AqGSFC AqJPL AqNSIDC SmosBEC Sea Surface Salinity ... · PDF filePathfinder for NASA’s...

10
Sea Surface Salinity Distributions in the Arctic from Aquarius and SMOS Josefino C. Comiso, Cynthia Eidell, Emmanuel Dinnat and Ludovic Brucker Cryospheric Sciences Laboratory, Code 615, NASA/GSFC Study of sea surface salinity distributions in the Arctic region is important because of strong relationships with the sea ice cover, ocean circulation and primary productivity. Data from four different sources have been compared and the results show general agreement with some biases associated with differences in retrieval, filtering, masking and smoothing techniques. Despite challenges in obtaining accurate salinities at cold temperatures the products are consistent with in situ data with RMS error as low as 0.3 psu . Overall, the spatial distribution as well as seasonal and inter-annual variations are coherent with expected changes in sea ice cover, precipitation and river runoff. The products show strong potential for many oceanographic applications and climate change studies. Earth Sciences Division – Hydrosphere, Biosphere, and Geophysics Sep 27 to Oct 4, 2012 45E Sep 27 to Oct 4, 2012 45E Sep 27 to Oct 5, 2012 45E Sep 27 to Oct 6, 2012 45E Early Autumn Season AqGSFC AqJPL AqNSIDC SmosBEC 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 psu A S O N D J F MAM J J A S O N D J F MAM J J A S O N D J F MAM J J A S O N D J F MAM J d 2011 2012 2013 2014 2015 0 10 20 30 40 50 60 70 80 90 100 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 A S O N D J F MAM J J A S O N D J F MAM J J A S O N D J F MAM J J A S O N D J F MAM J Axis Title 2011 2012 2013 2014 2015 2011 2012 2013 2014 2015 (c) Western Arctic Basin, lat > 65°N, 0°E < lon < 180°E 0 10 20 30 40 50 60 70 80 90 100 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 ASONDJFMAMJJASONDJFMAMJJASONDJFMAMJJASONDJFMAMJ Axis Title 2011 2012 2013 2014 2015 (d) Eastern Arctic Basin, lat > 65°N, 0°W < lon > 180°W Sea Ice Concentration (%) AqGSFC AqJPL AqNSIDC SmosBEC Figure 1 Figure 2

Transcript of AqGSFC AqJPL AqNSIDC SmosBEC Sea Surface Salinity ... · PDF filePathfinder for NASA’s...

SeaSurfaceSalinityDistributionsintheArcticfromAquariusandSMOS

Josefino C.Comiso,CynthiaEidell,EmmanuelDinnat andLudovic BruckerCryospheric SciencesLaboratory,Code615,NASA/GSFC

StudyofseasurfacesalinitydistributionsintheArcticregionisimportantbecauseofstrongrelationshipswiththeseaicecover,oceancirculationandprimaryproductivity.Datafromfourdifferentsourceshavebeencomparedandtheresultsshowgeneralagreementwithsomebiasesassociatedwithdifferencesinretrieval,filtering,maskingandsmoothingtechniques.DespitechallengesinobtainingaccuratesalinitiesatcoldtemperaturestheproductsareconsistentwithinsitudatawithRMSerroraslowas0.3psu .Overall,thespatialdistributionaswellasseasonalandinter-annualvariationsarecoherentwithexpectedchangesinseaicecover,precipitationandriverrunoff.Theproductsshowstrongpotentialformanyoceanographicapplicationsandclimatechangestudies.

Earth Sciences Division – Hydrosphere, Biosphere, and Geophysics

Early Autumn Season

AqGSFC AqJPL AqNSIDC SmosBEC

Sep 27 to Oct 4, 2011

45E

Sep 27 to Oct 4, 2011

45E

Sep 27 to Oct 5, 2011

45E

Sep 27 to Oct 6, 2011

45E

Sep 27 to Oct 4, 2012

45E

Sep 27 to Oct 4, 2012

45E

Sep 27 to Oct 5, 2012

45E

Sep 27 to Oct 6, 2012

45E

Sep 27 to Oct 4, 2013

45E

Sep 27 to Oct 4, 2013

45E

Sep 27 to Oct 5, 2013

45E

Sep 27 to Oct 6, 2013

45E

Sep 27 to Oct 4, 2014

45E

Sep 27 to Oct 4, 2014

45E

Sep 27 to Oct 5, 2014

45E

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

psu

Early Autumn Season

AqGSFC AqJPL AqNSIDC SmosBEC

Sep 27 to Oct 4, 2011

45E

Sep 27 to Oct 4, 2011

45E

Sep 27 to Oct 5, 2011

45E

Sep 27 to Oct 6, 2011

45E

Sep 27 to Oct 4, 2012

45E

Sep 27 to Oct 4, 2012

45E

Sep 27 to Oct 5, 2012

45E

Sep 27 to Oct 6, 2012

45E

Sep 27 to Oct 4, 2013

45E

Sep 27 to Oct 4, 2013

45E

Sep 27 to Oct 5, 2013

45ESep 27 to Oct 6, 2013

45E

Sep 27 to Oct 4, 2014

45E

Sep 27 to Oct 4, 2014

45E

Sep 27 to Oct 5, 2014

45E

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

psu

Early Autumn Season

AqGSFC AqJPL AqNSIDC SmosBEC

Sep 27 to Oct 4, 2011

45E

Sep 27 to Oct 4, 2011

45E

Sep 27 to Oct 5, 2011

45E

Sep 27 to Oct 6, 2011

45E

Sep 27 to Oct 4, 2012

45E

Sep 27 to Oct 4, 2012

45E

Sep 27 to Oct 5, 2012

45E

Sep 27 to Oct 6, 2012

45E

Sep 27 to Oct 4, 2013

45E

Sep 27 to Oct 4, 2013

45E

Sep 27 to Oct 5, 2013

45E

Sep 27 to Oct 6, 2013

45E

Sep 27 to Oct 4, 2014

45E

Sep 27 to Oct 4, 2014

45E

Sep 27 to Oct 5, 2014

45E

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

psu

30.030.531.031.532.032.533.033.534.034.535.035.536.0

A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J

Sea

Sur

fac

e S

alin

ity (P

SU)

e

AqGSFC AqJPL AqNSIDC SmosBEC

2011 2012 2013 2014 2015

(a) Pacific Ocean, 50°N ≤ lat < 65°N, 90°E < lon < 270°E

30.030.531.031.532.032.533.033.534.034.535.035.536.0

A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J

Sea

Surfa

ce S

alin

ity (P

SU)

d2011 2012 2013 2014 2015

(b) Atlantic Ocean, 50°N ≤ lat < 65°N , 270°E < lon < 90°E

0102030405060708090100

30.030.531.031.532.032.533.033.534.034.535.035.536.0

A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J

Sea

Surfa

ce S

alin

ity (P

SU)

Axis Title2011 2012 2013 2014 20152011 2012 2013 2014 2015

(c) Western Arctic Basin, lat > 65°N, 0°E < lon < 180°E

Sea

Surf

ace

Salin

ity (p

su)

0102030405060708090100

30.030.531.031.532.032.533.033.534.034.535.035.536.0

A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J

Sea

Sur

fac

e S

alin

ity (P

SU)

Axis Title2011 2012 2013 2014 2015

(d) Eastern Arctic Basin, lat > 65°N, 0°W < lon > 180°W

Sea Ice Concentration (%)

30.030.531.031.532.032.533.033.534.034.535.035.536.0

A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J

Sea

Sur

fac

e S

alin

ity (P

SU)

e

AqGSFC AqJPL AqNSIDC SmosBEC

2011 2012 2013 2014 2015

(a) Pacific Ocean, 50°N ≤ lat < 65°N, 90°E < lon < 270°E

30.030.531.031.532.032.533.033.534.034.535.035.536.0

A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J

Sea

Surfa

ce S

alin

ity (P

SU)

d2011 2012 2013 2014 2015

(b) Atlantic Ocean, 50°N ≤ lat < 65°N , 270°E < lon < 90°E

0102030405060708090100

30.030.531.031.532.032.533.033.534.034.535.035.536.0

A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J

Sea

Surfa

ce S

alin

ity (P

SU)

Axis Title2011 2012 2013 2014 20152011 2012 2013 2014 2015

(c) Western Arctic Basin, lat > 65°N, 0°E < lon < 180°E

Sea

Surf

ace

Salin

ity (p

su)

0102030405060708090100

30.030.531.031.532.032.533.033.534.034.535.035.536.0

A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J

Sea

Sur

fac

e S

alin

ity (P

SU)

Axis Title2011 2012 2013 2014 2015

(d) Eastern Arctic Basin, lat > 65°N, 0°W < lon > 180°W

Sea Ice Concentration (%)

Figure1 Figure2

Name:Josefino C.Comiso

E-mail:[email protected]:301-614-5708

References:Eidell,C.G.,J.C.Comiso,E.Dinnat,andL.Brucker,(2017)SatelliteobservedsalinitydistributionsathighlatitudesintheNorthern

Hemisphere:Acomparisonoffourproducts,JournalofGeophysicalResearch:Oceans,122,doi :10.1002/2017JC013184.Comiso,J.C.,C.L.Parkinson,R.Gersten,andL.Stock,2008:AccelerateddeclineintheArcticseaicecover,Geophys.Res.Lett., 35,

L01703,doi:10.1029/2007GL031972.Brucker,L.,E.P.Dinnat,andL.S.Koenig.(2014),WeeklygriddedAquariusL-bandradiometer/scatterometer observationsandsalinity

retrievalsoverthepolarregions––Part1:Productdescription,Cryosphere,8,905–913.

DataSources:AquariusdatawereprovidedbyNationalSnowandIceDataCenter(NSIDC),JPL/PODAAC,andGSFC/DAACwhileSMOSdatawereprovidedbytheESA/SMOSBarcelonaExpertCentre.AncillarydatawereprovidedbytheCopernicusMarineEnvironmentMonitoringService(CMEMS)andtheCarbonDioxideInformationAnalysisCenter(CDIAC).

TechnicalDescriptionofFigures:TheimagesandplotsarepartsofFigures10and11ofEidell etal(2017)paper.

Figure1:Seasurfacesalinitydistributions(SSS)fromfourproducts:AqGSFC,AqJPL,AqNSIDC andSmosBEC.ThedistributionsaregenerallyconsistentwiththeAtlanticOceanregionmoresalinethanthePacificOceanregionasexpectedbecauseofobservedprecipitationpatterns. IntheArctic,thesurfacesalinityisconsiderablylowerbecauseoffresheningprimarilyfromseaicemeltandriverrun-off.AqJPL andSmosBEC showslessopenoceanareabecauseoftheuseoftheAquariusicemaskwhichdetectsmoreicecoverthanthevalidatedseaicedataprovidedmySSM/IandAMSR2data(seeredlineforiceedge)usedbyAqGSFC andAqNSIDC products.Thegreencontourlinesfor32psu areshowntoillustratethedifferencesofthedifferentproductsintheopenocean.

Figure2:MonthlyaveragesofsurfacesalinityintheWesternandEasternpartoftheArcticbasinfrom2011to2015areshowntobeseasonalwithsalinitiesrangingfromabout30psu to35psu.Theunusuallylowsalinityin2012isassociatedwiththerecordlowperennialicecoverobservedduringtheyear.TheuseofinaccurateseaicemaskcausessignificantdifferenceinthelowvaluesandabnormalvaluefortheAqJPL dataduringthesummerandautumnin2014.

Scientificsignificance,societalrelevance,andrelationshipstofuturemissions:Salinityisakeygeophysicalparameterthataffectsoceancirculation,hydrologicalcycle,oceanecologyandclimate.Togetherwithtemperature,itdrivesthethermohalinecirculationoftheocean,whichinfluencesthetransportofheat,energyandhumiditytherebymodulatingclimate.ThisstudydemonstratesthatthesatellitesalinityproductsintheArcticregionthatarecurrentlyavailablehavesignificantdifferencesbutthedifferencescanbeminimizedthroughimplementationofthesamesea icemask,filteringandsmoothingtechniquesaswellasoverallqualitycontrol.ThespatialdistributionofSSSintheArcticasderivedfromtheproductsarecredibleandconsistentwithinsitudataaswellaswithprecipitationpatterns,riverrun-offandthemeltoftheseaicecover.

Earth Sciences Division – Hydrosphere, Biosphere, and Geophysics

Quantifying Ice Sheet Surface MeltingD Harding, P Dabney

NASA GSFC, Biospheric Sciences Laboratory

Earth Sciences Division – Hydrosphere, Biosphere, and Geophysics

TheextentandrateofGreenlandIceSheetsurfacemeltingisincreasinginresponsetowarmingtemperatures.Passivemicrowave,thermalandreflectancesatelliteremotesensinghavetraditionallybeenusedtomonitortheextentofsurfacemelt,butcalibratingthoseobservationstodeterminetheamountofliquidwaterpresentatthesurfacehasbeenchallenging.Anairbornemulti-channellaseraltimeter,SIMPL,acquiresauniquesetofmeasurementsthatcanserveasacalibrationmethod.InthisexampleacrossthemeltzoneinnorthwesternGreenland,theratiobetweentwopolarizationstatesofreflectednear-infraredlaserenergydecreasesasthefractionalcoverofliquidwaterincreases.Thisisduetochangesinlightscatteringpropertiesaswaterconvertsfromthefrozentoliquidstate.

Name:DavidHarding,Biospheric SciencesLaboratory,NASAGSFC

E-mail:[email protected]:301-614-6503

References:Brunt, K.M, T.A.Neumann, and T. Markus, 2015, SIMPL/AVIRIS-NG Greenland 2015 Flight Report, NASA/TM–2015-217544, 23 pp.Yu, A. W., D. J. Harding and P. W. Dabney, 2016, Laser transmitter design and performance for the Slope Imaging Multi-Polarization Photon-Counting Lidar (SIMPL) instrument, Solid State Lasers XXV: Technology and Devices, Proceedings of SPIE 9726 [10.1117/12.2213005].Harding, D. J., P. Dabney, S. Valett, et al. 2011. Airborne Polarimetric, Two-Color Laser Altimeter Measurements of Lake Ice Cover: A Pathfinder for NASA’s ICESat-2 Spaceflight Mission. 2011 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 3598-3601.Dabney, P., D. Harding, and 13 others, 2010, The Slope Imaging Multi-polarization Photon- counting Lidar: Development and performance results, Geoscience and Remote Sensing Symposium (IGARSS), IEEE International (25-30 July 2010): 653-656, [10.1109/IGARSS.2010.5650862]

DataSources:AirborneSlopeImagingMulti-polarizationPhoton-countingLidar(SIMPL)(D.Harding,PI;P.Dabney,InstrumentScientist)andvisibleframecameraimagesacquiredonAugust3,2015duringthe2015SIMPL/AVIRIS-NGGreenlandCampaign,sponsoredbytheICESat-2Project ScienceOffice,andaLandsat8naturalcolorvisibleimage(OLIBands4,3and2asRGB)acquiredonthesameday.

Figure1: Laserreflectancedepolarizationsensitivitytotheamountoficesheetsurfacemeltwater.

TechnicalDescriptionofFigures:Thetopleftpanelshowsa20kmlongSIMPLflightpath(redline)andmosaicofframecameraimagesinNorthwestGreenlandsuperimposedonaLandsatimagewhichhasbeenscaledtoemphasizethedistributionofsurfacemelt(darkerblues).Thepathcrossesareasofstandingwater,runoffandchannelizedflowandameltlake.ThebottomleftpanelshowsSIMPLsignalamplitudesfor1064nm(NIR)laserretro-reflectanceforphotonswithpolarizationstatesparallelandperpendiculartotheplane-polarizedtransmitenergy.Italsoshowstheratiobetweentheseamplitudes.Photonsreflectedfromwaterretainthesamepolarizationstateasthetransmittedenergy(partallel)whereasreflectionsfromsnowandiceundergomultiplescatteringwhichconvertssomeoftheenergytotheperpendicularstate.Therefore,asthefractionalcover of wateratthesurfaceincreasesthedepolarizationratiodecreases.Therightpanelsareenlargementsofa3kmsegment(thepathcurvatureisdue to aircraftroll).

Scientificsignificance,societalrelevance,andrelationshipstofuturemissions:TheincreasingmeltingoftheGreenlandicesheetsurfaceisacceleratingtheamountofwaterdischargetotheoceanandtheresultingincreaseinsealevelrise.Inaddition,thepresenceofsurfacewaterdarkensthealbedocausingincreasedabsorptionofsolarenergyandaconsequentwarmingofthesurface,establishingapositivemeltfeedbackloop.Thisworkisestablishingamethodtocalibratesatelliteremotesensingmeasurementsofmeltamount.ItalsoprovidesafoundationforinterpretingthelidarmeasurementsoftheGreenlandandAntarcticicesheetmeltingtobemadebytheICESat-2missionbeginningin2018.

Earth Sciences Division – Hydrosphere, Biosphere, and Geophysics

EvidenceforaLowBulkCrustalDensityforMarsS.Goossens1,2,T.J.Sabaka3,A.Genova1,4,E.Mazarico1,J.B.Nicholas3,5,G.A.Neumann1

1PlanetaryGeology,GeophysicsandGeochemistryLab,NASAGSFC,2Univ.ofMaryland,BaltimoreCounty,3GeodesyandGeophysicsLab,NASAGSFC,4MIT,5Emergent

Theeffectivedensityspectrum(definedastheratioofmeasuredgravityandgravityascomputedfromtopography)forvariousMarsgravitymodels,usingastandardconstraint(GMM-3)orournewconstraint(RM1models)(figure1),andanexampleofhowdensitymayvarylaterallyintheMartiancrust,obtainedbylocalizationofournewgravitymodel(figure2).Ourconstraintresultsinastablespectrumathighdegreesfromwhichtheaveragebulkcrustaldensitycanbedeterminedforthefirsttimedirectlyfromthesatellitetrackingdata.

Figure 1 Figure 2

Earth Sciences Division – Hydrosphere, Biosphere, and Geophysics

Name:TerenceSabaka,GeodesyandGeophysicsLab,NASAGSFC

E-mail:[email protected]:301-614-6493

References:Goossens,S.,T.J.Sabaka,A.Genova,E.Mazarico,J.Nicholas,G.Neumann,2017.EvidenceforalowbulkcrustaldensityforMarsfromgravityand

topography.GeophysicalResearchLetters,44,pp.7686–7694,doi:10.1002/2017GL074172.

DataSources:RadiotrackingdatafromtheMarsGlobalSurveyor,MarsOdyssey,andMarsReconnaissanceOrbitermissions,aswellasatopographymodelderivedfromaltimetrydatafromtheMarsOrbiterLaserAltimeter.

TechnicalDescriptionofFigures:Theimagesshowtheeffectivedensityspectrum,andamap(inMollweide projectioncenteredontheprimemeridian)thatshowshowdensitiesinthecrustmayvarylaterally.Thismaphasbeenobtainedthroughlocalizationofournewlyderivedgravityfieldmodel.

Figure1:VariousgravitymodelsusingMarssatellitetrackingdata,withastandardconstraint(labelledGMM-3),orwithournewconstraint(labelledRM1)usingdifferentconstraintfactorsλ.

Figure2:Usingthe“RM1,λ=1”model,weappliedlocalizationusingsphericalSlepian functionstodeterminetheeffectivedensityspectrumatdifferentlocations,fromwhichweestimatedthecrustaldensityatthatparticularlocation.

Figure1istheratiobetweenagravitymodeldeterminedfromtrackingdataandagravitymodelcomputedfromagiventopography model,usingaunitdensity.Thisratiopersphericalharmonicdegreeindicatesthedensityinthecrust.Amodelwithastandardconstraint,suchastheGMM-3model,showsanunstableeffectivedensityspectrumathigherdegrees,andthecrustaldensitycannotbedeterminedreliably.Usingour newconstraint,thespectrumbecomesstable.Astheconstraintfactorλ increases,variationsintheeffectivedensitybecomelessuntil,inthelimit,onlytheaveragecrustaldensityvalueisestimated.Variationsintheeffectivedensityspectrumindicatelateraldensityvariations.ThroughlocalizationwithsphericalSlepianfunctionswedeterminedeffectivedensityspectraandestimatedlocalcrustaldensities.

Scientificsignificance,societalrelevance,andrelationshipstofuturemissions:Thecrustaldensityisanimportantgeophysicalparameterinstudiesofthesupportoftopography,thethermo-chemicalevolutionoftheplanet,andcrustalthickness.Thedensityofthecrustcanbeestimatedfromitseffectsonthegravityfield,butatthehigherdegrees(smallscalefeatures),modelsofthegravityareoftenpoorlydeterminedbecauseofnoiseandastandardspectralconstraintthatsuppressesthepower.Ournewconstraintusesinformationfromtopography,andresultsinamuchmorestableeffectivedensityspectrumfromwhichthecrustaldensitycanbedetermined.Thisconstraintcanbeappliedtoanybodyforwhichwehaveknowledgeofthegravityfieldandtopography,toimprovethedeterminationofcrustalproperties.

Earth Sciences Division – Hydrosphere, Biosphere, and Geophysics

SMAP Improves Weather and Streamflow Prediction in North AmericaSMAP Early Adopter: Environment and Climate Change Canada, Stephane Belair, Marco Carrera

SMAP Applications Team: Peggy O’Neill /617, Vanessa Escobar /HQ BAH, Chalita Forgotson /SSAI

Assimilation of SMAP brightness temperature leads to substantial improvements in root zone soil moisture (RZSM) estimates compared to the use of screen-level data alone in the Canadian Land Data Assimilation System (CaLDAS) used for numerical weather prediction (NWP) over North America by Environment and Climate Change Canada (ECCC). Use of SMAP data in CaLDAS has resulted in a significant positive impact onNWP in North America and streamflow forecasts for the Lake Ontario basin.

The operational implementation of CaLDAS-SMAP is targeted for Spring 2018.

1

3

Earth Sciences Division – Hydrosphere, Biosphere, and Geophysics

ObservedModel w/o SMAPModel with SMAP

MEAN ERROR OF DEW POINT TEMPERATURE FORECASTS

CaLDAS-SVS-SMAPCaLDAS-screen

Near 0 is better

2CROWE RIVER STREAMFLOW [GAUGE 02HK003]

Technical Point of Contact: Stephane Belair ([email protected])NASA contact: SMAP Applications Team (Peggy O’Neill /617, [email protected], 301-614-5773;

Vanessa Escobar /HQ, [email protected], 602-697-0832)

References: 1. SMAP Weather Focus Session Workshop, Moss Landing, CA (July 18, 2017). 2. Communication via E-mail

Data Sources: SMAP brightness temperature data; soil moisture data from the Alberta Ground Drought Monitoring Network (AGDMN) (17 sites), the US Climate Reference Network (USCRN) (38 sites), and the USDA Soil Climate Analysis Network (SCAN) (58 sites) for June-August, 2015. Data from streamflow experiment: streamflow estimates based on land surface analyses from CaLDAS (Canadian Land Data Assimilation System) with and without SMAP for June-August 2015; streamflow observations for the Lake Ontario basin.

Technical Description of Figures:Graphic 1: Unbiased Root-Mean-Square Error (ubRMSE) between in situ root zone soil moisture observations and CaLDASestimates from three different data assimilation experiments; (i) SCREEN -- assimilating only screen-level temperature and dew point temperature and SMAP brightness temperature (L1B_TB) data, (ii) ISBA: SMAP -- assimilating screen-level temperatures along with SMAP L1B_TB brightness temperatures with the Interactions between Soil, Biosphere, and Atmosphere (ISBA) land surface model, and (iii) SVS: SMAP, as in ISBA: SMAP but with the Soil, Vegetation, and Snow (SVS) land surface model. The three in situ networks used are the AGDMN, the USDA SCAN, and the USCRN.Graphic 2: Bias scores showing mean error as a function of forecast range for a series of 48-hour near surface dew point temperature forecasts for the July-August 2015 period over Canada. Experiment SCREEN is shown in blue, while SVS: SMAP is shown in red. Integrations were performed with initial conditions at 0000 UTC, corresponding to late afternoon and early evening over North America. The inclusion of SMAP TBs in the SVS model resulted in an overall warming and drying of the near-surface temperature, which improved (closer to 0) daytime bias scores for both temperature and dew point temperature.Graphic 3: Comparison of model estimates of streamflow for the Crowe River station within the Lake Ontario basin with and without SMAP data. The black line is for observed streamflow (Observed), the pale blue line is for results based on land surface analyses from CaLDAS but without SMAP (Model w/o SMAP), and the red line is for CaLDAS with SMAP (Model w/SMAP).

Scientific significance and societal relevance: Assimilation of SMAP L1B_TBs into the CaLDAS numerical weather prediction (NWP) system has been shown to improve soil moisture estimates with positive impacts on both temperature forecasts and hydrological (streamflow) forecasts. With further improvement of model physics and CaLDAS, the operational implementation of CaLDAS-SMAP will lead to improved and more reliable weather forecasts which help governments, businesses, and individuals to make better daily to long-term decisions.

Earth Sciences Division – Hydrosphere, Biosphere, and Geophysics

AtmosphericCorrectionofHyperspectralOceanColorSensors

ApplicationtoHICOandEyesonPACE

AmirIbrahim,BryanFranz,ZiaAhmad,andKirkKnobelspiesse,OceanEcologyLaboratory,NASAGSFC

Chlorophyllconcentration

ChesapeakeBay

ST1

ST2

ST3

ST1

ST2

ST3

(a) (b)

(c)

400 450 500 550 600 650 700 750 800Wavelength (nm)

�0.002

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Rrs

(sr�

1)

HICO �MODISA •(a)

400 450 500 550 600 650 700 750 800Wavelength (nm)

�0.002

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

(b)

Station 1

Station 2

Station 3

400 450 500 550 600 650 700 750 800Wavelength (nm)

�0.002

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Rrs

(sr�

1)

HICO �MODISA •(a)

400 450 500 550 600 650 700 750 800Wavelength (nm)

�0.002

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

(b)

Station 1

Station 2

Station 3

(d)

HICO

ISS

(e)

AspartofthePACEscienceteamactivities,anoperationallyviable,fullycapableofhyperspectralatmosphericcorrectionalgorithm,including8absorbinggases,hasbeendeveloped,tested,andvalidatedwiththeHICO(ISS)instrument.Thealgorithmismadepubliclyavailabletothebroadercommunitythroughtheoceancolorsoftware,SeaDAS.HICOservesasaproxyhyperspectralsensortotheanticipatedPACEmission(OceanColorInstrument).

10�1 100 101 102 103

[Chla] (mg m�3)

0.00.51.01.52.02.53.03.5

Fre

quen

cy

⇥104

HICO

MODISA

0.0 0.2 0.4 0.6 0.8 1.0Rrs(443) (sr�1)⇥10�2

0.00.51.01.52.02.53.03.54.0

Fre

quen

cy

⇥104

0.0 0.2 0.4 0.6 0.8 1.0 1.2Rrs(488) (sr�1)⇥10�2

0.00.51.01.52.02.53.0

Fre

quen

cy

⇥104

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4Rrs(560) (sr�1)⇥10�2

0.00.20.40.60.81.01.21.41.61.8

Fre

quen

cy

⇥104

(a)

(b)

Earth Sciences Division – Hydrosphere, Biosphere, and Geophysics

Name:AmirIbrahim,OceanEcologyLab,NASAGSFC;USRAE-mail:[email protected]:301-286-2371

References:2017Ibrahim,A.,B.Franz,Z.Ahmad,R.Healy,K.Knobelspiesse,etal.(2017).Atmosphericcorrectionforhyperspectral

oceancolorretrievalwithapplicationtotheHyperspectralImagerfortheCoastalOcean(HICO),RemoteSensingofEnvironment.https://doi.org/10.1016/j.rse.2017.10.041

DataSources:MODISAquaandHICOprocessedbytheOceanBiologyProcessingGroup,OceanEcologyLaboratory(616),NASAGoddardSpaceFlightCenter.

TechnicalDescriptionofFigures:Figures(a)and(b)showthechlorophyllconcentrationmapintheChesapeakeBayretrievedusingtheoceancolorsoftware(SeaDAS)forHICOandMODIS-Aqua,respectively,whileFigure(c)isthetruecolorimage.Figure(d)showsthehyperspectralmarinereflectanceretrievedfromHICOandcomparedtothemulti-spectralMODIS-AquaretrievalsforthreestationsintheChesapeakeBay.Figure(e)showstheHICOinstrumentinstalledon-boardtheISS.

Scientificsignificance,societalrelevance,andrelationshipstofuturemissions:Sincespacebornemeasurementsoftheoceanareinterferedbytheatmosphereduetoscatteringandabsorptionbymolecules(gas)andaerosolswithinthebroadvisiblespectrumoflight,theatmosphericcorrectionprocessisnecessarytoaccuratelydeterminetheoceanreflectance.Thisworkdescribesthefirstoperationallyviablehyperspectraloceancolorremotesensingprocessingchainfromthetop-of-atmospheretooceanreflectanceandoceancolorproducts.ThenewlydevelopedhyperspectralatmosphericcorrectionalgorithmprovidesthebasisofoperationalcapabilityforNASA’sfuturePACEmission.Additionally,theHICOdataservesasaproxyinstrumenttotheOceancolorInstrument(OCI)ofPACEwhichallowsthedevelopmentoffutureoceancoloralgorithms.Thehyperspectralinformationinthemarinereflectanceisexpectedtoresolvethephytoplanktondiversityandrefineourknowledgeofthecarboncycleintheglobalocean.

Earth Sciences Division – Hydrosphere, Biosphere, and Geophysics