Applications of Lattice Boltzmann Methods...2017/01/12  · The Lattice Boltzmann Method (LBM) 8 f q...

56
Applications of Lattice Boltzmann Methods Dominik Bartuschat , Ulrich Rüde New Delhi, India January 12, 2017 UGC-DAAD Lecture Series 2017

Transcript of Applications of Lattice Boltzmann Methods...2017/01/12  · The Lattice Boltzmann Method (LBM) 8 f q...

  • Applications of Lattice Boltzmann Methods

    Dominik Bartuschat, Ulrich Rüde

    New Delhi, IndiaJanuary 12, 2017

    UGC-DAADLecture Series 2017

  • D. Bartuschat, M. Bauer, S. Bogner, C. Godenschwager, F. Schornbaum, U. Rüde

    Chair for System Simulation, FAU Erlangen-Nürnberg

  • New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    Outline

    ● The waLBerla Simulation Framework● The Lattice Boltzmann Method and Complex Flows● Fluid-Particle Interactions● Charged Particles in Fluid Flow● Free Surface Flow

    3

    mailto:[email protected]:[email protected]

  • The waLBerla Simulation Framework

  • New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    waLBerla

    ● Widely applicable Lattice Boltzmann framework● Suited for various flow applications● Large-scale, MPI-based parallelization● Dynamic application switches for heterogeneous architectures and

    optimization

    5

    mailto:[email protected]:[email protected]

  • New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    waLBerla Concepts

    6

    Block concept:● Domain partitioned into Cartesian grid of blocks● Blocks can be assigned to different processes● Blocks contain:

    ● cell data, e.g. fluid density, electric potential● global information e.g. location, MPI rank

    Communication concept:● Simple communication mechanism on uniform grids, utilizing MPI● Ghost layers to exchange cell data with neighboring blocks

    Sweep concept:● Sweeps are work steps of a time-loop, performed on block-parallel level● Example: MG sweep, contains sub-sweeps (restriction, prolongation, smoothing)

    mailto:[email protected]:[email protected]

  • The Lattice Boltzmann Method

    and flow in complex geometries

  • ● Discrete lattice Boltzmann equation ● Describes probabilities fq that fluid molecules move with given velocities● Molecule collisions represented by collision operator Wq

    fq(~xi +~cqdt, tn+dt)� fq(~xi , tn) = Wq (fq(~xi , tn))

    New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    The Lattice Boltzmann Method (LBM)

    8

    fq

    ● Domain discretized into cubic cells● Discrete velocities and associated

    distribution functions per cell~cq

    D3Q19 modelIllustration by Klaus Iglberger

    mailto:[email protected]:[email protected]

  • ˜

    fq(~xi , tn) = fq(~xi , tn)�1

    t�fq(~xi , tn)� f eqq (~xi , tn)

    | {z }⌦q with single relaxation time

    fq(~xi +~eq, tn+dt) = f̃q(~xi , tn)

    New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    Stream-Collide

    ● Stream step:

    9

    The equation is solved in two steps:

    ● Collide step:

    Fluid viscosity determined by , fluid velocity and density computable from nf t fq~u rf

    mailto:[email protected]:[email protected]

  • New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    ●Sparse, but coherent geometry●Volume fraction 0.3%● Large number of small blocks●Multiple blocks per process● Load balancing required

    Flow in Complex Geometries

    10

    Flow through Coronary Arteries

    mailto:[email protected]:[email protected]

  • New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    Complex Geometry Initialization

    11

    mailto:[email protected]:[email protected]

  • New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    Domain Partitioning

    ● Domain partitioning of coronary tree dataset● Partitioning for aim of one block per process

    ● Excellent scaling on JUQUEEN with up to 1 trillion lattice cells*

    12

    JUQUEEN nodeboard512 processes, 485 blocks

    JUQUEEN, full machine458 752 processes, 458 184 blocks

    * C. Godenschwager et al. „A Framework for Hybrid Parallel Flow Simulations with a Trillion Cells in Complex Geometries“ (2013), doi:10.1145/2503210.2503273

    mailto:[email protected]:[email protected]://dx.doi.org/10.1145/2503210.2503273http://dx.doi.org/10.1145/2503210.2503273

  • New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    Blood Flow and Perfusion● Flow simulation in arteries +

    Myocardium as porous medium, modeled by LBM forcing term*● At aorta and endocardium: pressure boundary conditions● Blood flow visualization by particle tracing:

    13

    * Z. Guo, T. Zhao. „ Lattice Boltzmann model for incompressible flows through porous media“ (2002), doi:10.1103/PhysRevE.66.036304

    mailto:[email protected]:[email protected]://dx.doi.org/10.1103/PhysRevE.66.036304http://dx.doi.org/10.1103/PhysRevE.66.036304

  • New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    Perfusion Results

    14

    mailto:[email protected]:[email protected]

  • Fluid-Particle Interaction with LBM

    and tumbling spherocylinders in Stokes flow

  • New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    Fluid-Particle Interaction – 4-Way Coupling

    ● Particles mapped onto fixed lattice Boltzmann grid● Cells overlapped by object treated as moving boundary● Hydrodynamic forces on particle computed by momentum exchange method*

    16

    * N. Nguyen, A. Ladd. „Lubrication corrections for lattice-Boltzmann simulations of particle suspensions“ Phys. Rev. E (2002), doi:10.1103/PhysRevE.66.046708

    Illustration by Jan Götz

    mailto:[email protected]:[email protected]://dx.doi.org/10.1103/PhysRevE.66.046708http://dx.doi.org/10.1103/PhysRevE.66.046708

  • 1/� =length

    radius= 12

    New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    Tumbling Spherocylinders in Stokes Flow

    ● Tumbling motion of elongated particles in Stokes flow● Four spherocylinders in periodic domain, aspect ratio

    ● LBM simulations with TRT operator and comparison against slender body formulation (examining influence of inertia, wall effects, and particle shape)*

    17

    * D. Bartuschat et al. „Two Computational Models for Simulating the Tumbling Motion of Elongated Particles in Fluids“ (2016), doi:10.1016/j.compfluid.2015.12.010

    mailto:[email protected]:[email protected]://dx.doi.org/10.1016/j.compfluid.2015.12.010http://dx.doi.org/10.1016/j.compfluid.2015.12.010

  • New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    Two Tumbling Spherocylinders

    ● Flow Field around two spherocylinders,1/ε =12

    18

    50

    100

    150

    200

    250 ·10≠6

    x[m

    ]

    Á = 1/10 Á = 1/12 Á = 1/14

    ≠200

    ≠100

    0

    100

    200·10≠6

    u

    x

    [m/s

    ]

    0 5 10 15 20 25

    1.2

    1.4

    1.6

    1.8

    2

    2.2·10≠3

    t [s]

    u

    z

    [m/s

    ]

    ● Motion dependent on aspect ratio 1/ε

    ➡ Convergence to preferred distance xmax due to inertia➡ Max. velocity uz for horizontal particle orientation,

    min. uz for vertical orientation

    Domain size: [576 dx]3

    Fluid: Water (20°C)Time steps: 600000

    dx=4.98µm, dt=4.55⋅10-5s, τ =6Particle density: 1492 kg/m3, radius = 4dxRuntime on LiMa: 16h, 768 cores

    mailto:[email protected]:[email protected]

  • Charged Particles in Fluid Flow

    for particle-laden electrokinetic flows

  • New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    Motivation

    20

    Interactions of large numbers of charged particles in fluid flows, influenced by external electric fields

    © Kang and Li „Electrokinetic motion of particles and cells in microchannels“ Microfluidics and Nanofluidics

    ● Industrial applications:● Filtering particulates from exhaust gases● Charged particle deposition in cooling

    systems of fuel cells

    ● Medical applications:● Optimization of Lab-on-a-Chip systems:● Sorting of different cells● Trapping cells and viruses

    ● Deposition of charged aerosol particles in respiratory tract

    mailto:[email protected]:[email protected]

  • New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    Multi-Physics Simulation

    21

    Electro (quasi) statics

    Fluiddynamics

    Rigid body dynamics

    hydrodynamic force

    object movement

    ion convectionforce on ions

    electr

    ostat

    ic for

    ce

    charg

    e den

    sity

    mailto:[email protected]:[email protected]

  • New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    Poisson Equation and Force on Particles

    22

    ��F(~x) = re (~x)ee

    ~FC =�qparticle ·—F(~x)

    ● Electric potential described by Poisson equationwith particle‘s charge density on RHS:

    ● Discretized by finite volumes on lattice● Solved with cell-centered multigrid solver

    implemented in waLBerla● Supersampling for computing overlap degree

    to set RHS more accurately

    ● Electrostatic force on particle:

    re

    Illustration by Jan Götz

    mailto:[email protected]:[email protected]

  • New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    6-Way Coupling for Charged Particles

    23

    hydrodynam. force

    object motion

    Lubricationcorrection

    electrostat. force

    velocity BCs

    object distance

    LBM

    correction force

    charge distribution

    Newtonian mechanicscollision response

    treat BCsstream-collide step

    Finite volumes

    MGiterat.

    treat BCsV-cycle

    D. Bartuschat, U. Rüde. „Parallel Multiphysics Simulations of Charged Particles in Microfluidic Flows“, J. Comput. Sci. (2015), doi:10.1016/j.jocs.2015.02.006

    mailto:[email protected]:[email protected]://dx.doi.org/10.1016/j.jocs.2015.02.006http://dx.doi.org/10.1016/j.jocs.2015.02.006

  • New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    Charged Particles Algorithm

    24

    foreach time step, do

    // solve Poisson problem with particle charges:set RHS of Poisson equationwhile residual too high do

    perform multigrid V-cycle to solve Poisson’s equation

    // solve lattice Boltzmann equation// considering particle velocities:begin

    set velocity BCs of particlesperform stream-collide step

    // couple potential solver and LBM to pe:begin

    apply hydrodynamic force to particlesapply electrostatic force to particlesperform lubrication correctionpe moves particles depending on forces

    mailto:[email protected]:[email protected]

  • Charged Particles – Multigrid Solver

  • ● Based on● Smoothing principle:

    High-frequency error elimination by iterative solvers (e.g. GS)

    ● Coarse grid principle: Restriction to coarser grid transforms low-frequency error components to relative higher-frequency ones

    ● Smoothing on coarse grids● Prolongation of obtained correction

    terms to finer grid

    ● Iterative method for efficient solution of sparse linear systems

    New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    26

    ● Applied recursively, V(νpre, νpost)-cycle

    Multigrid

    mailto:[email protected]:[email protected]

  • ● All operations implemented as compact stencil operations

    ● Design goals:● Efficient and robust black-box solver● Handling complex boundary conditions on coarse levels● Naturally extensible to jumping coefficients

    ➡ Method of choice: Galerkin coarsening

    ● (FV) Stencils stored for each unknown● On finest level: quasi-constant stencils

    ● Averaging restriction, constant prolongation● Preserves D3Q7 stencil on coarse grids● Convergence rate deteriorates● Workaround for Poisson problem: Overrelaxing prolongation*

    New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    27

    * Mohr, Wienands „Cell-centered Multigrid Revisited“, Comput. Vis. Sci. (2004)

    P1 P2

    P3 P4

    Cell-Centered Multigrid - Implementation

    mailto:[email protected]:[email protected]

  • Charged Particles – Validation

  • Radius: R = 600µmCharge: qe = 8000eSupersampling: factor 3

    F(~r) = 14pee

    qe|~r | if |

    ~r |� R

    New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    29

    Validation of Electric Potential

    Analytical solution for homogeneously charged particle in infinite domain:

    0

    50

    100

    150

    200

    250

    0

    0.1

    0.2

    0.3

    ·10�3

    xL

    F/V

    Analytical solution

    Numerical solution

    Sphere surface

    ~rqe

    R

    x

    Domain: [256 dx]3● Dirichlet BCs: exact solution● MG: 5 V(2,2)-cycles● Residual threshold 2⋅10-9

    mailto:[email protected]:[email protected]

  • New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    30

    Determination of residual threshold:

    Error hardly reduced after residual norm smaller than 10-9➡Residual threshold for simulations: 2⋅10-9

    V(2,2) cyclesConv. rate 0.18

    Validation of Electric Potential

    0 1 2 3 4

    5

    10

    �10

    10

    �9

    10

    �8

    10

    �7

    10

    �6

    10

    �5

    Iteration

    L 2n

    orm

    Error

    Residual

    mailto:[email protected]:[email protected]

  • Charged Particles – Results

  • New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    32

    Charged Particles in Fluid Flow

    mailto:[email protected]:[email protected]

  • Channel: 2.56mm⇥7.68mm⇥1.92mm Particles: R = 80µm, qe =±40 000e Charged plates: F =±76.8Vdx = 10µm,t = 1.7,dt = 40µs Water (20 �C), Inflow 1 mm/s, Outflow 0 Pa else: no-slip & insulating BCs

    New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    Charged Particles in Fluid Flow

    33

    •Computed on 144 cores (12 nodes) of RRZE - LiMa

    •210 000 time steps

    •15.7h runtime•643 unknowns per core

    •6 MG levels

    mailto:[email protected]:[email protected]

  • New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    34

    Weak scaling:● Costant size per core:

    ● 1283 cells● 9.4% moving obstacle cells

    ● Size doubled (in all dimensions)● Cell-centered MG

    ● V(3,3) with 7 levels● 6 to 116 CG coarse-grid iterations● Convergence rate: 0.07

    ● 2x4x2 cores per node

    Experiments on SuperMUC:● 18 thin islands with 512 compute nodes, each:

    ● 16 cores (2 Xeon chips) @2.5 GHz● 32 GB DDR3 RAM

    ● Ranked #6 in TOP500 during experiments

    Parallel Scaling Experiments

    mailto:[email protected]:[email protected]

  • New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    35

    Weak Scaling for 240 Time Steps

    32 768 cores7.1M particles

    1 2 4 8 16 32 64 128

    256

    512

    1024

    2048

    0

    100

    200

    300

    400

    Number of nodes

    Tota

    lrun

    times/s

    LBMMapLubrHydrFpeMGSetRHSPtCmElectF

    Overall parallel efficiency @2048 nodes: 83%

    D. Bartuschat, U. Rüde. „Parallel Multiphysics Simulations of Charged Particles in Microfluidic Flows“ (2015), doi:10.1016/j.jocs.2015.02.006

    mailto:[email protected]:[email protected]://dx.doi.org/10.1016/j.jocs.2015.02.006http://dx.doi.org/10.1016/j.jocs.2015.02.006

  • New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    36

    LBM 91 %MG - 1 V(3,3) 64 %

    ● Parallel efficiency @2048 nodes:

    Weak Scaling for 240 Time Steps

    ➡ MG performance restricted by coarsest-grid solving

    Meg

    a la

    ttice

    site

    upd

    ates

    per

    sec

    .

    Meg

    a flu

    id la

    ttice

    site

    upd

    ates

    per

    sec

    .

    0 250 500 750 1000 1250 1500 1750 2000Number of nodes

    0102030405060708090

    103

    MFL

    UPS

    (LB

    M)

    LBM Perform.20

    40

    60

    80

    100

    120

    103

    MLU

    PS (M

    G)

    MG Perform.

    32 768 cores7.1M particles

    D. Bartuschat, U. Rüde. „Parallel Multiphysics Simulations of Charged Particles in Microfluidic Flows“ (2015), doi:10.1016/j.jocs.2015.02.006

    mailto:[email protected]:[email protected]://dx.doi.org/10.1016/j.jocs.2015.02.006http://dx.doi.org/10.1016/j.jocs.2015.02.006

  • Electrophoresis of Charged Particles

  • New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    Multi-Physics Simulation

    38

    Electro (quasi) statics

    Fluiddynamics

    Rigid body dynamics

    hydrodynamic force

    object movement

    ion convectionforce on ions

    electr

    ostat

    ic for

    ce

    charg

    e den

    sity

    mailto:[email protected]:[email protected]

  • New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    Electrical Double Layer (EDL)

    ● Surfaces in contact with most liquids acquire surface charge● Surface charge balanced by oppositely charged ions from fluid

    39

    ��y = eee Âi

    zini•e� zi eykBT zi : valence of ions, e: elementary charge,

    ni•: bulk ionic number concentration

    ● EDL potential described by Poisson-Boltzmann equation

    x

    yy

    s

    yd z

    lD

    solid

    Shear plane

    Stern plane

    +

    +

    +

    +

    +

    +

    +

    +

    +

    ���

    ���

    ��

    +

    ���

    +�

    +

    +

    +

    diffuse layer

    x

    yy

    s

    yd z

    lD

    lD

    Characteristic parameters: - potential EDL thickness z

    mailto:[email protected]:[email protected]

  • Lattice Boltzmann equation with body force term

    fq(~xi +~cqdt, t+dt)� fq(~xi , t) = Wq +dtFq(~fb)

    New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    Electrostatic Force on Fluid in EDL

    40

    Electrostatic force on double layer charge~fb

    = re

    (y) ·~Eext

    Electrical double layer potentialSymmetric Poisson-Boltzmann equation (PBE)

    ��y =�2z en•ee

    sinh✓z eykB T

    Debye-Hückel approximation (DHA) for

    ��y =�k2 y, k = l�1D

    |z |< 25mV

    mailto:[email protected]:[email protected]

  • r

    qy = z

    R

    lD

    x

    Radius: R = 120nmCharge: qs = −124eFluid: Water (20 �C)k R ⇡ 0.89

    New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    41

    Domain: [128 dx]2 x 256 dx● SOR solver● Dirichlet BCs: exact solution● Residual reduction 2⋅10-7

    Validation of Double Layer Potential

    Analytical solution for sphere with uniform surface charge in infinite domain (Debye-Hückel approximation):

    0 20 40

    60

    80 100 120

    �10

    �8

    �6

    �4

    �2

    0

    ·10�3

    xL

    y/V

    Analytical

    solution

    Numerical

    solution

    y(~r) = z R|~r| e�k(|~r|�R) if |~r|� R

    mailto:[email protected]:[email protected]

  • Channel: 1.28µm⇥2.56µm⇥1.28µm Particle: R = 120nm, qe = −124e z = −10mV, Ey =�4.7 · 10 6 V/mFluid: Water (20

    �C), c• = 5µmol/l dx = 10nm,t = 6.5,dt = 0.2ns BCs: Periodic in axial direction,

    else insulating & no-slip BCs

    New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    Electrophoresis in Micro-Channel

    Electrophoresis of charged particle along channel axis● Result after 30 000 time steps● Flow field, double layer potential, and ion charge distribution

    42

    U⇤EP = 0.21ms

    mailto:[email protected]:[email protected]

  • Free Surface Flow

    and effects of surface tension

  • New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    Free Surface Extension

    44

    ●Volume of Fluid Approach*●Only liquid phase has to

    be simulated**●Cells are classified as

    either solid, liquid, gas or interface●LBM only performed in

    fluid cells●Suitable for phases with

    high density differences

    *C. Hirt, B. Nichols. „Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries“ (1981), doi:10.1016/0021-9991(81)90145-5**C. Körner et al. „Lattice Boltzmann Model for Free Surface Flow for Modeling Foaming“ (2005), doi:10.1007/s10955-005-8879-8

    mailto:[email protected]:[email protected]://dx.doi.org/10.1016/0021-9991(81)90145-5http://dx.doi.org/10.1016/0021-9991(81)90145-5http://dx.doi.org/10.1007/s10955-005-8879-8http://dx.doi.org/10.1007/s10955-005-8879-8

  • New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    Free Surface Extension

    45

    ●Geometry Reconstruction:● computation of interface normals● compute normals at triple points● compute local curvature to account for

    surface tension

    ●Surface Dynamics Simulation:● non-free-surface boundary treatment● free surface boundary treatment● LBM streaming step ( advection )● fill level updates ( mass advection )● LBM collision step● conversion of cell types

    mailto:[email protected]:[email protected]

  • New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    Drop on Inclined Plane

    46

    kin. viscosity:surf. tension:drop diameter:drop resolution:τ:dt:

    7.9‧10-6 m2/s 4.82‧10-2 N/m5 mm100 cells 0.5262.8‧10-6 s

    SRT with Guo forcing term*

    * Z. Guo et al. „ Discrete lattice effects on the forcing term in the lattice Boltzmann method“ (2002), doi: 10.1103/PhysRevE.65. 046308

    mailto:[email protected]:[email protected]://dx.doi.org/10.1103/PhysRevE.65.%20046308http://dx.doi.org/10.1103/PhysRevE.65.%20046308

  • New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    Domain Setup

    ●Full free surface calculations are costly:● find interface cells● reconstruct interface normals and curvature● mass advection● cell conversions

    47

    ●Restriction to L-shaped domain●No inclined geometry, use inclined gravity instead:

    gravity

    mailto:[email protected]:[email protected]

  • New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    Domain Setup

    ●Full free surface calculations are costly●Only fraction of complete domain covered with fluid/interface●Fluid covered region is moving➠ Dynamic load balancing required:

    48

    mailto:[email protected]:[email protected]

  • New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    Domain Setup

    ●Full free surface calculations are costly●Only fraction of complete domain covered with fluid/interface●Fluid covered region is moving➠ Dynamic load balancing required

    49

    ●Simulation on 200 cores (on Emmy, RRZE)●Drop resolution of 100 cells➠ Runtime between 1 and 2 hours

    mailto:[email protected]:[email protected]

  • New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    Boundary Setup

    ●No-slip boundary: solid wall, enforces zero velocity at boundary●Pressure boundary: pressure Dirichlet (set to capillary pressure)

    50

    mailto:[email protected]:[email protected]

  • New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    Varying Inclination Angle

    51

    15° 30° 45°

    ➠ Higher inclination causes drop to move further before being absorped

    mailto:[email protected]:[email protected]

  • New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    Varying Contact Angle

    52

    50° 90° 110°

    ➠ Higher contact angle causes drop to move further before being absorped

    mailto:[email protected]:[email protected]

  • Free Surface Flow with Particles

  • New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    Floating Objects

    54

    S. Bogner, U. Rüde. „ Simulation of floating bodies with lattice Boltzmann“ (2012), doi:10.1016/j.camwa.2012.09.012

    mailto:[email protected]:[email protected]://dx.doi.org/10.1016/j.camwa.2012.09.012http://dx.doi.org/10.1016/j.camwa.2012.09.012

  • New Delhi, 12.01.2017 - Dominik Bartuschat - System Simulation Group - Applications of Lattice Boltzmann Methods(Contact: [email protected])

    Rising Bubble

    55

    S. Bogner, U. Rüde. „ Simulation of floating bodies with lattice Boltzmann“ (2012), doi:10.1016/j.camwa.2012.09.012

    mailto:[email protected]:[email protected]://dx.doi.org/10.1016/j.camwa.2012.09.012http://dx.doi.org/10.1016/j.camwa.2012.09.012

  • Thank you for your attention!