Applications and Mathematical Derivation of Options Greeks From First Principle

download Applications and Mathematical Derivation of Options Greeks From First Principle

of 27

Transcript of Applications and Mathematical Derivation of Options Greeks From First Principle

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    1/27

    ApplicationsandMathematicalDerivationofOptions

    Greeksfromfirstprinciple

    Hong-YiChen,RutgersUniversity,USA

    Cheng-FewLee,RutgersUniversity,USA

    WeikangShih,RutgersUniversity,USA

    Abstract

    Inthischapter,weintroducethedefinitionsofGreekletters.WealsoprovidethederivationsofGreeklettersforcallandputoptionsonbothdividends-payingstockand non-dividends stock. Then we discuss some applications of Greek letters.Finally,weshowtherelationshipbetweenGreekletters,oneoftheexamplescanbeseenfromtheBlack-Scholespartialdifferentialequation.Keywords

    Greekletters,Delta,Theta,Gamma,Vega,Rho,Black-Scholesoptionpricingmodel,Black-Scholespartialdifferentialequation

    30.1Introduction

    Greek lettersaredefined asthe sensitivities of the option pricetoa single-unitchangeinthevalueofeitherastatevariableoraparameter.Suchsensitivitiescanrepresent the different dimensions to the risk inan option. Financial institutionswhoselloptiontotheirclientscanmanagetheirriskbyGreeklettersanalysis.

    Inthischapter,wewilldiscussthedefinitionsandderivationsofGreekletters.WealsospecificallyderiveGreeklettersforcall(put)optionsonnon-dividendstockanddividends-payingstock.SomeexamplesareprovidedtoexplaintheapplicationofGreekletters.Finally,wewilldescribetherelationshipbetweenGreeklettersandtheimplicationindeltaneutralportfolio.

    30.2Delta( )

    The delta of an option, , is defined as the rate of change of the option pricerespectedtotherateofchangeofunderlyingassetprice:

    S

    =

    where is the option price and S is underlying asset price. We next show thederivationofdeltaforvariouskindsofstockoption.

    30.2.1DerivationofDeltaforDifferentKindsofStockOptions

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    2/27

    FromBlack-Scholesoptionpricingmodel,weknowthepriceofcalloptiononanon-dividendstockcanbewrittenas:

    ( ) ( )21

    dNXedNSCr

    tt

    = (30.1)

    andthepriceofputoptiononanon-dividendstockcanbewrittenas:

    ( ) ( )rt 2 t 1P Xe N d S N d

    = (30.2)

    where

    s

    str

    X

    S

    d

    ++

    =

    2ln

    2

    1

    2

    t s

    2 1 s

    s

    Sln r

    X 2d d

    +

    = =

    tT=

    ( )N isthecumulativedensityfunctionofnormaldistribution.

    ( ) ( )

    ==

    1

    2

    12

    1

    2

    1du

    d

    dueduufdN

    First,wecalculate ( )( )

    2

    1

    1

    1

    2

    1

    2

    1d

    e

    d

    dNdN

    =

    =

    (30

    ( )( )

    ( )

    rt

    d

    rX

    Sd

    d

    d

    d

    d

    eX

    Se

    eee

    eee

    e

    e

    d

    dNdN

    sst

    s

    s

    s

    =

    =

    =

    =

    =

    =

    ++

    2

    22

    ln

    2

    22

    2

    2

    2

    2

    2

    2

    1

    22

    2

    1

    2

    1

    2

    1

    2

    1

    2

    2

    2

    1

    2

    1

    2

    1

    2

    1

    2

    1

    (30.4)

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    3/27

    Eq.(30.2) andEq.(30.3)willbeusedrepetitively indetermining followingGreekletterswhentheunderlyingassetisanon-dividendpayingstock.

    ForaEuropeancalloptiononanon-dividendstock,deltacanbeshownas

    1N(d ) = (30.5)

    ThederivationofEq.(30.5)isinthefollowing:

    ( )( ) ( )

    ( )( ) ( )

    ( )

    ( )

    ( )

    2 2

    1 1

    2 2

    1 1

    1 2rt

    1 t

    t t t

    1 2r1 2

    1 t

    1 t 2 t

    d d

    r rt2 2

    1 t

    t s t s

    d d

    2 2

    1 t t

    t s t s

    1

    N d N dCN d S Xe

    S S S

    N d N dd dN d S Xe

    d S d S

    S1 1 1 1N d S e Xe e e

    X2 S 2 S

    1 1

    N d S e S eS 2 S 2

    N d

    = = +

    = +

    = +

    = +

    =

    ForaEuropeanputoptiononanon-dividendstock,deltacanbeshownas

    1N(d ) 1 = (30.6)

    ThederivationofEq.(30.6)is

    ( )( )

    ( )

    ( )( )

    ( )

    ( )

    ( )

    ( )

    2 21 1

    2 21 1

    2 1rt

    1 tt t t

    2 1r 2 11 t

    2 t 1 t

    d d

    r rt2 21 t

    t s t s

    d d

    2 2t 1 t

    t s t s

    1

    N d N dPXe N d S

    S S S

    (1 N d ) (1 N d )d dXe (1 N d ) S

    d S d S

    S1 1 1 1Xe e e (1 N d ) S e

    X2 S 2 S

    1 1S e N d 1 S e

    S 2 S 2

    N d 1

    = =

    =

    = +

    = +

    =

    Iftheunderlyingassetisadividend-payingstockprovidingadividendyieldatrateq,Black-Scholes formulas for the prices ofaEuropeancall option onadividend-payingstockandaEuropeanputoptiononadividend-payingstockare

    ( ) ( )q rt t 1 2C S e N d Xe N d

    = (30.7)

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    4/27

    and

    ( ) ( )r qt 2 t 1P Xe N d S e N d

    = (30.8)

    where

    2

    t s

    1

    s

    Sln r qX 2

    d

    + +

    =

    2

    t s

    2 1 s

    s

    Sln r q

    X 2d d

    +

    = =

    To make the following derivations more easily, we calculate Eq. (30.9) and Eq.(30.10)inadvance.

    ( )2

    11 21

    1

    1N (d )2

    d

    N d ed

    = =

    (30.9)

    ( )

    ( )

    22

    2

    1 s

    22s1

    1 s

    222 t ss1

    21

    2

    2

    2

    d

    2

    d

    2

    d

    d2 2

    Sd ln r q

    X 22 2

    d

    ( r q )t2

    N dN (d )

    d

    1e

    2

    1e

    2

    1e e e

    2

    1e e e

    2

    S1e e

    X2

    + +

    =

    =

    =

    =

    =

    =

    (30.10)

    ForaEuropeancalloptiononadividend-payingstock,deltacanbeshownasq

    1e N(d ) = (30.11)

    Thederivationof(30.11)is

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    5/27

    ( )( ) ( )

    ( )( ) ( )

    ( )

    ( )

    2 21 1

    21

    1 2q q rt1 t

    t t t

    1 2q q r1 21 t

    1 t 2 t

    d dq q r (r q)t2 2

    1 t

    t s t s

    d

    q q q21 t t

    t s t s

    N d N dCe N d S e Xe

    S S S

    N d N dd de N d S e Xe

    d S d S

    S1 1 1 1e N d S e e Xe e e

    X2 S 2 S

    1 1e N d S e e S e e

    S 2 S 2

    = = +

    = +

    = +

    = +

    ( )

    21d

    2

    q

    1e N d

    =

    ForaEuropeancalloptiononadividend-payingstock,deltacanbeshownas

    [ ]q 1e N(d ) 1

    = (30.12)

    Thederivationof(30.12)is

    ( )( )

    ( )

    ( )( )

    ( )

    ( )2 21 1

    21

    2 1r q qt1 t

    t t t

    2 1r q q2 11 t

    2 t 1 t

    d d

    r (r q) q qt2 21 t

    t s t s

    d

    q 2

    tt s

    N d N dPXe e N d S e

    S S S

    (1 N d ) (1 N d )d dXe e (1 N d ) S e

    d S d S

    S1 1 1 1Xe e e e (1 N d ) S e e

    X2 S 2 S

    1

    S e e eS 2

    = =

    =

    = +

    = +

    ( )( )

    21d

    q q 2

    1 tt s

    q

    1

    1

    (N d 1) S e eS 2

    e (N d 1)

    +

    =

    30.2.2ApplicationofDelta

    Figure30.1showstherelationshipbetweenthepriceofacalloptionandthepriceofitsunderlyingasset.ThedeltaofthiscalloptionistheslopeofthelineatthepointofAcorrespondingtocurrentpriceoftheunderlyingasset.

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    6/27

    Figure30.1

    Bycalculatingdeltaratio,afinancialinstitutionthatsellsoptiontoaclientcanmakeadeltaneutralpositiontohedgetheriskofchangesoftheunderlyingassetprice.Supposethatthecurrentstockpriceis$100,thecalloptionpriceonstockis$10,and the current deltaof the call option is0.4. A financial institutionsold 10calloption to its client, so that the client has right to buy 1,000 shares at time tomaturity.Toconstructadeltahedgeposition,thefinancialinstitutionshouldbuy0.4x1,000=400sharesofstock.Ifthestockpricegoesupto$1,theoptionpricewillgoupby$0.4.Inthissituation,thefinancialinstitutionhasa$400($1x400shares)gaininitsstockposition,anda$400($0.4x1,000shares)lossinitsoptionposition.The totalpayoffof the financial institution iszero.Ontheotherhand, ifthestockpricegoesdownby$1,theoptionpricewillgodownby$0.4.Thetotalpayoffofthe

    financialinstitutionisalsozero.

    However, the relationship between option price and stockprice is not linear, sodeltachangesoverdifferentstockprice.Ifaninvestorwantstoremainhisportfolioindeltaneutral,heshouldadjusthishedgedratioperiodically.Themorefrequentlyadjustmenthedoes,thebetterdelta-hedginghegets.

    Figure30.2exhibitsthechangeindeltaaffectsthedelta-hedges.Iftheunderlyingstockhasapriceequalto$20,thentheinvestorwhousesonlydeltaasriskmeasurewillconsiderthathisportfoliohasnorisk.However,astheunderlyingstockpriceschanges,eitherupordown,thedeltachangesaswellandthushewillhavetousedifferentdeltahedging.Deltameasurecanbecombinedwithotherriskmeasuresto

    yieldbetterriskmeasurement.Wewilldiscussitfurtherinthefollowingsections.

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    7/27

    Figure30.2

    30.3Theta( )

    The theta of an option, , is defined as the rate of change of the option pricerespectedtothepassageoftime:

    t

    =

    where istheoptionpriceandt isthepassageoftime.

    If T t = ,theta( )canalsobedefinedasminusonetimingtherateofchangeofthe option price respected to time to maturity. The derivation of suchtransformationiseasyandstraightforward:

    ( 1)t t

    = = =

    where T t = istimetomaturity.Forthederivationofthetaforvariouskindsofstockoption,weusethedefinitionofnegativedifferentialontimetomaturity.

    30.3.1DerivationofThetaforDifferentKindsofStockOption

    ForaEuropeancalloptiononanon-dividendstock,thetacanbewrittenas:

    rt s1 2

    SN (d ) rX e N(d )

    2

    =

    (30.13)

    Thederivationof(30.13)is

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    8/27

    ( )

    21

    21

    r rt 1 2t 2

    r r1 1 2 2t 2

    1 2

    2 2ts s

    d

    r2t 23

    2s ss

    d

    r rt2

    C N(d ) N(d )S r X e N(d ) Xe

    N(d ) d N(d ) dS rX e N(d ) Xe

    d d

    slnr r1 X2 2S e rX e N(d )2 22

    S1Xe e e

    X2

    = = + +

    = +

    + + =

    +

    21

    21

    2t s

    32

    s ss

    2 2ts s

    d

    r2t 23

    2s ss

    2t s

    d

    2t 3

    2s ss

    d

    t

    sln r

    r X 2

    22

    slnr r

    1 X2 2S e rX e N(d )2 22

    sln r

    1 r X 2S e2 22

    1S e

    2

    +

    + +

    =

    +

    +

    =

    21

    2

    s

    r22

    s

    rt s1 2

    2 rX e N(d )

    SN (d ) rX e N(d )

    2

    =

    ForaEuropeanputoptiononanon-dividendstock,thetacanbeshownas

    rt s1 2

    SN (d ) rX e N( d )

    2

    = +

    (30.14)

    Thederivationof(30.14)is

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    9/27

    ( )

    21

    r rt 2 12 t

    r r 2 2 1 12 t

    2 1

    2t s

    d

    r r rt22 3

    2s s

    P N( d ) N( d )r X e N( d ) Xe S

    (1 N(d )) d (1 N(d )) d( r)X e (1 N(d )) Xe S

    d d

    sln rS1 r X

    ( r)X e (1 N(d )) Xe e eX2 2

    = = +

    = +

    + = +

    21

    21

    21

    s

    2 2ts s

    d

    2t 3

    2s ss

    2t s

    d

    r 22 t 3

    2s ss

    2ts s

    d

    2t 3

    2s s

    2

    2

    slnr r

    1 X2 2S e2 22

    sln r

    1 r X 2rX e (1 N(d )) S e2 22

    slnr r

    1 X2S e2 2

    + +

    +

    = +

    + +

    21

    2

    s

    2

    sd

    r 22 t

    s

    r t s2 1

    r t s2 1

    2

    2

    1 2rX e (1 N(d )) S e2

    SrX e (1 N(d )) N (d )

    2

    SrX e N( d ) N (d )

    2

    =

    =

    =

    ForaEuropeancalloptiononadividend-payingstock,thetacanbeshownas

    q

    q rt st 1 1 2

    S eq S e N(d ) N (d ) rX e N(d )

    2

    =

    (30.15)

    Thederivationof(30.15)is

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    10/27

    ( )

    21

    q q r r t 1 2t 1 t 2

    q q r r 1 1 2 2t 1 t 2

    1 2

    2ts

    d

    q q 2t 1 t 3

    2s s

    C N(d ) N(d )q S e N(d ) S e r X e N(d ) Xe

    N(d ) d N(d ) dq S e N(d ) S e rX e N(d ) Xe

    d d

    slnr q r q1 X2q S e N(d ) S e e2 2

    = = + +

    = +

    + +

    =

    21

    2

    1

    2

    s

    r

    2

    s

    2t s

    d

    r (r q)t23

    2s ss

    2 2ts s

    d

    q q 2t 1 t 3

    2s ss

    2 rX e N(d )2

    sln r q

    S1 r q X 2Xe e eX2 22

    slnr r

    1 X2 2q S e N(d ) S e e2 22

    + +

    + +

    =

    21

    21

    r

    2

    2t s

    d

    q 2t 3

    2s ss

    2

    sd

    q q r2t 1 t 2

    s

    qq rt s

    t 1 1 2

    rX e N(d )

    sln r

    1 r X 2S e e2 22

    1 2q S e N(d ) S e e rX e N(d )2

    S eq S e N(d ) N (d ) rX e N(d )

    2

    +

    +

    =

    =

    ForaEuropeancalloptiononadividend-payingstock,thetacanbeshownas

    q

    r q t s2 t 1 1

    S erX e N( d ) qS e N( d ) N (d )

    2

    =

    (30.16)

    Thederivationof(30.16)is

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    11/27

    ( )

    21

    r r q qt 2 12 t 1 t

    r r q q2 2 1 12 t 1 t

    2 1

    d

    r r (r q)t22

    P N( d ) N( d )r X e N( d ) Xe ( q)S e N( d ) S e

    (1 N(d )) d (1 N(d )) drX e (1 N(d )) Xe qS e N( d ) S e

    d d

    S1rX e (1 N(d )) Xe e e

    X2

    = = + +

    = +

    = +

    21

    2

    1

    2t s

    32

    s ss

    2 2ts s

    d

    q q 2t 1 t 3

    2s ss

    td

    r q 22 t 3

    2s s

    sln r qr q X 2

    22

    slnr q r q

    1 X2 2qS e N( d ) S e e2 22

    sln

    1 r q XrX e (1 N(d )) S e e2 2

    +

    + +

    = +

    21

    21

    2

    s

    s

    2 2ts s

    d

    q q 2t 1 t 3

    2s ss

    2

    sd

    r q q 22 t 1 t

    s

    r q

    2 t

    r q2

    2

    slnr q r q

    1 X2 2qS e N( d ) S e e2 22

    1 2rX e (1 N(d )) qS e N( d ) S e e2

    rX e (1 N(d )) qS e

    +

    + +

    =

    = q

    t s1 1

    qr q t s

    2 t 1 1

    S eN( d ) N (d )

    2

    S erX e N( d ) qS e N( d ) N (d )

    2

    =

    30.3.2ApplicationofTheta( )

    Thevalueofoptionisthecombinationoftimevalueandstockvalue.Whentimepasses,thetimevalueoftheoptiondecreases.Thus,therateofchangeoftheoptionpricewithrespectivetothepassageoftime,theta,isusuallynegative.

    Becausethepassageoftimeonanoptionisnotuncertain,wedonotneedtomakeathetahedgeportfolio against the effect of the passageof time.However,we stillregard theta as a useful parameter, because it is a proxy of gamma in the deltaneutralportfolio.Forthespecificdetail,wewilldiscussinthefollowingsections.

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    12/27

    30.4Gamma( )

    Thegammaofanoption, ,isdefinedastherateofchangeofdeltarespectedtotherateofchangeofunderlyingassetprice::

    2

    2

    S S

    = =

    where istheoptionpriceandSistheunderlyingassetprice.

    Becausetheoptionisnotlinearlydependentonitsunderlyingasset,delta-neutralhedgestrategyisusefulonlywhenthemovementofunderlyingassetpriceissmall.Oncetheunderlying asset pricemoveswider, gamma-neutral hedgeisnecessary.Wenextshowthederivationofgammaforvariouskindsofstockoption.

    30.4.1DerivationofGammaforDifferentKindsofStockOption

    ForaEuropeancalloptiononanon-dividendstock,gammacanbeshownas

    ( )1t s

    1N d

    S

    =

    (30.17)

    Thederivationof(30.17)is

    ( )

    ( )

    ( )

    t

    2

    tt

    2

    t t

    1 1

    1 t

    t

    1

    s

    1

    t s

    C

    SC

    S S

    N d d

    d S

    1

    SN d

    1N d

    S

    = =

    =

    =

    =

    ForaEuropeanputoptiononanon-dividendstock,gammacanbeshownas

    ( )1t s

    1

    N dS

    =

    (30.18)

    Thederivationof(30.18)is

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    13/27

    ( )

    ( )

    ( )

    t

    2tt

    2

    t t

    1 1

    1 t

    t1

    s

    1

    t s

    P

    SP

    S S

    (N d 1) d

    d S

    1

    SN d

    1N d

    S

    = =

    =

    =

    =

    ForaEuropeancalloptiononadividend-payingstock,gammacanbeshownas

    ( )q

    1t s

    eN d

    S

    =

    (30.19)

    Thederivationof(30.19)is

    ( )

    ( )

    ( )

    ( )

    t

    2tt

    2

    t t

    q

    1

    t

    1q 1

    1 t

    q t1

    s

    q

    1

    t s

    C

    SC

    S S

    e N(d )

    S

    N d d

    e d S

    1

    Se N d

    eN d

    S

    = =

    =

    =

    =

    =

    ForaEuropeancalloptiononadividend-payingstock,gammacanbeshownas

    ( )q

    1

    t s

    eN d

    S

    =

    (30.20)

    Thederivationof(30.20)is

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    14/27

    ( )( )

    ( )

    ( )

    ( )

    t

    2tt

    2

    t t

    q

    1

    t

    1q 1

    1 t

    q t1

    s

    q

    1

    t s

    P

    SP

    S S

    e (N d 1)

    S

    (N d 1) de

    d S

    1

    Se N d

    eN d

    S

    = =

    =

    =

    =

    =

    30.4.2ApplicationofGamma( )

    Onecanusedeltaandgammatogethertocalculatethechangesoftheoptionduetochanges in the underlying stock price. This change can be approximated by thefollowingrelations.

    21

    change in option value change in stock price (change in stock price)2

    +

    Fromtheaboverelation,onecanobservethatthegammamakesthecorrectionforthefactthattheoptionvalueisnotalinearfunctionofunderlyingstockprice.ThisapproximationcomesfromtheTaylorseriesexpansionneartheinitialstockprice.Ifwe let Vbe option value, S be stockprice, andS0 be initial stockprice, then theTaylorseriesexpansionaroundS0yieldsthefollowing.

    220 0 0

    0 0 0 02

    220 0

    0 0 02

    ( ) ( ) ( )1 1( ) ( ) ( ) ( ) ( )

    2! 2!

    ( ) ( )1( ) ( ) ( ) ( )

    2!

    n

    n

    n

    V S V S V S V S V S S S S S S S

    S S S

    V S V S V S S S S S o S

    S S

    + + + +

    + + +

    L

    Ifweonlyconsiderthefirstthreeterms,theapproximationisthen,

    2

    20 00 0 02

    2

    0 0

    ( ) ( )1( ) ( ) ( ) ( )2!

    1( ) ( )

    2

    V S V S V S V S S S S S

    S S

    S S S S

    +

    +

    .

    Forexample,ifaportfolioofoptionshasadeltaequalto$10000andagammaequalto$5000,thechangeintheportfoliovalueifthestockpricedropto$34from$35isapproximately,

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    15/27

    21change in portfolio value ($10000) ($34 $35) ($5000) ($34 $35)

    2

    $7500

    +

    Theaboveanalysiscanalsobeappliedtomeasurethepricesensitivityofinterest

    raterelatedassetsorportfoliotointerestratechanges.Hereweintroduce ModifiedDuration and Convexity as risk measure corresponding to the above delta andgamma. Modified durationmeasures the percentage change in asset or portfoliovalueresultingfromapercentagechangeininterestrate.

    Change in priceModified Duration Price

    Change in interest rate

    / P

    =

    =

    Usingthemodifiedduration,

    Change in Portfolio Value Change in interest rate

    ( P) Change in interest rateDuration

    =

    =

    wecancalculatethevaluechangesoftheportfolio.Theaboverelationcorrespondstothepreviousdiscussionofdeltameasure.Wewanttoknowhowthepriceoftheportfoliochangesgivenachangeininterestrate.Similartodelta,modifieddurationonlyshowthefirstorderapproximationofthechangesinvalue.Inordertoaccountforthenonlinearrelationbetweentheinterestrateandportfoliovalue,weneedasecondorderapproximationsimilarto thegammameasurebefore,thisisthentheconvexitymeasure.Convexityistheinterestrategammadividedbyprice,

    / PConvexity =

    andthismeasurecapturesthenonlinearpartofthepricechangesduetointerestrate changes. Using the modified duration and convexity together allow us todevelopfirstaswellassecondorderapproximationofthepricechangessimilartopreviousdiscussion.

    2

    Change in Portfolio Value P (change in rate)

    1P (change in rate)

    2

    Duration

    Convexity

    +

    Asaresult,(-durationxP)and(convexityxP)actlikethedeltaandgammameasurerespectively inthepreviousdiscussion.This showsthat theseGreeks can alsobeappliedinmeasuringriskininterestraterelatedassetsorportfolio.

    Nextwediscusshowtomakeaportfoliogammaneutral.Supposethegammaofa

    delta-neutralportfoliois ,thegammaoftheoptioninthisportfolioiso

    ,ando

    isthenumberofoptionsaddedtothedelta-neutralportfolio.Then,thegammaofthisnewportfoliois

    o o

    +

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    16/27

    Tomakeagamma-neutralportfolio,weshouldtrade *o o

    / = options.Because

    the position of option changes, the new portfolio is not in the delta-neutral.Weshouldchangethepositionoftheunderlyingassettomaintaindelta-neutral.

    Forexample,thedeltaandgammaofaparticularcalloptionare0.7and1.2.Adelta-

    neutral portfolio has a gamma of -2,400. To make a delta-neutral and gamma-neutralportfolio,weshould add a longpositionof 2,400/1.2=2,000shares and ashortpositionof2,000x0.7=1,400sharesintheoriginalportfolio.

    30.5Vega( )

    The vega of an option, , is defined as the rate of change of the option pricerespectedtothevolatilityoftheunderlyingasset:

    =

    where istheoptionpriceand isvolatilityofthestockprice.Wenextshowthederivationofvegaforvariouskindsofstockoption.

    30.5.1DerivationofVegaforDifferentKindsofStockOption

    ForaEuropeancalloptiononanon-dividendstock,vegacanbeshownas

    ( )t 1S N d = (30.21)

    Thederivationof(30.21)is

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    17/27

    21

    21

    rt 1 2t

    s s s

    r1 1 2 2t

    1 s 2 s

    123

    2 t s2 2sd

    2t 2

    s

    2

    t s

    d

    r rt2

    C N(d ) N(d )S Xe

    N(d ) d N(d ) dS Xe

    d dS

    ln rX 21

    S e2

    Sln r

    X 2S1Xe e e

    X2

    = =

    =

    + +

    =

    + +

    ( )

    2 21 1

    21

    1

    2

    2

    s

    1 12 23

    2 t s t s2 2 2sd d

    2 2t t2 2

    s s

    3d 2 2s2

    t 2

    s

    t 1

    S Sln r ln r

    X 2 X 21 1S e S e

    2 2

    1S e

    2

    S N d

    + + + +

    =

    =

    =

    ForaEuropeanputoptiononanon-dividendstock,vegacanbeshownas

    ( )t 1S N d = (30.22)

    Thederivationof(30.22)is

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    18/27

    21

    21

    rt 2 1t

    s s s

    r 2 2 1 1t

    2 s 1 s

    12

    t s 2d

    r rt22

    s

    23

    2 t s2sd

    2t

    P N( d ) N( d )Xe S

    (1 N(d )) d (1 N(d )) dXe S

    d d

    Sln rX 2S1

    Xe e eX2

    Sln r

    X 21S e

    2

    = =

    =

    + +

    =

    + +

    +

    2 2

    1 1

    21

    1

    2

    2

    s

    1 12 23

    2t s t s2 2 2s

    d d2 2

    t t2 2

    s s

    3d 2 2s2

    t 2

    s

    t

    S Sln r ln r

    X 2 X 21 1S e S e

    2 2

    1S e

    2

    S N d

    + + + +

    = +

    =

    = ( )1

    ForaEuropeancalloptiononadividend-payingstock,vegacanbeshownas

    ( )qt 1S e N d = (30.23)

    Thederivationof(30.23)is

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    19/27

    21

    21

    q rt 1 2t

    s s s

    q r1 1 2 2t

    1 s 2 s

    123

    2 t s2 2sd

    q 2t 2

    s

    t

    d

    r (r q )t2

    C N(d ) N(d )S e Xe

    N(d ) d N(d ) dS e Xe

    d d

    Sln r qX 21

    S e e2

    Sln r

    XS1Xe e e

    X2

    = =

    =

    + +

    =

    +

    2 2

    1 1

    21

    12

    s 2

    2

    s

    1 2 23

    2 t s t s2 2 s

    d dq q2 2

    t t2 2

    s s

    3d 2 2s2

    t

    q2

    S Sln r q ln r q

    X 2 X 21 1S e e S e e

    2 2

    1S e

    2

    +

    + + + +

    =

    =

    ( )

    2

    s

    q

    t 1S e N d

    =

    ForaEuropeancalloptiononadividend-payingstock,vegacanbeshownas

    ( )qt 1S e N d = (30.24)

    Thederivationof(30.24)is

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    20/27

    21

    21

    r qt 2 1t

    s s s

    r q2 2 1 1t

    2 s 1 s

    12

    t s 2d

    r (r q)t22

    s

    2

    sd

    q 2t

    P N( d ) N( d )Xe S e

    (1 N(d )) d (1 N(d )) dXe S e

    d d

    Sln r qX 2S1

    Xe e eX2

    1S e e

    2

    = =

    =

    + +

    =

    +

    2 2

    1 1

    123

    t s2 2

    2

    s

    1 2 23

    2t s t s2 2 s

    d dq q2 2

    t t2 2

    s s

    q

    t

    Sln r q

    X 2

    S Sln r q ln r q

    X 2 X 21 1S e e S e e

    2 2

    S e

    + +

    + + + +

    = +

    =

    ( )

    21

    3d 2 2s2

    2

    s

    q

    t 1

    1e

    2

    S e N d

    =

    30.5.2ApplicationofVega( )

    Supposeadelta-neutralandgamma-neutralportfoliohasavegaequalto andthevegaofaparticularoptionis

    o .Similartogamma,wecanaddapositionof

    o/

    inoption tomake a vega-neutral portfolio. Tomaintain delta-neutral,we shouldchangetheunderlyingassetposition.However,whenwechangetheoptionposition,the new portfolio is not gamma-neutral. Generally, a portfolio with one optioncannotmaintainitsgamma-neutralandvega-neutralatthesametime.Ifwewantaportfoliotobebothgamma-neutralandvega-neutral,weshouldincludeatleasttwokindofoptiononthesameunderlyingassetinourportfolio.

    Forexample,adelta-neutralandgamma-neutralportfoliocontainsoptionA,optionB,andunderlyingasset.Thegammaandvegaofthisportfolioare-3,200and-2,500,

    respectively.OptionAhasadeltaof0.3,gammaof1.2,andvegaof1.5.OptionBhasadeltaof0.4,gammaof1.6andvegaof0.8.Thenewportfoliowillbebothgamma-

    neutralandvega-neutralwhenaddingA

    ofoptionAandB ofoptionBintothe

    originalportfolio.

    A B

    Gamma Neutral: 3200 1.2 1.6 0 + + =

    A BVega Neutral: 2500 1.5 0.8 0 + + =

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    21/27

    Fromtwoequationsshownabove,wecangetthesolutionthatA

    =1000andB =

    1250.Thedeltaofnewportfoliois1000x.3+1250x0.4=800.Tomaintaindelta-neutral,weneedtoshort800sharesoftheunderlyingasset.

    30.6Rho( )

    Therhoofanoptionisdefinedastherateofchangeoftheoptionpricerespectedtotheinterestrate:

    rhor

    =

    where istheoptionpriceandrisinterestrate.Therhoforanordinarystockcalloptionshouldbepositivebecausehigherinterestratereducesthepresentvalueofthestrikepricewhichinturnincreasesthevalueofthecalloption.Similarly,therhoofanordinaryputoptionshouldbenegativebythesamereasoning.Wenextshow

    thederivationofrhoforvariouskindsofstockoption.

    30.6.1DerivationofRhoforDifferentKindsofstockoption

    ForaEuropeancalloptiononanon-dividendstock,rhocanbeshownas

    r

    2rho X e N(d )

    = (30.25)

    Thederivationof(30.25)is

    ( )

    2 21 1

    21

    r rt 1 2t 2

    r r1 1 2 2t 2

    1 2

    d d

    r r rt2 2t 2

    s s

    d

    2t

    s

    C N(d ) N(d )rho S X e N(d ) Xe

    r r r

    N(d ) d N(d ) dS X e N(d ) Xed r d r

    S1 1S e X e N(d ) Xe e e

    X2 2

    1S e

    2

    = =

    = +

    = +

    =

    21d

    r 22 t

    s

    r

    2

    1X e N(d ) S e

    2

    X e N(d )

    +

    =

    ForaEuropeanputoptiononanon-dividendstock,rhocanbeshownas

    r

    2rho X e N( d ) = (30.26)

    Thederivationof(30.26)is

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    22/27

    ( )

    2 2

    1 1

    r rt 2 12 t

    r r 2 2 1 12 t

    2 1

    d d

    r r rt2 22 t

    s s

    P N( d ) N( d )rho X e N( d ) Xe S

    r r r

    (1 N(d )) d (1 N(d )) dX e (1 N(d )) Xe S

    d r d r

    S1 1X e (1 N(d )) Xe e e S eX2 2

    = = +

    = +

    = + 2 21 1d d

    r 2 22 t t

    s s

    r

    2

    1 1X e (1 N(d )) S e S e

    2 2

    X e N( d )

    = +

    =

    ForaEuropeancalloptiononadividend-payingstock,rhocanbeshownas

    r

    2rho X e N(d ) = (30.27)

    Thederivationof(30.27)is

    ( )

    2 21 1

    q r rt 1 2t 2

    q r r1 1 2 2t 2

    1 2

    d d

    q r r (r q)t2 2t 2

    s s

    t

    C N(d ) N(d )rho S e X e N(d ) Xe

    r r r

    N(d ) d N(d ) dS e X e N(d ) Xe

    d r d r

    S1 1S e e X e N(d ) Xe e e

    X2 2

    S e

    = =

    = +

    = +

    =

    2 21 1d d

    q r q2 22 t

    s s

    r

    2

    1 1e X e N(d ) S e e

    2 2X e N(d )

    +

    =

    ForaEuropeanputoptiononadividend-payingstock,rhocanbeshownas

    r

    2rho X e N( d ) = (30.28)

    Thederivationof(30.28)is

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    23/27

    ( )

    2

    1

    r r qt 2 12 t

    r r q2 2 1 12 t

    2 1

    d

    r r ( r q) qt22 t

    s

    P N( d ) N( d )rho X e N( d ) Xe S e

    r r r

    (1 N(d )) d (1 N(d )) dX e (1 N(d )) Xe S e

    d r d r

    S1 1X e (1 N(d )) Xe e e S e eX2 2

    = = +

    = +

    = +

    2

    1

    2 21 1

    d

    2

    s

    d d

    r q q2 22 t t

    s s

    r

    2

    1 1X e (1 N(d )) S e e S e e

    2 2

    X e N( d )

    = +

    =

    30.6.2ApplicationofRho()

    Assumethataninvestorwouldliketoseehowinterestratechangesaffectthevalue

    ofa3-monthEuropeanput option she holdswith the following information. Thecurrent stock price is $65 and the strike price is $58. The interest rate and thevolatility of the stock is 5% and 30% per annum respectively. The rho of thisEuropeanputcanbecalculatedasfollowing.

    2

    r (0.05)(0.25)

    put 2

    1ln(65 58) [0.05 (0.3) ](0.25)

    2Rho X e N(d ) ($58)(0.25)e N( ) 3.168(0.3) 0.25

    +

    = =

    Thiscalculationindicatesthatgiven1%changeincreaseininterestrate,sayfrom5% to 6%, the value of this European call option will decrease 0.03168 (0.01 x3.168). This simple example can be further applied to stocks that pay dividendsusingthederivationresultsshownpreviously.

    30.7DerivationofSensitivityforStockOptionsRespectivewithExercisePrice

    ForaEuropeancalloptiononanon-dividendstock,thesensitivitycanbeshownas

    rt2

    Ce N(d )

    X

    =

    (30.29)

    Thederivationof(30.29)is

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    24/27

    )(

    2

    1)(

    2

    1

    1121)(11

    21

    )()(

    )(

    )()(

    )(

    2

    22

    2

    22

    2

    2

    2

    22

    1

    1

    1

    22

    1

    21

    21

    2

    1

    2

    1

    dNe

    X

    SedNe

    X

    Se

    Xe

    X

    SeXedNeX

    eS

    X

    d

    d

    dNXedNe

    X

    d

    d

    dNS

    X

    dNXedNe

    X

    dNS

    X

    C

    r

    t

    d

    s

    rt

    d

    s

    s

    rt

    d

    rr

    s

    d

    t

    rr

    t

    rr

    t

    t

    =

    =

    =

    =

    =

    ForaEuropeanputoptiononanon-dividendstock,thesensitivitycanbeshownas

    rt

    2

    Pe N( d )

    X

    =

    (30.30)

    Thederivationof(30.30)is

    2 21 1

    r rt 2 12 t

    r r 2 2 1 12 t

    2 1

    d d

    r r rt2 22 t

    s s

    r

    2

    P N( d ) N( d )e N( d ) Xe S

    X X X

    (1 N(d )) d (1 N(d )) de (1 N(d )) Xe S

    d X d X

    S1 1 1 1 1 1e (1 N(d )) Xe e e S e

    X X X2 2

    e (1 N(d

    = +

    = +

    = +

    =

    2 21 1d d

    t t2 2

    s s

    r

    2

    S S1 1)) e e

    X X2 2

    e N( d )

    +

    =

    ForaEuropeancalloptiononadividend-payingstock,thesensitivitycanbeshownas

    rt2

    Ce N(d )

    X

    =

    (30.31)

    Thederivationof(30.31)is

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    25/27

    2 21 1

    21

    q r rt 1 2t 2

    q r r1 1 2 2t 2

    1 2

    d d

    q r r (r q )t2 2t 2

    s s

    d

    2

    s

    C N(d ) N(d )S e e N(d ) Xe

    X X X

    N(d ) d N(d ) dS e e N(d ) Xe

    d X d X

    S1 1 1 1 1 1S e e e N(d ) Xe e eX X X2 2

    S1e

    2

    =

    =

    =

    =

    21dq q

    rt t22

    s

    r

    2

    e S e1e N(d ) e

    X X2

    e N(d )

    =

    ForaEuropeanputoptiononadividend-payingstock,thesensitivitycanbeshownas

    rt2P e N( d )

    X

    =

    (30.32)

    Thederivationof(30.32)is

    2 21 1

    r r qt 2 12 t

    r r q2 2 1 12 t

    2 1

    d d

    r r (r q) qt2 22 t

    s s

    P N( d ) N( d )e N( d ) Xe S e

    X X X

    (1 N(d )) d (1 N(d )) de (1 N(d )) Xe S e

    d X d X

    S1 1 1 1 1 1e (1 N(d )) Xe e e S e e

    X X X2 2

    = +

    = +

    = +

    2 21 1d dq q

    r t t2 22

    s s

    r

    2

    S e S e1 1e (1 N(d )) e e

    X X2 2

    e N( d )

    = +

    =

    30.8RelationshipbetweenDelta,Theta,andGamma

    So far, the discussion has introduced the derivation and application of eachindividualGreeksandhowtheycanbeappliedinportfoliomanagement.Inpractice,the interactionor trade-off between these parameters is of concern aswell. For

    example,recallthepartialdifferentialequationfor theBlack-Scholesformulawithnon-dividendpayingstockcanbewrittenas

    2

    2 2

    2

    1

    2rS S r

    t S S

    + + =

    Where isthevalueofthederivativesecuritycontingentonstockprice, Sisthepriceofstock,ristheriskfreerate,and isthevolatilityofthestockprice,and tis

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    26/27

    thetimetoexpirationofthederivative.Giventheearlierderivation,wecanrewritetheBlack-ScholesPDEas

    2 21

    2rS S r + + =

    Thisrelationgivesusthetrade-offbetweendelta,gamma,andtheta.Forexample,suppose there are two delta neutral( 0) = portfolios, one with positive gamma

    ( 0) > andtheotheronewithnegativegamma ( 0) < andtheybothhavevalueof

    $1 ( 1) = .Thetrade-offcanbewrittenas

    2 21

    2S r+ =

    For the first portfolio, if gamma ispositive and large, then theta isnegative andlarge.Whengammaispositive,changeinstockpricesresultinhighervalueoftheoption.Thismeansthatwhenthereisnochangeinstockprices,thevalueoftheoptiondeclinesasweapproachtheexpirationdate.Asaresult,thethetaisnegative.Ontheotherhand,whengammaisnegativeandlarge,changeinstockpricesresultinlower option value. Thismeansthatwhen there isno stockprice changes, thevalueoftheoption increases asweapproach the expirationand thetais positive.Thisgivesusatrade-offbetweengammaandthetaandtheycanbeusedasproxyforeachotherinadeltaneutralportfolio.

    30.9Conclusion

    Inthischapterwehaveshownthederivationofthesensitivitiesoftheoptionpricetothechangeinthevalueofstatevariablesorparameters.ThefirstGreekisdelta(

    )whichistherateofchangeofoptionpricetochangeinpriceofunderlyingasset.Oncethedeltaiscalculated,thenextstepistherateofchangeofdeltawithrespecttounderlyingassetpricewhichgivesusgamma( ).Anothertworiskmeasuresaretheta( )andrho( ),theymeasurethechangeinoptionvaluewithrespectto

    passingtimeandinterestraterespectively.Finally,onecanalsomeasurethechangeinoptionvaluewithrespecttothevolatilityoftheunderlyingassetandthisgivesusthevega(v ).

    Therelationshipbetweentheseriskmeasuresareshown,oneoftheexamplecanbeseen from the Black-Scholes partial differential equation. Furthermore, theapplications of these Greeks letter in the portfolio management have also been

    discussed.Riskmanagementisoneoftheimportanttopicsinfinancetoday,bothforacademicsandpractitioners.Giventherecentcreditcrisis,onecanobservethatitiscrucialtoproperlymeasuretheriskrelatedtotheevermorecomplicatedfinancialassets.

    References

    Bjork,T.,ArbitrageTheoryinContinuousTime,OxfordUniversityPress,1998.

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    27/27

    Boyle, P. P., & Emanuel, D. (1980). Discretely adjusted option hedges. Journal of

    FinancialEconomics,8(3),259-282.Duffie,D.,DynamicAssetPricingTheory,PrincetonUniversityPress,2001.

    Fabozzi,F.J.,FixedIncomeAnalysis,2ndEdition,Wiley,2007.Figlewski, S. (1989). Options arbitrage in imperfect markets. Journal of Finance,

    44(5),1289-1311.Galai,D.(1983).Thecomponentsofthereturnfromhedgingoptionsagainststocks.

    JournalofBusiness,56(1),45-54.Hull,J.,Options,Futures,andOtherDerivatives6thEdition,Pearson,2006.

    Hull,J.,&White,A.(1987).Hedgingtherisksfromwritingforeigncurrencyoptions. JournalofInternationalMoneyandFinance,6(2),131-152.

    Karatzas, I. and Shreve, S.E., Brownian Motion and Stochastic Calculus, Springer,

    2000.Klebaner,F.C.,IntroductiontoStochasticCalculuswithApplications,ImperialCollege

    Press,2005.McDonlad,R.L.,DerivativesMarkets2ndEdition,Addison-Wesley,2005.

    Shreve, S.E., Stochastic Calculus for Finance II: Continuous Time Model, Springer,2004.

    Tuckman,B., FixedIncomeSecurities:ToolsforToday'sMarkets, 2ndEdition,Wiley,2002.