthe6maintransects,TCM=cultivatedwettransect,TCS=cultivateddrytransect,TSMIandTSM2=secondarywettransects,TSS=secondarydrytransect,TPM=primarywettransect,TPS=primarydrytransect.

Page 7: Araneae Biodiversity in the Amazonian Foothills: An ...

Surveyingsessionsutilizedhandcollectingmethods,withemphasisonidentifyingindividualsaswellasobservingbehaviorandenvironmentalinteractionofeachmorpho-species.Whenanewindividualwasencountereditwasphotographed,theheightabovegroundwhereitwasfoundwasmeasured,andthetypeofvegetationorstratawasclassified.Vegetationorstrataclassificationwasbrokenupinto9categories:gravel/sand,surfaceofwater,soilbank/wall,leaflitter,rootsystems,fallentrees/branches,grass,low-levelfoliageandhigh-levelfoliage.Thepresenceofawebanditstypewasnoted,aswellasbehaviorwhendisturbed,eggsacktype,orothernotablefeaturesthatcouldbeusedinidentification.AsfoundbyAvezedoetalin2014,nocturnalhandcollectingisthemosteffectivemethodforcollectingspiderspecimensaboveothermethodssuchastreebeatingorpitfalltraps.Whileacombinationofthethreemethodsisideal,nocturnalhandcollectingisthemostsuccessfulespeciallywhenotheroptionsarenotaccessible.Thisisduetohigheractivityofspiderspeciesatnightcomparedtotheday(Green1999).Thisstudyaimedtomaptheactivityofdifferentspidergroupsthroughoutdifferentlightlevels,anddevelopedcollectingschedulesinnight,dayandtransitionallightsessions.Thisstudyutilizedhandcollectingastheprimarysamplingtechniquebecausepitfalltrapsandtreebeatingeitherkillsindividualsordisruptstheirnaturalactivity.Thisinhibitsobservationtoobserveoftheirecologicalinteractionandbehaviorintheirnaturalenvironment.Fifteencollectinghourswerespentineachtypeofhabitat,withevenamountsoftimespentcollectingintransitionalhours(sunriseandsunset),daylighthours,andnighthours.Thecavesystemsweresampledforonlyanequivalentofthreesamplingsessions,andnotsubjecttolightlevelspecificsampling.Atotalof45searchandcollectionhourswereperformedinthemainthreehabitattypes,and3hoursand45minutesinthecavetransects.Eachtransectwaswalkedslowly,withsweepingvisualsearchesdonefromsidetosideofthevegetationorwaterway.Leaflitter,soilbanks,fallentrees,rootsystemsandtheundersidesofleaveswerethoroughlyexaminedateachsearchinterval.Nighttimesessionsutilizedbothaheadlampandspottingflashlightinvisualsearches.Samplesweretakenatthreedifferentlevelsoflight.Daylightsamplesweretakenbetweenthehoursof8:00and17:00.Nightsamplesweretakenbetween19:00and0:00.Transitionallightsamplesweredividedevenlybetweenmorningandeveningtransitionhours,withmorningsessionstakingplacewithinthehoursof5:30and7:45,andeveningsessionstakingplacewithin17:15and18:45.Fifteenhoursofcollectingineachlightlevelwereperformedacrossthethreemainhabitats,withtransitionalhoursbrokeninto7hoursand30minutesforthemorningtransitionsand7hoursand30minutesfortheeveningtransitions.TheapplicationiNaturalistwasusedtoorganizedataduringcollectingsessions.Eachindividualwasphotographedinthefieldwithamacro10mmMomentLensattachedtoaniPhoneXR.Ifpossible,photosweretakenofeachindividualfromabovetocapturethelegandbodyoverallshape,alongthedorsalplanetocaptureshapeofthecarapaceandtheabdomen,andfromthefronttocapturetheocularpattern.Whenanewmorpho-specieswasfounditwascollectedtobepreservedandidentifiedoutsideofthefield.

Page 8: Araneae Biodiversity in the Amazonian Foothills: An ...

PreservationandIdentificationSampleswerepreservedina70%alcoholsolution,andphotographedwiththesamelensusedinthefield.Amicroscopewasusedforidentificationwhenmacrophotoswerenotsufficientforidentification.Thefamilyofeachindividualwasidentifiedaswellasthegenuswhenpossible.IdentificationwasbasedonthedescriptionsofJocqué(2007),Wegner(2011),Duperre(2013,2015,2016),Brescovit([nodate]),andtheWorldSpiderCatalog20.5(2019).GuildswereassignedtoeachfamilybasedonthedescriptionsofCardosoetal(2011).StatisticalAnalysisThediversitywithineachhabitataswellasthecompositediversityoftheregionwascalculatedusingtheentropyoftheShannonDiversityIndex,andtheinverseSimpsonDiversityIndex.TheShannonDiversityIndexwhichaccountsfortheincreaseofrarespecies,aswellastheabundanceandevennessinthecommunityandfunctionsonanordinalscale.Theentropywasappliedinordertoavoidunbalancedinfluenceofrareorcommongroupsdisproportionately(Jost2006).TheGini-SimpsonDiversityIndexdescribestheoveralldiversityofacommunity,accountingforrichness,evennessanddivergence(Solow1993).Theinverseoftheformulawasappliedinordertoaccountfordominanceofgroupswithinthesample(Jost2006).TheShannonIndexiscalculatedasfollows,where(p1)isthequantityofspecies“1”inrespecttothetotalnumberofspecies.

= 𝑒𝑥𝑝 &'(𝑝))|ln 𝑝)|.TheGini-SimpsonIndexiscalculatedasfollows,wherenisthetotalnumberofindividualsinaspecificspecies,andNisnumberofindividualsofthecumulativespecies:

= 1

0 1∑(𝑛𝑁)

45

ThesamplecompletenessofeachhabitattypeaswellastheregionasawholewascalculatedusingthesoftwareiNext(Chaoetal2016).Thisisanimportantmeasuretotakewhenstudyingarachnidpopulationsbecausetheyoftenpresenthighnumbersofsingleordoublemorpho-speciesencounters(singletonsanddoubletons)(Rego2009).Aspeciesaccumulationcurvewasmappedinordertocomparethenumberofspeciesfoundinaregioninrespecttotheeffortusedtofindthem(Chaoetal2016).TheJaccardIndexwasusedtomeasurethepercentsimilarityofmorpho-speciesbetweenthethreemainhabitatssampled(primary,secondaryandcultivated.)Theformulaoperatesbydividingthenumberofsharedspeciesbythetotalnumberofspecies,wherenequalsnumberofsharedspeciesandNequalstotalnumberofspeciesbetweenthehabitats.

Page 9: Araneae Biodiversity in the Amazonian Foothills: An ...

%𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =𝑛𝑁

Thesamplescollectedfromthecavetransectswerenotstatisticallycomparabletotheotherhabitatsasthesamplingeffortwasdisproportionate.Theresultsfromdatasampledfromthecaveswasincludedinthediscussionportionofthestudy.Results&DiscussionAtotalof1036spiderswerecollectedacrossthefourhabitattypes.Thetotalnumberofindividualscouldbebrokenupinto150morpho-speciesand20families(appendixA).The20familiescouldbeclassifiedinto8guilds(table1).Ofthetotalmorpho-species4couldnotbeidentifiedandfallintotheunknownclassification.

Table1.SpiderFamiliesfoundacrossallhabitatsdesignatedintoguilds.Guild FamilyAmbushHunter Deinopidae

Thomisidae

GroundHunter CorinnidaeHeteropodidaeLycosidae

OrbWeaver AraneidaeSymphytognathidaeTetranathidae

OtherHunter AnyphaenidaeCtenidaeMiturgidaeSalticidaeScytodidae

SensingWeb Theraphosidae

SheetWeb AgelenidaePisauridae

SpaceWeb PholcidaeTheridiidae

Specialist DysderidaeGnaphosidae

Ofthe150morpho-species,onefromeachhabitatwasfoundtodominanttheirrespectivehabitattypes.Themostdominantmorpho-speciesfoundintheprimaryhabitatwasPisauridaegen.sp.1(15%),Thenextmostdominantmorpho-specieswere

Page 10: Araneae Biodiversity in the Amazonian Foothills: An ...

Pholcidaegen.sp1.andTetranathidaegen.sp.1makingup12%and11%ofthetotalpopulation,respectively.Themostcommonmorpho-speciesinthesecondaryhabitatwasPholcidaegensp2whichmadeup17%ofthetotalmorpho-speciesfoundinthehabitat.Thenextmostdominatemorpho-specieswereTheridiidaegen.sp.1andPholcidaegen.sp.2whichmadeup17%and13%ofthetotalmorpho-speciesfound,respectively.Themostcommonmorpho-speciesfoundinthecultivatedhabitatwasTetranathidaleucagesp.whichrepresented40%ofthetotalpopulation.ThefollowingdominantspecieswereTheridiidaegen.sp.1,andPisauridaegen.sp.2,makingup11%and8%oftheremainingpopulation,respectively.

Figure2.Thethreemostcommonmorpho-speciesfoundineachhabitattype.Fromlefttoright:themostabundantmorpho-speciesintheprimarytransects,secondarytransects,andthecultivatedtransect.Themostcommonmorpho-speciesinthesecondaryhabitatwasPholcidaegensp2whichmadeup17%ofthetotalmorpho-speciesfoundinthehabitat.Thenextmostdominatemorpho-specieswereTheridiidaegen.sp.1andPholcidaegen.sp.2whichmadeup17%and13%ofthetotalmorpho-speciesfound,respectively.Themostcommonmorpho-speciesfoundinthecultivatedhabitatwasTetranathidaleucagesp.whichrepresented40%ofthetotalpopulation.ThefollowingdominantspecieswereTheridiidaegen.sp.1,andPisauridaegen.sp.2,makingup11%and8%oftheremainingpopulation,respectively.Ofthethreemainhabitats,thecultivatedhabitatspresentedthehighestdominancebyonemorpho-specieswitha40%representationofTetranathidaleucagesp.Thismorpho-speciesisnotablyadaptedtocultivatedenvironments,andareproficienthuntersingrassdominatedecosystems(Hall2019).Similartospiderbiodiversityin

Pisauridae Pholcidae Tetranathidae

Page 11: Araneae Biodiversity in the Amazonian Foothills: An ...

othercultivatedareas,themostalteredenvironmenthadthehighestdominanceofasinglemorpho-species(Cardosoetal2011).ComparisonofDiversityTheShannonEntropycalculationsshowedhigherdiversityandevennessofthepopulationfromthecultivatedtotheprimaryhabitatgradient(table2).Anincreaseof61.31%wasfoundbetweenthecultivatedandsecondaryhabitats,andanincreaseof29.02%betweenthesecondaryandprimaryhabitats.Theincreaseof72.54%betweenthecultivatedtoprimaryhabitatswasthemostsignificantchangeinbiodiversity(appendixD).TheTransformedGini-Simpsoncalculationsshowedasignificantincreaseofbiodiversitywhenhabitattypeswerelessimpactedbyanthropogenicaltercation(table2).Anincreaseof67.23%wasfoundbetweenthecultivatedandthesecondaryhabitat,andanincreaseof33.31%betweenthesecondaryandprimaryhabitat.Theincreaseof78.15%betweenthecultivatedandprimaryhabitatswasthemostnotableinchangeinbiodiversityacrossthelandaltercationgradient(appendixD).Table2.Diversityvalues,foreachhabitattyperespectivelyandforallthreecombinedtorepresenttheregionalbiodiversity.Habitat ShannonEntropy Gini-SimpsonTransformedPrimary 3.86 25.58Secondary 2.74 17.06Cultivated 1.06 5.59Regional 2.88 51.91Thepercentsimilaritiesbetweenhabitatsshowedtheprimaryandcultivatedhabitatshadtheleastsimilaritysharingonly10%morpho-speciesbetweenthem.Secondaryandcultivatedshared31%ofthetotalmorpho-species,showingthegreatestsimilarity.Theprimaryandsecondaryhabitatshowedaslightlylowersimilaritywith28%ofthetotalmorpho-speciesshared(table3).

Table3.Jaccard’sIndicesbetweenthe3mainhabitatssampled.HabitatComparison Shared

Morpho-speciesTotalMorpho-species

JaccardIndices

PrimarytoSecondary 30 106 28%

SecondarytoCultivated 34 108 31%

CultivatedtoPrimary 15 143 10%

Habitatswithsimilarlanduseimpactssharedmoremorpho-species.Boththesecondaryandprimarytransectsshowedmoresimilarity,asitcanbeassumedthemorpho-speciesinthosehabitatsrelyonmoreunalteredvegetationstructuretosurvive.Morpho-speciesinthecultivatedregionsmaybeabletocrossovertoboththesecondaryandprimaryhabitats,butmanyoftheprimaryandsecondarymorpho-

Page 12: Araneae Biodiversity in the Amazonian Foothills: An ...

speciesmaybetoospecializedtotheirvegetationinfrastructuretosurviveinhighlyimpactedregions(Gollan2010).SpeciesAccumulationandSpeciesCoverageTheindividualsfoundacrossthethreemainhabitatsrepresentedfrom60%to75%ofthetotalexpecteddiversityoftheregion.Thisleavesanunidentifiedmarginfrom35%to40%ofmorpho-speciesnotaccountedforinthesamplingperiod(figure3).

Figure3.SpeciesAccumulationCurveofthethreemainhabitats:cultivated,primaryandsecondary.Theinterpolatedlinerepresentsdatacollectedandtheextrapolatedlinerepresentstheprojectionofspeciesandindividualsnotfoundinthehabitatsduringthestudy(Chaoetal2016).Thesamplingeffortsofthestudysuccessfullyaccountedforaround60%to75%ofthetotalspeciesinthehabitatssurveyed.Thisleavesanunidentifiedmarginfrom35%to40%ofthemorpho-speciesnotfoundinthesamplingperiod(figure4).

Figure4.SampleCoverageofthesurveysacrossthethreemainhabitats:cultivated,primaryandsecondary.Theinterpolatedlinerepresentsdatacollectedandtheextrapolatedlinerepresentstheprojectionofdiversitythatremainsun-surveyedinthehabitats(Chaoetal2016).

Page 13: Araneae Biodiversity in the Amazonian Foothills: An ...

Thisresultreflectsthefindingsofsimilarstudieswherearachnidbiodiversitystudiesofthisgeneralsizeareusuallyabletoaccountforaround70%ofthetotalregionaldiversity(Azevedoetal2014).Duetohighvariabilityamongstpopulations,itiscommontoencounterahighnumberofsingletonsanddoubletonswhilesurveyingarachnids(Rego2009).FamilyCompositionTheregionalfamilycompositionshowedthefamilyPholcidaehadthegreatestabundancerepresenting23.36%ofthetotalindividualsfoundacrosshabitats.ThisresultissimilartothefindingsofMoore(2015),whofoundPholcidaewasthemostabundantfamilyacrossaltitudesinanadjacentgeographicalregion.

Figure5.Examplesfromthe3mostabundantfamiliesintheregion,amorpho-speciesfromthePholcidae,TheridiidaeandTetranathidaefamily.ThefamiliesTheridiidaeandTetranathidaewerethesecondandthethirdmostabundantfamiliesrepresenting18.24%and17.95%ofthetotalregionalpopulation(appendixC.)ThefamilyTheridiidaewasfoundtobeabundantinEcuadorianCloudForestsbyRobinson(2018),inastudyonthebiodiversityofspidersacrossaltituderange.

26.20%25.56%

12.14%

8.63%6.07%4.47%3.00%2.88%2.56%2.00%1.28%1.28%1.00%1.00%0.96%0.96%0.64%0.32%

0.00%5.00%

10.00%15.00%20.00%25.00%30.00%

pholcidae

pisaurid

ae

tetran

athidae

theridiid

ae

saltic

idae

ctenidae

lycosid

ae

thomisidae

corin

nidae

heteropodidae

scytodidae

Unknwn

agele

nidae

anyp

haenidae

araneid

ae

theraphosid

ae

symphyto

gnath

idae

deinopidae

A) Primary Family Dominance Curve

Page 14: Araneae Biodiversity in the Amazonian Foothills: An ...

Figure6.TheFamilyDominanceCurvesofeachhabitattype,exhibitingthefamilieswiththegreatestrepresentationinthehabitat.ThemostcommonfamilyfoundintheprimaryhabitatswasPholcidae,whichrepresented26.20%ofthetotalindividualsfound.PisauridaeandTetranathidaemadeupthesecondandthirdlargestcomponentofthesample,representing25.56%and12.14%respectively.Theremaining14familiesandthefewindividualsthatcouldnotbeclassifiedintofamilieseachrepresentedfrom0.32%to8.63%ofthetotalcomposition(figure6A).ThemostcommonfamilyinthesecondaryhabitatwasPholcidaewhichrepresented38.44%ofthetotalindividualsfound.PisauridaeandTheridiidaemadeupthefollowinghighestpercentagesrepresenting33.13%and25%respectively.Therestofthefamiliesandthefewindividualswhocouldnotbeidentifiedrepresentedfrom0.31%to6.56%oftheindividualsinthehabitat(figure6B.)ThemostcommonfamilyinthecultivatedhabitatwasTetranathidaewhichrepresented40.18%ofthetotalindividualsfound.TheridiidaeandAraneidaemadeupthefollowinghighestpercentagesrepresenting21.11%and12.02%respectively.Therestofthefamiliespresentedfrom0.29%to10.26%oftheindividualsinthehabitat(figure6C.)

38.44%

33.13%25.00%

6.56% 4.06% 3.44% 2.1… 1.88% 1.25% 0.94% 0.94% 0.31% 0.31%0.31%0.00%5.00%

10.00%15.00%20.00%25.00%30.00%35.00%40.00%45.00%

Pholcidae

Pisaurid

ae

Therid

iidae

Araneidae

Tetra

nathidae

Thomisid

ae

Ctenidae

Saltic

idae

Scytopidae

Corinnidae

Lycosid

ae

Therophosid

ae

Anyphae

nindae

Unknwn

B) Secondary Family Dominance Curve

40.18%

21.11%12.02% 10.26%

5.57% 4.40% 2.93% 1.76% 0.88% 0.29% 0.29% 0.29%0.00%5.00%

10.00%15.00%20.00%25.00%30.00%35.00%40.00%45.00%

Tetra

nathidae

Therid

iidae

Araneidae

Pisaurid

ae

Saltic

idae

Ctenidae

Lycosid

ae

Corinnidae

Dysderid

ae

Deinopidae

Thomisid

ae

Unknwn

C) Cultivated Family Dominance Curve

Page 15: Araneae Biodiversity in the Amazonian Foothills: An ...

ForboththeprimaryandsecondaryhabitatsthePholcidaefamilydominatedthenumberofindividualsintheecosystem.ThisfindingwassimilartothefindingsofMoore(2015),whofoundinuncultivatedregionsthePholcidaefamilywasthemostabundant.Thecultivatedhabitathadthemostsignificantdominanceofasinglegroup(Tetranathidae)comparedtotheotherhabitatswhichshowedalmostequalpresenceofatleasttwofamilies(figure6.).TheabundanceoftheTetranathidaefamilyinthecultivatedareawassoapparenttheywereconsideredapartofthethirdmostabundantfamilyintheregion(appendixc.)

Figure7.TheCaveHabitatDominanceCurve,exhibitingthefamilieswiththegreatestrepresentationinthehabitat

Thepopulationsinthecavehabitatshowadramaticdominanceoftwogroups.ThefamiliesPholcidaeandGnaphosidaepresented96.67%ofthepopulation(figure7).Comparedtothethreemaintransectsthathadincreasedecologicalresources,thecavehabitatscouldonlysupportafewfamilies.Theresourcesandecologicalinfrastructureofcavehabitatsisinhospitabletomanyorganisms,andthepresenceofafewspecializedfamiliesisexpectedundersuchconditions(Mammolaetal2017).GuildCompositionAcrosstheregionthespaceweb,sheetwebandorbweaverguildswerethemostabundant.ThetwomostabundantfamiliesPholcidaeandTheridiidaeareclassifiedasspacewebbuilders,whilethethirdmostabundantfamilyTetranathidaehuntsintheorbweaverguild(table1).

60.00%

36.6667%

1.67% 1.67%0.00%

10.00%20.00%30.00%40.00%50.00%60.00%70.00%

Pholcidae

Gnaphosid

ae

Therid

iidae

Therap

hosidae

Cave Family Dominance Curve

Page 16: Araneae Biodiversity in the Amazonian Foothills: An ...

Figure8.HabitatGuildComposition,displayedinpercentagesoutofthetotalnumberofindividualssampled.ChartArepresentsprimaryguilds,ChartBrepresentssecondaryguilds,andChartCrepresentscultivatedguilds.Themostabundantguildintheprimaryhabitatwerespacewebbuildersmakingup35%ofthetotalguildsrepresented.Thesecondgreatestusagewasrepresentedbysheetwebbuilderswhomadeup26%oftheindividualsinthehabitat(figure8A).ThefamiliesbuildingspacewebsincludePholcidaeandTheridiidae(table1),withPholcidaerepresentingthehighestpercentageofindividualsinthehabitat.Themostrepresentedguildinthesecondaryhabitatwerespacewebbuilders,makingup53%ofthetotalindividualsinthehabitat.Thethreemostabundantmorpho-specieswereclassifiedasspacewebbuilders.Thesecondmostrepresentedguildweresheetwebbuilders,makingup28%ofthetotalindividualsinthehabitat(figure8B.)Thefirstandthirdmostabundantfamiliesinthehabitat(PholcidaeandTheridiidae)wereclassifiedinthespacewebguild,whilethesecondmostabundantfamilyPisauridaewasclassifiedinthesheetwebguild(table1).Themostrepresentedguildinthecultivatedhabitatwereorbweavers,makingup53%ofthetotalindividualsinthehabitat.Thesecondmostabundantguildwasthespacewebbuilders,makingup21%ofthetotalindividualsinthehabitat(figure8C).Themost

Ambush Hunter3% Ground Hunter

2%

Space Web53%

Orb Weaver9%

Other Hunters5%

Sensing Web1%

Sheet Web28%

Unknw1%

Secondary Habitat Guilds

Orb weaver53%

Space web21%

Sheet Web10%

Other Hunter10%

Ground Hunter5%

Ambush Hunter1% Unkwn

1%

Cultivated Habitat Guilds

Space web 35%

Orb weaver14%Other Hunter

13%

Ground Hunter7%

Sensing Web1%

Sheet web26%

Ambush Hunter3%

Unknwn1%

Primary Habitat Guilds

Page 17: Araneae Biodiversity in the Amazonian Foothills: An ...

abundantfamilyinthehabitatTetranathidaeisclassifiedundertheorbweaverguild,whilethefollowingmostabundantfamiliesTheridiidaeandAraneidaefallintothespacewebandorbweaverguilds,respectively(table1).Only3guildswerefoundinthecavetransects,withthespecialistandspacewebguildsmakingup99%ofguildactivity(figure9).Comparedtotheguildcompositionofthethreemaintransectsthecaveecosystempresentsahighlevelofecologicalstressresultinginonlyafewguildsbeingabletoadapttotheextremesubterraneanenvironment(Mammolaetal2017.)

Figure9.CaveGuildCompositiondisplayedinpercentagesoutofthetotalnumberofindividualsfound.Therichnessandevennessofguildsincreasedfromthecultivatedtotheprimaryhabitat.Habitatswithlessanthropogenicinterventionwereabletosupportahigherrangeofguilds,resultinginhighermeasuresofbiodiversity(table2).Guildswithmorespecializedhuntingtechniqueswerefoundtobemorerepresentedinmoreunalteredhabitattypes(Michalko2016,Cardosoetal2011).Habitatswithhigherecologicalpressure(Mammolaetal2017)orincreasedlevelsofdisruptionwillonlybeabletosupportsimplisticguildcompositions,asthesehabitatslimittheamountofresources,structureandrefugeneededtosupportcomplexguildactivity(Cardosoetal2011).

Space Web72%

Specialist27%

Sensing Web1%

Cave Habitat Guild Composition

Page 18: Araneae Biodiversity in the Amazonian Foothills: An ...

VegetationandLandUseImpactThetypeofvegetationineachhabitatcouldbeclassifiedinto9categories.The8guildscouldbearrangedintothetypesofvegetationtheywerefoundusingtohunt.

Figure10.Vegetationandstratapresentinthefourhabitats,withdesignationoftypeandtheguildsfoundusingtheinfrastructure.Vegetationvariabilitywasfoundtodecreaseacrossthefourhabitatssampled,parallelingadecreaseinthebiodiversityandactiveguildsinthehabitat.Boththeprimaryandsecondaryhabitatsshowedthehighestrangeinvegetationtype,whilethecultivatedhabitatshadonly4outofthe9classifications.Thecaveecosystemsshowednovegetationandonlyonestrataclassification(figure10).Thespeciesrichness,familyandguildpresencebetweenthemainthreetransectsandthecavesamplesshowedadramaticdecrease,withonly6morpho-species,4familiesand3guildsbeingfoundthroughoutthecavessurveyed(appendixA.)Astheecologicalstressorsincreased,classifiedindiminishingvegetationvariability,thediversityofthespiderpopulationsdecreasedproportionally(Mammolaetal2017).Theavailabilityanddiversityofvegetationdirectlyimpactedthebiodiversitypresentacrosstheregion.Asvegetationandstratacomplexityincreasedthenumberofactiveguildsincreased.Thiscontributestotheincreaseofbiodiversityasthesupportofmoreguildtypesleadstothepresenceofmorespecies(Cardosoetal2011).Asbothofthesecondaryandcultivatedhabitatshadbeenpreviouslyalteredandbothhadvaryingdegreesofdensevegetationtype,similarspecieswouldfindthemhospitable.Theywerealsoclosertogetherinlocation,meaningmorespecieshadtheabilitytocrossoverfromhabitattohabitat.Spidersinadaptiveguildssuchasspacewebororbweaverswillbeabletothriveinvaryinghabitattypes,asbothrelyonvegetationstructurebutcanadapttovaryingvegetationtobuildwebs(Schüpbach2003).Astheprimaryforestandthecultivatedfieldshadthegreatestdegreeofimpactdifference,itisexpectedtheywouldsharetheleastamountofmorpho-species(table3).

Page 19: Araneae Biodiversity in the Amazonian Foothills: An ...

Thesignificantdifferencebetweenanthropogenicimpactofunalteredprimaryforestandcultivatedfieldswouldsupportstheassumptionthatspeciesinprimaryforestwouldnotfindagriculturalareasashospitable(Uetz1991).Thecultivatedtransectshowevershowedarelativelyhighbiodiversitymeasure(table2).AsfoundbyMarc&Canard(1997)agriculturalzoneswithlittletonochemicalimpactwillbehospitabletoarangeofspidersandtheirrespectiveguilds.Theyalsofoundhigherspiderbiodiversityincultivationhasthepotentialtoactasaneffectivepestcontrol,andwiththeintersectionofarangeofguilds,cantargetinsectsinalloftheirlifestages.Thepercentageofbiodiversityfoundinthecultivatedtransectsrepresentacultivatedareawithgoodagroecologicalmanagement.Cultivatedlandthathasbeenabandonedtoacertaindegreewillalsopresenthigherlevelsofbiodiversity,asthelackofchemicaluseandconsistentdisturbancepermitsspiderpopulationstoincrease(Martin1982).ConclusionSpiderbiodiversityaroundtheworld,andspecificallytheneotropics,isstillabiologicalfrontiertobefullyunderstood(Basset2012).Presentinganewfrontierofnewscientificdiscoveries,spidersdisplayanintriguingrangeoftaxonomyandecologicalinteractionsthatrivalscomparativetop-levelpredatorsonothertrophiclevels(Basset2012,Silva1992).Thisstudyfoundspiderbiodiversitydecreasedwithincreasedanthropogenicimpact.Primaryforestswerefoundtosupportmorespiderfamiliesandprovideinfrastructureforincreasedguildactivity.Themostimpactedregions,thecultivatedhabitats,showedadecreaseindiversity,withafewspeciesdominatingtheecosystem.Theclassificationofvegetationtypeshowedthatadecreaseinvariabilitycorrespondedtoadecreaseinbiodiversity.Inboththecultivatedandcaveecosystems(imposingbothartificialandnaturalecologicalpressures)fewerfamiliesandguildscouldbesupported.Thisdemonstrateshowecologicallymindfullandmanagementisvitalinpreservingspiderbiodiversity,asincreasedecologicalpressurelessentheresourcesneededbythemorecomplexguilds.Theuniquebiodiversityfoundintheprimaryforestsshowedhowpreservationofpristineenvironmentsisvital,especiallyinthecaseofspiderswheremanyspecieshaveyettobedescribed(Platnick2013).Thecultivatedhabitatbiodiversitydidshowhowmindfulagriculturalpracticescanmaintaindiversespiderpopulations,simultaneouslycreatingeffectivepestcontrol(Jeanneretetal2003).Spiderbiodiversityacrosshabitatscallsforincreasedscientificexploration,asknowledgeofdiversityacrosstrophiclevelsisnecessarywhendevelopingcompleteconservationprotocols.BibliographyAvezedo,G.H.F,etal.(2014.)Effectivenessofsamplingmethodsandfurthersampling

foraccessingspiderdiversity:acasestudyinaBrazilianAtlanticrainforestfragment.InsectConservationandDiversity.7:381-391.doi:10.1111/icad.12061

Basset,Y.etal.(2012).ArthropodDiversityinaTropicalForest.Science,338(6113):1481-1484.DOI:10.1126/science.1226727

Brescovit,A.,Rheims,C.A.,Bonaldo,A.B.[nodate]ChavedeIdentificacionpara

Page 20: Araneae Biodiversity in the Amazonian Foothills: An ...

FamiliasdelasArañasBrasileñas.DepartamentodeZoologia,IB/USP,SãoPaulo.https://doi.org/10.1111/j.1523-1739.2004.00457.x

Cardoso,P.,Pekar,S.,Jocque,R.,&Coddington,J.A.(2011).Globalpatternsofguildcompositionandfunctionaldiversityofspiders.PLoSONE,6(6).https://doi.org/10.1371/journal.pone.0021710

Chao,A.,Ma,K.H.,andHsieh,T.C.(2016)iNEXT(iNterpolationandEXTrapolation)Online.ProgramandUser'sGuide.http://chao.stat.nthu.edu.tw/wordpress/software_download/

Coddington,J.A.,Hebert,L.W.(1991).SystematicsandEvolutionofSpiders(Araneae.)AnnualReviewofEcologyandSystematics.22:565-592.https://www.jstor.org/stable/2097274

Duperre,N.(2013).AraneaeofEcuador:43Families,709Species.http://aracnidos.otonga.org/CSS/Araneae.html

Duperre,N.(2015.)DescriptionofanewgenusandthirteennewspeciesofCtenidae(Araneae,Ctenidae)fromtheChocóregionofEcuador.Zootaxa.4:451-484.http://zoobank.org/urn:lsid:zoobank.org:pub:DE76F18B-422D-4D97-93FD-F211F691F591

Duperre,N.,TapiaE.(2016.)OverviewoftheAnyphaenids(Araneae,Anyphaeninae,Anyphaenidae)spiderfaunafromtheChocoforestofEcuador,withthedescriptionofthirteennewspecies. EuropeanJournalofTaxonomy.255:1-50.http://dx.doi.org/10.5852/ejt.2016.255

Hall,D.(2019.)OrchardOrbweaver,OrchardSpider.IFASExtension,UniversityofFlorida.Vol2019(2).https://journals.flvc.org/edis/article/view/108777

Jeanneret,P.H.,Schüpbach,B.,Luka,H.(2003)QuantifyingtheImpactoflandscapeandhabitatfeaturesonthebiodiversityincultivatedlandscapes.AgricultureEcosystems&Environment.98:311-320.doi:10.1016/S0167-8809(03)00091-4

Jost,L.(2006),Entropyanddiversity.Oikos.113:363–375.doi:10.1111/j.2006.0030-1299.14714.x

Marc,P.,Canard,A.(1997)Maintainingspiderbiodiversityinagroecosystemsasatoolinpestcontrol.Agriculture,EcosystemsandEnvironment.62:229-235.

Floren,A.,Deeleman-Reinhold,C.(2005.)DiversityofArborealSpidersinPrimaryandDisturbedTropicalForests.TheJournalofArachnology.33(2),323-333.https://sci-hub.se/https://doi.org/10.1636/05-22.1

Gollan,J.R.,etal.(2010.)Usingspiderwebtypesasasubstituteforassessingweb-buildingspiderbiodiversityandthesuccessofhabitatrestoration.BiodiversityandConservation.19:3141-3155.DOI10.1007/s10531-010-9882-1

Green,J.(1999).SamplingMethodandTimeDeterminesCompositionofSpiderCollections.JournalofArachnology,27,176–182.https://doi.org/10.2307/3705982

Jocque,R.,&Dippenaar-Schoeman,A.S.(2007).SpiderFamiliesoftheWorld(2nded.).Tervuren,Belgium:RoyalMuseumforCentralAfrica.

Marc,P.,Canrad.(1997).Maintainingspiderbiodiversityinagroecosystemsasatoolinpestcontrol.Agriculture,EcosystemsandEnvironment.62:229-235.https://doi.org/10.1016/S0167-8809(96)01133-4

Martin,N.(1982).Fieldstudiesontheecologicalroleofthespidersasinsectpredatorsinagroecosystems(abandonedgrassland,meadows,andcerealfields).SwissFederalInstitutionofTechnologyZurich.https://doi.org/10.3929/ethz-a-000287826

Page 21: Araneae Biodiversity in the Amazonian Foothills: An ...

Michalko,R.&Pekar,S.(2016).Differenthuntingstrategiesofgeneralistpredatorsresultinfunctionaldifferences.Oecologia,181(4):1187-1197. DOI:10.1007/s00442-016-3631-4

Mammola,S.,Isaia,M.(2017.)SpidersinCaves.RoyalSocietyPublishing.284.http://dx.doi.org/10.1098/rspb.2017.0193

Moore,M.(2015).SpidersoftheCloudForest:ACensusofSpidersintheRíoZuñacCloudForestReserve.SITEcuador:ComparativeEcologyandConservation.

Platnick,N.I.(2019)TheWorldSpiderCatalog,Version13.5.AmericanMuseumofNaturalHistory,NewYorkCity,NewYork.http://research.amnh.org/iz/spiders/catalog

Platnick,N.I.,Raven,R.J.(2013.)SpiderSystematics:PastandFuture.Zootaxa.3683(5):595-600.http://dx.doi.org/10.11646/zootaxa.3683.5.8

Pinzon,J.,Benavides,L.,Sabogal,A.(2010).NewRecordsofaraneidspiders(Araneae:Araneidae)intheColumbianAmazonRegion.Zootaxa.2626:46-60.DOI:10.11646/zootaxa.2626.1.2

Rego,F.N.A.A.,etal.(2009).Acontributiontotheknowledgeofthespiderfauna(Arachnida:Araneae)ofthefloodplainforestsofthemainAmazonRiverchannel.RevistaIbéricadeAracnología.17:85-96.ISSN:1576-9518.

Robinson,K.(2018.)AraneaeBiodiversityintheEcuadorianChocó:ImpactofAltitudeandLandUseonSpiderDiversity.SITEcuador:ComparativeEcologyandConservation.

Rypstra,A.L.(1986).WebSpidersinTemperateandTropicalForests:Relative AbundanceandEnvironmentalCorrelates.TheAmericanMidlandNaturalist. 115(1):42-51.DOI:10.2307/2425835

Solow,A.R.(1993.)Asimpletestforchangeincommunity.TheJournalofAnimalEcology.62(1),191.doi:10.2307/5493

Silva,D.(1992).ObservationsontheDiversityandDistributionoftheSpidersofthe PeruvianMontaneForests.MemoriasdelMuseodeHistoriaNatural.21:31-37. DOI:https://museohn.unmsm.edu.pe/docs/pub_ento/silva1992.pdf.

Théry,M.,Casas,J.(2002)Predatorandpreyviewsofspidercamouflage.Nature.415: 133.DOI:10.1038/415133a.

Uetz,G.W.(1991).Habitatstructureandspiderforaging.HabitatStructure,325-348.DOI:10.1007/978-94-011-3076-9_16.

Venner,S.,Casas,J.(2005.)SpiderWebsDesignedforRarebutLife-savingCatches. PhilosophicalTransactions:BiologicalSciences.272(1572):1587-1592. DOI:10.1098/rspb.2005.3114.

Wegner,G.S.(2011)SpiderIdentificationGuide.BASF:TheChemicalCompany.WorldSpiderCatalog:Version20.5.(2019.)NaturalHistoryMuseumBern.DOI:

10.24436/2Yanoviak,S.P.,Kragh,G.,Nadkarni,N.M(2003).SpiderAssemblagesin

CostaRicanCloudForests:EffectsofForestLevelandForestAge.Studieson NeotropicalFaunaandEnvironment.38(2):145-154,DOI: 10.1076/snfe.38.2.145.15922.

Page 22: Araneae Biodiversity in the Amazonian Foothills: An ...

AppendixA:Thenumberofmorpho-species,families,guildsandindividualsfoundineachhabitattype.Habitat Morpho-species Families Guilds Individuals

PrimaryForest

73

17

6

313

SecondaryForest

64

13 7 320

CultivatedFields

68 11 6 341

Caves 6 4 3 60

AppendixB:TheFamiliesandguildsfoundineachhabitattype.Habitat Families GuildsPrimary agelenidae AmbushHunter anyphaenidae GroundHunter araneidae Orbweaver corinnidae OtherHunter ctenidae SensingWeb deinopidae Sheetweb heteropodidae Spaceweb lycosidae Unknwn pholcidae pisauridae salticidae scytodidae symphytognathidae tetranathidae theraphosidae theridiidae thomisidae

Unknwn

Secondary Anyphaenindae AmbushHunter Araneidae GroundHunter Corinnidae OrbWeaver Ctenidae OtherHunters Lycosidae SensingWeb Pholcidae SheetWeb Pisauridae SpaceWeb Salticidae Unknwn Scytopidae Tetranathidae Theridiidae Therophosidae Thomisidae Unknwn

Page 23: Araneae Biodiversity in the Amazonian Foothills: An ...

Cultivated Araneidae AmbushHunter Corinnidae GroundHunter Ctenidae Orbweaver Deinopidae OtherHunter Dysderidae SheetWeb Lycosidae Spaceweb Pisauridae Unknwn Salticidae Tetranathidae Theridiidae Thomisidae

Unknwn

Caves Gnaphosidae Specialist Pholcidae SpaceWeb Theridiidae SensingWeb Theraphosidae AppendixC:RegionalDominanceCurveandFamilyPercentComposition

AppendixD:BiodiversityComparisonsHabitat Simpson Entropy Comparison Difference % increase

P 3.86 C/S 1.68 61.31% S 2.74 C/P 2.8 72.54% C 1.06 S/P 1.12 29.02% Habitat Gini-Simpson (transformed) Comparison Difference % increase P 25.58 C/S 11.47 67.23% S 17.06 C/P 19.99 78.15% C 5.59 S/P 8.52 33.31%

23.36%

18.24%

17.95%

9.65%7.63%

4.25%

2.51%2.22%

2.12% 1.35%0.97%

0.77%0.68%

0.58%0.58%

0.29%0.29%

0.29%0.19%

0.19%0.10%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

Pholcidae

Therid

iidae

Tetra

nathidae

pisaurid

ae

Araneidae

Saltic

idae

Lycosid

ae

Ctenidae

Gnaphosid

ae

Thomisid

ae

Corinnidae

scytodidae

Heteropidae

Therap

hosidae

Unknwn

Agenele

nidae

Anyphae

nidae

Dysderid

ae

Deinopidae

symphyto

gnath

idae

Miturgi

dae

Regional Family Dominance Curve