Application of Pulsed Plasmas for Nanoscale Etching of ...

11
360 ํ•œ๊ตญํ‘œ๋ฉด๊ณตํ•™ํšŒ์ง€ J. Kor. Inst. Surf. Eng. Vol. 48, No. 6, 2015. http://dx.doi.org/10.5695/JKISE.2015.48.6.360 <ํ•ด์„ค๋…ผ๋ฌธ> ISSN 1225-8024(Print) ISSN 2288-8403(Online) ๋‚˜๋…ธ ๋ฐ˜๋„์ฒด ์†Œ์ž๋ฅผ ์œ„ํ•œ ํŽ„์Šค ํ”Œ๋ผ์ฆˆ๋งˆ ์‹๊ฐ ๊ธฐ์ˆ  ์–‘๊ฒฝ์ฑ„, ๋ฐ•์„ฑ์šฐ, ์‹ ํƒœํ˜ธ, ์—ผ๊ทผ์˜ * ์„ฑ๊ท ๊ด€๋Œ€ํ•™๊ต ์‹ ์†Œ์žฌ๊ณตํ•™๋ถ€ Application of Pulsed Plasmas for Nanoscale Etching of Semiconductor Devices : A Review Kyung Chae Yang, Sung Woo Park, Tae Ho Shin, Geun Young Yeom * School of Advanced Materials Science and Engineering, SungKyunKwan University (SKKU), 2066, Suwon 16419, Republic of Korea (Received December 19, 2015 ; revised December 28, 2015 ; accepted December 30, 2015) Abstract As the size of the semiconductor devices shrinks to nanometer scale, the importance of plasma etching process to the fabrication of nanometer scale semiconductor devices is increasing further and further. But for the nanoscale devices, conventional plasma etching technique is extremely difficult to meet the requirement of the device fabrication, therefore, other etching techniques such as use of multi frequency plasma, source/ bias/gas pulsing, etc. are investigated to meet the etching target. Until today, various pulsing techniques includ- ing pulsed plasma source and/or pulse-biased plasma etching have been tested on various materials. In this review, the experimental/theoretical studies of pulsed plasmas during the nanoscale plasma etching on etch profile, etch selectivity, uniformity, etc. have been summarized. Especially, the researches of pulsed plasma on the etching of silicon, SiO 2 , and magnetic materials in the semiconductor industry for further device scaling have been discussed. Those results demonstrated the importance of pulse plasma on the pattern control for achieving the best performance. Although some of the pulsing mechanism is not well established, it is believed that this review will give a certain understanding on the pulsed plasma techniques. Keywords : Pulse plasma, Pulsing, Etch, MRAM, DRAM 1. ์„œ ๋ก  1.1 ๋ฐ˜๋„์ฒด์‚ฐ์—…์—์„œ์˜ ํ”Œ๋ผ์ฆˆ๋งˆ ์‹๊ฐ ๊ฐœ๋ฐœ ๋ฐ˜๋„์ฒด ์†Œ์ž ๊ณต์ •์— ํ”Œ๋ผ์ฆˆ๋งˆ๊ฐ€ ํญ๋„“๊ฒŒ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ์œผ๋ฉฐ ์ด ์ค‘ ํ”Œ๋ผ์ฆˆ๋งˆ ์‹๊ฐ ๊ณต์ •์€ ํ”Œ๋ผ์ฆˆ๋งˆ์— ์˜ ํ•ด ์ƒ์„ฑ๋œ ์ด์˜จ, ๋ฐ˜์‘์„ฑ ๊ธฐ์ฒด ํ˜น์€ ๋ผ๋””์นผ์„ ์ด์šฉ ํ•˜์—ฌ ๊ธฐํŒ๋ฌผ์งˆ์„ ์ œ๊ฑฐํ•˜๋Š” ์‹๊ฐ ๋ฐฉ์‹์œผ๋กœ ๊ณต์ •์˜ ์ •๋ฐ€์„ฑ ํ™•๋ณด, ๋ฏธ์„ธํ™”, ์ €์†์ƒ ๋“ฑ์˜ ์ธก๋ฉด์—์„œ ํ•„์ˆ˜๋ถˆ๊ฐ€ ๊ฒฐํ•œ ๊ณต์ •์š”์†Œ๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค 1) . ๋”ฐ๋ผ์„œ ์ง€๋‚œ 20 ์—ฌ๋…„ ๋™์•ˆ ์ „์žํšŒ์ „๊ณต๋ช… ํ”Œ๋ผ์ฆˆ๋งˆ(ECR, electron cyclotron resonance plasmas), ํ—ฌ๋ฆฌ์ฝ˜ ํ”Œ๋ผ์ฆˆ๋งˆ(helicon wave plasmas), ์œ ๋„๊ฒฐํ•ฉํ˜• ํ”Œ๋ผ์ฆˆ๋งˆ(ICP, inductively coupled plasmas), ์ •์ „๊ฒฐํ•ฉ ํ”Œ๋ผ์ฆˆ๋งˆ(CCP, capacitively coupled plasma) ๋“ฑ์ด ์•ž์„œ ๊ธฐ์ˆ ๋œ ๊ธฐ์ˆ ์  ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ  ์ตœ์ ํ™”๋œ ํ”Œ๋ผ์ฆˆ๋งˆ ์กฐ์ ˆ์„ ์œ„ํ•˜์—ฌ ๋ฐ˜๋„์ฒด ์‹๊ฐ ๊ณต ์ • ๋“ฑ์— ํ†ต์ƒ ์‚ฌ์šฉ๋˜์–ด ์™”๋‹ค 2-8) . ๊ทธ๋Ÿฌ๋‚˜ ์†Œ์ž ๋ฏธ์„ธ ํ™”์— ๋”ฐ๋ฅธ ์žฌ๋ฃŒ์  ํ•œ๊ณ„ ๋ฐ ๊ธฐ์ˆ ์  ๋‚œ์ด๋„์˜ ์ฆ๊ฐ€๋กœ ์‹๊ฐ ๊ท ์ผ๋„ ๋ฐ ์ž„๊ณ„์น˜์ˆ˜(critical dimension) ์ œ์–ด, ์‹๊ฐ ์„ ํƒ๋„(etch selectivity) ๋ฐ ์‹๊ฐ ํ”„๋กœํŒŒ์ผ ํ™• ๋ณด, ์ „ํ•˜์ถ•์ , ์‹๊ฐ ์†์ƒ(etch damage: structural and electrical), ํŒจํ„ด์™œ๊ณก ๋“ฑ์˜ ๋ฌธ์ œ๊ฐ€ ์ง€์†์ ์œผ๋กœ ๋Œ€๋‘ ๋˜๊ณ  ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋‚˜๋…ธ๋ฏธํ„ฐ๊ธ‰์˜ ๋ฏธ์„ธ๊ณต์ •์—์„œ ๋‹ค ์–‘ํ•œ ์‹๊ฐ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์กฐ์ ˆํ•˜์—ฌ ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๋ฌธ ์ œ๋Š” ๋ฉ”๋ชจ๋ฆฌ ๋ถ„์•ผ์˜ ์ถ•์†Œํ™” ์š”๊ตฌ์— ๋Œ€ํ•œ ๊ธฐ์ˆ ์  ๋‚œ * Corresponding Author : Geun Young Yeom School of Advanced Materials Science and Engineering, SungKyunKwan University (SKKU) E-mail : [email protected]

Transcript of Application of Pulsed Plasmas for Nanoscale Etching of ...

Page 1: Application of Pulsed Plasmas for Nanoscale Etching of ...

360

ํ•œ๊ตญํ‘œ๋ฉด๊ณตํ•™ํšŒ์ง€J. Kor. Inst. Surf. Eng.Vol. 48, No. 6, 2015.

http://dx.doi.org/10.5695/JKISE.2015.48.6.360<ํ•ด์„ค๋…ผ๋ฌธ>

ISSN 1225-8024(Print)

ISSN 2288-8403(Online)

๋‚˜๋…ธ ๋ฐ˜๋„์ฒด ์†Œ์ž๋ฅผ ์œ„ํ•œ ํŽ„์Šค ํ”Œ๋ผ์ฆˆ๋งˆ ์‹๊ฐ ๊ธฐ์ˆ 

์–‘๊ฒฝ์ฑ„, ๋ฐ•์„ฑ์šฐ, ์‹ ํƒœํ˜ธ, ์—ผ๊ทผ์˜*

์„ฑ๊ท ๊ด€๋Œ€ํ•™๊ต ์‹ ์†Œ์žฌ๊ณตํ•™๋ถ€

Application of Pulsed Plasmas for Nanoscale Etching

of Semiconductor Devices : A Review

Kyung Chae Yang, Sung Woo Park, Tae Ho Shin, Geun Young Yeom*

School of Advanced Materials Science and Engineering, SungKyunKwan University (SKKU), 2066,

Suwon 16419, Republic of Korea

(Received December 19, 2015 ; revised December 28, 2015 ; accepted December 30, 2015)

Abstract

As the size of the semiconductor devices shrinks to nanometer scale, the importance of plasma etchingprocess to the fabrication of nanometer scale semiconductor devices is increasing further and further. Butfor the nanoscale devices, conventional plasma etching technique is extremely difficult to meet the requirementof the device fabrication, therefore, other etching techniques such as use of multi frequency plasma, source/bias/gas pulsing, etc. are investigated to meet the etching target. Until today, various pulsing techniques includ-ing pulsed plasma source and/or pulse-biased plasma etching have been tested on various materials. In thisreview, the experimental/theoretical studies of pulsed plasmas during the nanoscale plasma etching on etchprofile, etch selectivity, uniformity, etc. have been summarized. Especially, the researches of pulsed plasmaon the etching of silicon, SiO2, and magnetic materials in the semiconductor industry for further device scalinghave been discussed. Those results demonstrated the importance of pulse plasma on the pattern control forachieving the best performance. Although some of the pulsing mechanism is not well established, it is believedthat this review will give a certain understanding on the pulsed plasma techniques.

Keywords : Pulse plasma, Pulsing, Etch, MRAM, DRAM

1. ์„œ ๋ก 

1.1 ๋ฐ˜๋„์ฒด์‚ฐ์—…์—์„œ์˜ ํ”Œ๋ผ์ฆˆ๋งˆ ์‹๊ฐ ๊ฐœ๋ฐœ

๋ฐ˜๋„์ฒด ์†Œ์ž ๊ณต์ •์— ํ”Œ๋ผ์ฆˆ๋งˆ๊ฐ€ ํญ๋„“๊ฒŒ ์‚ฌ์šฉ๋˜๊ณ 

์žˆ์œผ๋ฉฐ ์ด ์ค‘ ํ”Œ๋ผ์ฆˆ๋งˆ ์‹๊ฐ ๊ณต์ •์€ ํ”Œ๋ผ์ฆˆ๋งˆ์— ์˜

ํ•ด ์ƒ์„ฑ๋œ ์ด์˜จ, ๋ฐ˜์‘์„ฑ ๊ธฐ์ฒด ํ˜น์€ ๋ผ๋””์นผ์„ ์ด์šฉ

ํ•˜์—ฌ ๊ธฐํŒ๋ฌผ์งˆ์„ ์ œ๊ฑฐํ•˜๋Š” ์‹๊ฐ ๋ฐฉ์‹์œผ๋กœ ๊ณต์ •์˜

์ •๋ฐ€์„ฑ ํ™•๋ณด, ๋ฏธ์„ธํ™”, ์ €์†์ƒ ๋“ฑ์˜ ์ธก๋ฉด์—์„œ ํ•„์ˆ˜๋ถˆ๊ฐ€

๊ฒฐํ•œ ๊ณต์ •์š”์†Œ๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค1). ๋”ฐ๋ผ์„œ ์ง€๋‚œ 20์—ฌ๋…„

๋™์•ˆ ์ „์žํšŒ์ „๊ณต๋ช… ํ”Œ๋ผ์ฆˆ๋งˆ(ECR, electron cyclotron

resonance plasmas), ํ—ฌ๋ฆฌ์ฝ˜ ํ”Œ๋ผ์ฆˆ๋งˆ(helicon wave

plasmas), ์œ ๋„๊ฒฐํ•ฉํ˜• ํ”Œ๋ผ์ฆˆ๋งˆ(ICP, inductively coupled

plasmas), ์ •์ „๊ฒฐํ•ฉ ํ”Œ๋ผ์ฆˆ๋งˆ(CCP, capacitively coupled

plasma) ๋“ฑ์ด ์•ž์„œ ๊ธฐ์ˆ ๋œ ๊ธฐ์ˆ ์  ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ 

์ตœ์ ํ™”๋œ ํ”Œ๋ผ์ฆˆ๋งˆ ์กฐ์ ˆ์„ ์œ„ํ•˜์—ฌ ๋ฐ˜๋„์ฒด ์‹๊ฐ ๊ณต

์ • ๋“ฑ์— ํ†ต์ƒ ์‚ฌ์šฉ๋˜์–ด ์™”๋‹ค2-8). ๊ทธ๋Ÿฌ๋‚˜ ์†Œ์ž ๋ฏธ์„ธ

ํ™”์— ๋”ฐ๋ฅธ ์žฌ๋ฃŒ์  ํ•œ๊ณ„ ๋ฐ ๊ธฐ์ˆ ์  ๋‚œ์ด๋„์˜ ์ฆ๊ฐ€๋กœ

์‹๊ฐ ๊ท ์ผ๋„ ๋ฐ ์ž„๊ณ„์น˜์ˆ˜(critical dimension) ์ œ์–ด,

์‹๊ฐ ์„ ํƒ๋„(etch selectivity) ๋ฐ ์‹๊ฐ ํ”„๋กœํŒŒ์ผ ํ™•

๋ณด, ์ „ํ•˜์ถ•์ , ์‹๊ฐ ์†์ƒ(etch damage: structural and

electrical), ํŒจํ„ด์™œ๊ณก ๋“ฑ์˜ ๋ฌธ์ œ๊ฐ€ ์ง€์†์ ์œผ๋กœ ๋Œ€๋‘

๋˜๊ณ  ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋‚˜๋…ธ๋ฏธํ„ฐ๊ธ‰์˜ ๋ฏธ์„ธ๊ณต์ •์—์„œ ๋‹ค

์–‘ํ•œ ์‹๊ฐ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์กฐ์ ˆํ•˜์—ฌ ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๋ฌธ

์ œ๋Š” ๋ฉ”๋ชจ๋ฆฌ ๋ถ„์•ผ์˜ ์ถ•์†Œํ™” ์š”๊ตฌ์— ๋Œ€ํ•œ ๊ธฐ์ˆ ์  ๋‚œ

*Corresponding Author : Geun Young Yeom

School of Advanced Materials Science and Engineering,SungKyunKwan University (SKKU)E-mail : [email protected]

Page 2: Application of Pulsed Plasmas for Nanoscale Etching of ...

361 ์–‘๊ฒฝ์ฑ„ ์™ธ/ํ•œ๊ตญํ‘œ๋ฉด๊ณตํ•™ํšŒ 48 (2015) 360-370

๊ด€์„ ๊ทน๋ณตํ•˜๊ณ  ๊ฒฝ์Ÿ๋ ฅ ํ–ฅ์ƒ์„ ์œ„ํ•ด ์ง€์†์ ์œผ๋กœ ์—ฐ

๊ตฌ ๊ฐœ๋ฐœ๋˜๊ณ  ์žˆ๋‹ค9-13).

1.2 ํ”Œ๋ผ์ฆˆ๋งˆ ์‹๊ฐ ์—์„œ์˜ ํŽ„์Šค ํ”Œ๋ผ์ฆˆ๋งˆ

๊ธฐ์กด์˜ ํ”Œ๋ผ์ฆˆ๋งˆ ๋ฐ˜์‘์žฅ์น˜๋Š” ํ”Œ๋ผ์ฆˆ๋งˆ๋ฅผ ๋ฐœ์ƒ์‹œ

ํ‚ค๋Š” ๊ณ ์ฃผํŒŒ ์ „์›์—๋Š” ๊ณ ์ฃผํŒŒ ์ „์••(rf voltage)์„ ๊ฐ€

ํ•ด์„œ ์ง„๊ณต ์ฑ”๋ฒ„ ๋‚ด์— ํ”Œ๋ผ์ฆˆ๋งˆ๋ฅผ ๋ฐœ์ƒ์‹œํ‚ค๊ณ  ๊ธฐํŒ

์—๋Š” ์—๋„ˆ์ง€๋ฅผ ๋ฐœ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์ง๋ฅ˜๋ฐ”์ด์–ด์Šค(DC

bias)๋ฅผ ๊ณ ์ฃผํŒŒ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ฐœ์ƒ์‹œ์ผœ ์ด์˜จ์„ ๋‹น๊ธฐ๊ฒŒ

๋œ๋‹ค. ์ด๋•Œ ์ „๋‹ฌ๋˜๋Š” ์ผ์ •ํ•œ ์ „๋ ฅ์ƒํƒœ๋ฅผ ์—ฐ์†ํŒŒ(con-

tinuous wave (CW) rf mode)๋ผ ์ง€์นญ ํ•œ๋‹ค(๊ทธ๋ฆผ 1(a)).

๊ทธ๋Ÿฌ๋‚˜ ์ข…๋ž˜์˜ ์ด๋Ÿฌํ•œ ์—ฐ์†ํŒŒ(CW) ํ”Œ๋ผ์ฆˆ๋งˆ๋ฅผ ์ด

์šฉํ•œ ์‹๊ฐ ๊ณต์ •์—์„œ๋Š” ๊ฐ€์Šค๋ณ€ํ™” ๋ฐ ์••๋ ฅ๋ณ€ํ™”๋ฅผ ์ œ

์™ธํ•˜๊ณ ๋Š” ์ฃผํŒŒ์ˆ˜ ์„ ํƒ ์ด๋‚˜ ์ž…๋ ฅ์ „๋ ฅ๋ณ€ํ™” ์ •๋„์˜

ํ”Œ๋ผ์ฆˆ๋งˆ ์กฐ์ ˆ๊ธฐ๋Šฅ์„ ๊ฐ€์ง€๊ณ  ์žˆ์–ด ๊ณต์ •๊ฐœ๋ฐœ์ด ์ œํ•œ

์ ์ด๋ผ๋Š” ๋‹จ์ ์ด ์žˆ์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณด๋‹ค ํ–ฅ์ƒ๋œ ์‹๊ฐ

๊ณต์ •์„ ์œ„ํ•ด์„œ ๊ทธ ๋™์•ˆ ์ œํ•œ์ ์ด์—ˆ๋˜ ํ”Œ๋ผ์ฆˆ๋งˆ ๊ณต

์ •๋ฒ”์œ„๋ฅผ ๋ณด๋‹ค ๋„“๊ณ  ํšจ์œจ์ ์ธ ๋ฐฉ์‹์œผ๋กœ ๊ฐœ์„ ํ•˜๋ ค๋Š”

์—ฐ๊ตฌ๊ฐ€ ์ด๋ฃจ์–ด์ ธ ์™”๋‹ค14). ์ฆ‰ ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ

์•ˆ์ค‘ ํ•˜๋‚˜์ธ ํŽ„์Šค ํ”Œ๋ผ์ฆˆ๋งˆ๋ฅผ ์‚ฌ์šฉํ•˜๊ฒŒ ๋˜๋ฉด ์†Œ์Šค

๋‚˜ ๋ฐ”์ด์–ด์Šค ์ „๊ทน๋ถ€์— ๊ณ ์ฃผํŒŒ(RF) ํ˜น์€ ์ง๋ฅ˜(DC)

ํŽ„์Šค ํŒŒ์›Œ๋ฅผ ์ธ๊ฐ€ํ•˜์—ฌ ์˜จ(plasma on) ์ฃผ๊ธฐ ๋ฐ ์˜คํ”„

(plasma off) ์ฃผ๊ธฐ๋ฅผ ์กฐ์ ˆํ•จ์œผ๋กœ์จ ํ”Œ๋ผ์ฆˆ๋งˆ์˜ ์ƒ์„ฑ

๋ฐ ์†Œ๋ฉธ์„ ๋ฐ˜๋ณตํ•˜๊ฒŒ ํ•˜์—ฌ ํ”Œ๋ผ์ฆˆ๋งˆ์˜ ํŠน์„ฑ์„ ๊ฐ ๊ณต

์ •์— ์ ํ•ฉํ•˜๋„๋ก ์ œ์–ดํ•  ์ˆ˜ ์žˆ๋Š” ํšจ๊ณผ๊ฐ€ ์žˆ๋‹ค. ๊ทธ

๋ฆผ 1(a)๋Š” ๊ณ ์ฃผํŒŒ ํŒŒ์›Œ๋ฅผ ์ธ๊ฐ€ํ•˜์—ฌ ์—ฐ์†ํŒŒ(CW)๋ฅผ

ํ˜•์„ฑํ•œ ๊ฒฝ์šฐ๋ฅผ ๋‚˜ํƒ€๋‚ด๊ณ  ๊ทธ๋ฆผ 1(b)๋Š” ๊ทธ๋ฆผ 1(a)์˜

๊ณ ์ฃผํŒŒ ํŒŒ์›Œ๋ฅผ ํŽ„์‹ฑ(pulsing)ํ•จ์œผ๋กœ์จ ํŽ„์ŠคํŒŒ(pulsed

wave)๋ฅผ ํ˜•์„ฑํ•œ ๊ฒฝ์šฐ๋ฅผ ๋น„๊ตํ•˜์—ฌ ๋‚˜ํƒ€๋‚ธ ๊ทธ๋ฆผ์œผ๋กœ

ํŽ„์Šค ํŒŒ์›Œ์—์„œ๋Š” ํ”Œ๋ผ์ฆˆ๋งˆ์˜ ํŒŒ์›Œ๊ฐ€ ๋ฐ˜์‘ ์šฉ๊ธฐ ๋‚ด

์— ์‹œ๊ฐ„ ๋ณ€์กฐ(time modulate)์˜ ๋ฐฉ์‹์œผ๋กœ ์ธ๊ฐ€๋˜๊ฒŒ

๋œ๋‹ค15). ์ด์™€ ๊ฐ™์€ ํŽ„์Šค ํ”Œ๋ผ์ฆˆ๋งˆ๋ฅผ ์ด์šฉํ•œ ์‹๊ฐ ์‹œ

์Šคํ…œ์€ ์‹๊ฐ ์„ ํƒ๋„ ํ™•๋ณด ๋ฐ ๋น„๋“ฑ๋ฐฉ์„ฑ ์‹๊ฐ์„ ๊ฐ€๋Šฅ

ํ•˜๊ฒŒ ํ•˜๋Š” ๋งค์šฐ ํšจ๊ณผ์ ์ธ ๋ฐฉ๋ฒ•์ค‘์˜ ํ•˜๋‚˜๋ผ๊ณ  ํ•  ์ˆ˜

์žˆ์œผ๋ฉฐ ์—ฌ๊ธฐ์—์„œ๋Š” ๊ทธ ์ข…๋ฅ˜ ๋ฐ ์‘์šฉ ๋“ฑ์— ๊ด€ํ•ด ๊ธฐ

์ˆ ํ•˜๊ธฐ๋กœ ํ•œ๋‹ค16).

2. ํŽ„์Šค ํ”Œ๋ผ์ฆˆ๋งˆ

2.1 ํŽ„์Šค ํ”Œ๋ผ์ฆˆ๋งˆ์˜ ๊ธฐ์ดˆ

๋‹ค์–‘ํ•œ ์‹๊ฐ ๊ธฐ์ˆ  ์ค‘ ์•ž์„œ ์–ธ๊ธ‰ํ•œ ํŽ„์Šค ๊ธฐ์ˆ ์€

ํ”Œ๋ผ์ฆˆ๋งˆ ํŠน์„ฑ ์กฐ์ ˆ์ด ๊ธฐ์กด์˜ ํ”Œ๋ผ์ฆˆ๋งˆ ์‹๊ฐ ์‹œ์Šค

ํ…œ์— ํ”Œ๋ผ์ฆˆ๋งˆ ์ „์› ์ผœ๊ธฐ/๋„๊ธฐ(on/off)๋ฅผ ์กฐ์ •ํ•˜๋Š”

๊ฐ€๋ฒผ์šด ํ•˜๋“œ์›จ์–ด ๋ณ€๊ฒฝ ๋งŒ์œผ๋กœ๋„ ๊ฐ€๋Šฅํ•˜๊ธฐ ๋•Œ๋ฌธ์—

๊ทธ ์‘์šฉ๋ถ„์•ผ์˜ ํ™•๋Œ€๊ฐ€๋Šฅ์„ฑ์ด ๋†’๊ณ  ์‚ฐ์—…์œผ๋กœ์˜ ์ ์šฉ

๋„ ์‰ฌ์›Œ 1980๋…„๋Œ€๋ถ€ํ„ฐ ๊พธ์ค€ํžˆ ์—ฐ๊ตฌ๋˜์–ด ์™”๋‹ค17-22).

ํŽ„์Šค ์กฐ๊ฑด์— ๋Œ€ํ•œ ๋Œ€ํ‘œ์ ์ธ ํŒŒ๋ผ๋ฏธํ„ฐ๋Š” 1) ํŽ„์Šค

์ฃผํŒŒ์ˆ˜, 2) ํŽ„์Šค ์ž‘๋™๋น„์œจ(duty ratio), 3) ํŒŒ์›Œ ๋ณ€์กฐ

(power modulation) ์ด๋ฉฐ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์„ค๋ช…๋  ์ˆ˜ ์žˆ

๋‹ค23). ๊ทธ๋ฆผ 2์— ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์ฒ˜๋Ÿผ ํŽ„์Šค ์ฃผํŒŒ์ˆ˜๋Š” ๊ทœ์น™

์ ์ธ ์‹œ๊ฐ„๊ฐ„๊ฒฉ์œผ๋กœ ํŽ„์Šค ํŒŒ์›Œ๊ฐ€ ๋ฐ˜๋ณต๋˜๋Š” ๋น„์œจ์ด๊ณ 

์ž‘๋™๋น„์œจ(duty-cycle ํ˜น์€ duty ratio)์€ ํŽ„์Šค ํ”Œ๋ผ์ฆˆ

๋งˆ์˜ ์˜จ(on) ์ฃผ๊ธฐ์™€ ์˜คํ”„(off) ์ฃผ๊ธฐ์˜ ๋น„๋ฅผ ์˜๋ฏธํ•˜

๋Š” ๊ฒƒ์œผ๋กœ ์˜ˆ๋ฅผ ๋“ค์–ด ์ž‘๋™๋น„์œจ์ด 30% ๋ผ ํ•จ์€ ํŽ„

์Šค์˜ ํ•œ ์ฃผ๊ธฐ๋ฅผ 100% ๋กœ ํ•˜์˜€์„ ๋•Œ ํŽ„์Šค ํ”Œ๋ผ์ฆˆ๋งˆ

์˜ ์˜จ(on) ์ฃผ๊ธฐ๊ฐ€ 30%, ์˜คํ”„(off) ์ฃผ๊ธฐ๊ฐ€ 70% ์ธ ๊ฒƒ

์„ ์˜๋ฏธํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ž‘๋™๋น„์œจ์€ ์˜จ์‹œ๊ฐ„(on time)

๋ฐ ์˜คํ”„์‹œ๊ฐ„(off time)์˜ ๋น„์œจ๋กœ ์กฐ์ ˆ์ด ๊ฐ€๋Šฅํ•˜๊ธฐ ๋•Œ

๋ฌธ์— ๋ณ€ํ™” ์ •๋„์— ๋”ฐ๋ผ ์ „ํ•˜ ์ƒ์‡„ ์ •๋„, ๋ฐ˜์‘์„ฑ ๋“ฑ

์„ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. ํŒŒ์›Œ๋ณ€์กฐ์— ๋Œ€ํ•œ ์„ค๋ช…์€

๊ทธ๋ฆผ 3์— ๋‚˜ํƒ€๋‚˜ ์žˆ๋Š”๋ฐ ๊ธฐํŒ ์ „๊ทน์€ ์—ฐ์†ํŒŒ(CW)

๋กœ ์œ ์ง€๋˜๋ฉด์„œ ํ”Œ๋ผ์ฆˆ๋งˆ ์†Œ์Šค์— ํŽ„์Šค๊ฐ€ ์ธ๊ฐ€๋˜๋Š”

์†Œ์Šค ํŽ„์Šค ๋ฐฉ๋ฒ•(source pulsing) (๊ทธ๋ฆผ 3(a)), ํ”Œ๋ผ์ฆˆ

๋งˆ ์†Œ์Šค๋Š” ์—ฐ์†ํŒŒ๋กœ ์œ ์ง€๋˜๋ฉด์„œ ๊ธฐํŒ์— ํŽ„์Šค๊ฐ€ ์ธ๊ฐ€

๋˜๋Š” ๋ฐ”์ด์–ด์Šค ํŽ„์Šค ๋ฐฉ๋ฒ•(bias pulsing) (๊ทธ๋ฆผ 3(b)),

ํ”Œ๋ผ์ฆˆ๋งˆ์™€ ๊ธฐํŒ์— ๋ชจ๋‘์— ํŽ„์Šค(์œ„์ƒ์ฐจ ์œ ๋ฌด๊ฐ€๋Šฅ)๊ฐ€

Fig. 1. Plasma schemes. (a) continuous wave and (b)

pulsed plasma. Fig. 2. Schematic illustration of the pulsed plasma.

Page 3: Application of Pulsed Plasmas for Nanoscale Etching of ...

์–‘๊ฒฝ์ฑ„ ์™ธ/ํ•œ๊ตญํ‘œ๋ฉด๊ณตํ•™ํšŒ 48 (2015) 360-370 362

์ธ๊ฐ€๋˜๋Š” ์‹ฑํฌ๋กœ ํŽ„์Šค ๋ฐฉ๋ฒ•(synchronous pulsing)

(๊ทธ๋ฆผ 3(c))์˜ ์„ธ๊ฐ€์ง€๋กœ ํฌ๊ฒŒ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ๋‹ค.

์ฆ‰ ์ด์™€ ๊ฐ™์€ ํŽ„์Šค ํ”Œ๋ผ์ฆˆ๋งˆ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๋‹ค์–‘ํ•œ

์‹๊ฐ ํŒŒ๋ผ๋ฏธํ„ฐ์™€ ์กฐํ•ฉํ•˜์—ฌ ๊ฐ ๊ณต์ •์— ์ ํ•ฉํ•˜๋„๋ก

ํ”Œ๋ผ์ฆˆ๋งˆ์˜ ํŠน์„ฑ(์ด์˜จ/์ „์ž ๋ฐ€๋„, ์ „์ž์˜จ๋„, ๊ธฐํŒ์œผ

๋กœ์˜ ์ด์˜จ/์ค‘์„ฑ์ž๋น„์œจ, ์ „์œ„ ๋“ฑ)์„ ์ œ์–ดํ•œ๋‹ค๋ฉด ์ „

ํ•˜ ์ƒ์‡„ ์ •๋„ ๋ฐ ๋ฐ˜์‘์„ฑ ๋“ฑ์„ ์กฐ์ ˆํ•˜์—ฌ ๋‹ค์–‘ํ•œ ์‹

๊ฐ ๊ณต์ •์— ๋งž๋Š” ํ”Œ๋ผ์ฆˆ๋งˆ ์กฐ์ ˆํšจ๊ณผ๋ฅผ ๊ตฌํ˜„ํ•ด ๋‚ผ ์ˆ˜

์žˆ๋‹ค12, 24-26).

2.2 ํŽ„์Šค ํ”Œ๋ผ์ฆˆ๋งˆ์˜ ํšจ๊ณผ

๊ธฐ์กด ์—ฐ์†ํŒŒ(CW) ๊ณ ๋ฐ€๋„ ํ”Œ๋ผ์ฆˆ๋งˆ์—์„œ๋Š” ๊ณต์ •๊ฐ€

์Šค์˜ ๋ถ„ํ•ด์œจ์ด ์ผ๋ฐ˜์ ์œผ๋กœ ๋†’๊ณ  ์ „๋ ฅ์ด ์ฆ๊ฐ€ํ•จ์—

๋”ฐ๋ผ ์ „์ž๋ฐ€๋„, ์›จ์ดํผ์— ๋„๋‹ฌํ•˜๋Š” ์ด์˜จํ”Œ๋Ÿญ์Šค, ๋ถ„

ํ•ด๊ฐ€์Šค์˜ ํ”Œ๋Ÿญ์Šค๋„ ์ฆ๊ฐ€ํ•œ๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ด๋Ÿฌํ•œ

๋‹ค์–‘ํ•œ ์ข…์˜ ํ”Œ๋Ÿญ์Šค ๋ฐ ๋ฐ€๋„ ๋“ฑ์„ ๋…๋ฆฝ์ ์œผ๋กœ ์ œ์–ด

ํ•˜๋Š” ๊ฒƒ์€ ๋งค์šฐ ์–ด๋ ต๋‹ค12,15). ์ด์™€๋Š” ๋Œ€์กฐ์ ์œผ๋กœ ํŽ„

์Šค ํ”Œ๋ผ์ฆˆ๋งˆ๋ฅผ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ์—๋Š” ๊ณ ์—๋„ˆ์ง€ ์ด์˜จ์„

์ด์šฉํ•œ ๋Œ€๋ถ€๋ถ„์˜ ์‹๊ฐ์ด ์˜จ(on) ๊ตฌ๊ฐ„์—์„œ ์ผ์–ด๋‚˜ ์ „

์ฒด์ ์ธ ์‹๊ฐ๋ฅ ์€ ๊ฐ์†Œํ•˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์ง€๋งŒ ๊ทธ๋ฆผ 4

์— ๋‚˜ํƒ€๋‚ธ ๋ฐ”์™€ ๊ฐ™์ด ์˜คํ”„(off) ๊ตฌ๊ฐ„์˜ ์˜ํ–ฅ์œผ๋กœ ๋‚ฎ

์€ ํ”Œ๋ผ์ฆˆ๋งˆ ์ „์œ„(Vp), ์ „์ž์˜จ๋„(Te), ์ „์ž๋ฐ€๋„, ๊ทธ

๋กœ ์ธํ•œ ๋‚ฎ์€ ์˜์—ญ๋Œ€์˜ ์ด์˜จ์—๋„ˆ์ง€ ํ™•๋ณด๊ฐ€ ๊ฐ€๋Šฅํ•˜

๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค12,24-28). ๊ณ ์ฃผํŒŒ ์ „์› ์˜คํ”„(off) ๊ตฌ

๊ฐ„์—์„œ์˜ ์ „์ž์˜จ๋„ ๊ฐ์†Œ์™€ ํšจ๊ณผ์ ์ธ ์ „์ž ์—๋„ˆ์ง€์˜

๊ฐ์†Œ๋Š”(๊ทธ๋ฆผ 5) ๊ฒฐ๊ณผ์ ์œผ๋กœ ํ”Œ๋ผ์ฆˆ๋งˆ๋กœ ์ธํ•œ ๊ธฐํŒ

์†์ƒ์„ ๊ฐ์†Œ์‹œํ‚ฌ ์ˆ˜ ์žˆ์œผ๋ฉฐ29-31) Donnelly ๋“ฑ์˜ ๋…ผ

๋ฌธ์— ๋”ฐ๋ฅด๋ฉด ๋…ธ์นญ(notching)๊ณผ ๋ณด์šฐ์ž‰(bowing) ํ˜„์ƒ

๋„ ๊ฒฝ๊ฐ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค32-34). Subramonium ๋“ฑ์˜ ์—ฐ๊ตฌ

Fig. 3. Schematic of (a) source pulsing, (b) bias

pulsing, and (c) synchronous pulsing.

Fig. 4. Plasma properties in a pulsed system (a)

plasma potential (b) electron temperature.

Reprinted with permission from K. Tokashiki, H.

Cho, S. Banna, J.-Y. Lee, K. Shin, V. Todorow,

W.-S. Kim, K. Bai, S. Joo, J.-D. Choe, K.

Ramaswamy, A. Agarwal, S. Rauf, K. Collins,

S. Choi, H. Cho, H. J. Kim, C. Lee, D.

Lymberopoulos, J. Yoon, W. Han, J.-T. Moon,

Jpn. J. Appl. Phys., 48 (2009) 08HD01, and (c)

electron density.

Page 4: Application of Pulsed Plasmas for Nanoscale Etching of ...

363 ์–‘๊ฒฝ์ฑ„ ์™ธ/ํ•œ๊ตญํ‘œ๋ฉด๊ณตํ•™ํšŒ 48 (2015) 360-370

๊ฒฐ๊ณผ์—์„œ๋Š” ๊ณ ๋ฐ€๋„ ํ”Œ๋ผ์ฆˆ๋งˆ์˜ ํ•œ๊ฐ€์ง€์ธ ์œ ๋„๊ฒฐํ•ฉ

ํ˜• ํ”Œ๋ผ์ฆˆ๋งˆ(ICP)์˜ ์†Œ์Šค๋ฅผ ํŽ„์‹ฑ(pulsing) ํ•˜์˜€์„ ๊ฒฝ

์šฐ ๋ถˆ๊ท ์ผ๋„๊ฐ€ ๊ฐ์†Œํ•จ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค57)(๊ทธ๋ฆผ 6).

์ฆ‰ ํ”Œ๋ผ์ฆˆ๋งˆ ์†Œ์Šค๋‚˜ ๊ธฐํŒ(bias), ํ˜น์€ ์–‘์ชฝ ๋ชจ๋‘์—

ํŽ„์Šค๋ฅผ ์ธ๊ฐ€ํ•˜์—ฌ ํ”Œ๋ผ์ฆˆ๋งˆ ๋ฐ€๋„, ๊ฐ€์Šค ๋ถ„ํ•ด์œจ, ๋ฐ˜์‘

๊ฐ€์Šค์ข…์˜ ํ”Œ๋Ÿญ์Šค, ์ด์˜จ์—๋„ˆ์ง€, ํ™•์‚ฐํšจ๊ณผ ์ฆ๋Œ€ ๋“ฑ์„

์กฐ์ ˆํ•˜์—ฌ ํ”Œ๋ผ์ฆˆ๋งˆ ์‹๊ฐ์‹œ ์š”๊ตฌ๋˜๋Š” ๋ฐ˜์‘์„ฑ ๋ฐ ๊ท 

์ผ๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ค๊ณ  ์ „ํ•˜์ถ•์ ๊ณผ ๊ด€๋ จ๋œ ๋ฌธ์ œ์ ๋“ค์„

๊ฐœ์„ 22,35,36) ํ•˜๋Š” ํŽ„์Šค ํ”Œ๋ผ์ฆˆ๋งˆ ์‹๊ฐ์€ ๋‚˜๋…ธ๋ฏธํ„ฐ๊ธ‰

์˜ ๋ฏธ์„ธ๊ณต์ •์—์„œ ํ”Œ๋ผ์ฆˆ๋งˆ๋ฅผ ์ตœ์ ํ™”์‹œํ‚ค๊ณ  ์ด๋ฐฉ์„ฑ

์‹๊ฐ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•œ๋‹ค24,27). ๋‹ค

์Œ ์žฅ์—์„œ๋Š” ์ด์™€ ๊ด€๋ จ๋œ ๋ฐ˜๋„์ฒด ์†Œ์ž์ œ์กฐ์—์„œ์˜

ํŽ„์Šค ํ”Œ๋ผ์ฆˆ๋งˆ์˜ ์ ์šฉ ๋ฐ ๊ทธ ํšจ๊ณผ์— ๊ด€ํ•ด ๋ถ„์•ผ๋ณ„๋กœ

๋” ์ž์„ธํžˆ ์‚ดํŽด๋ณด๋„๋ก ํ•œ๋‹ค.

3. ์‹๊ฐ๊ณต์ •์—์„œ์˜ ํŽ„์Šค ํ”Œ๋ผ์ฆˆ๋งˆ

์ด ์žฅ์—์„œ๋Š” ํŽ„์Šค ๊ธฐ์ˆ ์„ ์ ์šฉํ•œ ํŽ„์Šค ํ”Œ๋ผ์ฆˆ๋งˆ

์‹๊ฐ์˜ ์‚ฐ์—…์  ์‘์šฉ์— ๋Œ€ํ•ด ๋ถ„์•ผ๋ณ„๋กœ 3๊ฐ€์ง€๋กœ ๋‚˜๋ˆ„

์–ด ์‚ดํŽด ๋ณด๊ณ ์ž ํ•œ๋‹ค.

์ฒซ์งธ๋กœ 3.1 ์ ˆ์—์„œ๋Š” ๋ฐ˜๋„์ฒด ๊ฒŒ์ดํŠธ(gate) ์‹๊ฐ ์—

์„œ์˜ ํŽ„์Šค ํ”Œ๋ผ์ฆˆ๋งˆ์— ๋Œ€ํ•ด ์„ค๋ช…ํ•œ๋‹ค. ๊ฒŒ์ดํŠธ (gate)

์ œ์กฐ๊ณต์ •์—์„œ๋Š” ์‹๊ฐ์‹œ ๊ฒŒ์ดํŠธ ๋ฌผ์งˆ ๋ฐ•๋ง‰ํญ์˜ ์ •๋ฐ€

์กฐ์ ˆ, ๊ฒŒ์ดํŠธ์‚ฐํ™”๋ฌผ์˜ ๋ฌด์†์ƒ์ด ํŠธ๋žœ์ง€์Šคํ„ฐ์˜ ์„ฑ๋Šฅ

์ธก๋ฉด์—์„œ ๋งค์šฐ ์ค‘์š”ํ•œ ์š”์†Œ๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ

์‹๊ฐ ํ˜•์ƒ์„ ์กฐ์ ˆํ•˜๊ณ  ์‹๊ฐ ์‹œ ์ „ํ•˜์ถ•์ (๊ทธ๋ฆผ 7) ํ˜„

์ƒ์œผ๋กœ ์ธํ•œ ์ด์˜จ ์ž…์‚ฌ๋ฐฉํ–ฅ(ion trajectory) ์™œ๊ณก๋ฐฉ์ง€,

๊ฒŒ์ดํŠธ์‚ฐํ™”๋ฌผ ๋ฐ•๋ง‰์˜ ์†์ƒ๋ฐฉ์ง€, ์ˆ˜์งํ•œ ์‹๊ฐ ํ”„๋กœ

ํŒŒ์ผ ๋ฐ ๋†’์€ ์‹๊ฐ ์„ ํƒ๋„ ํ™•๋ณด๋ฅผ ์œ„ํ•œ ๋ฏธ์„ธ ์‹๊ฐ

๊ธฐ์ˆ  ๊ฐœ๋ฐœ์€ ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค1,13). ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ •๊ต

Fig. 5. Simulation of electron density and temperature when pulsing. Reprinted with permission from S.H. Song,

M.J. Kushner, J. Vac. Sci. Technol., A 32 (2014) 021306.

Page 5: Application of Pulsed Plasmas for Nanoscale Etching of ...

์–‘๊ฒฝ์ฑ„ ์™ธ/ํ•œ๊ตญํ‘œ๋ฉด๊ณตํ•™ํšŒ 48 (2015) 360-370 364

ํ•œ ์ž„๊ณ„์น˜์ˆ˜(CD, critical dimension) ์กฐ์ ˆ์ด๋‚˜ ์›จ์ด

ํผ ๊ณต์ •์ƒ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ž„๊ณ„์น˜์ˆ˜ ๋ถˆ๊ท ์ผ ๋ฌธ์ œ๋ฅผ

๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•œ ๋…ธ๋ ฅ๋„ ๋Š์ž„์—†์ด ์ด๋ฃจ์–ด์ ธ ์˜จ ๋ฐ” ๋ณธ

์žฅ์—์„œ๋Š” ๊ฒŒ์ดํŠธ ์‹๊ฐ ์‹œ์— ๋ฐœ์ƒํ•˜๋Š” ์œ„์™€ ๊ฐ™์€ ๋ฌธ

์ œ๋ฅผ ํŽ„์Šค ํ”Œ๋ผ์ฆˆ๋งˆ๋ฅผ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ

๋„๋ฅผ ์†Œ๊ฐœํ•˜๊ณ ์ž ํ•œ๋‹ค37).

๋‘๋ฒˆ์งธ๋Š” ๋ฉ”๋ชจ๋ฆฌ์†Œ์ž ๊ณต์ •์˜ ์š”๊ฑด์„ ์ถฉ์กฑํ•˜๊ธฐ ์œ„

ํ•œ ์‹ค๋ฆฌ์ฝ˜์‚ฐํ™”๋ฌผ(SiO2) ์‹๊ฐ์—์„œ์˜ ๊ณต์ • ๋ฏธ์„ธํ™” ํ•œ

๊ณ„๊ทน๋ณต ๋ฐ ํ”„๋กœํŒŒ์ผ ์กฐ์ ˆ์— ๊ด€ํ•œ ๋‚ด์šฉ์œผ๋กœ DRAM

(dynamic random access memory) ์ปจํƒํ™€(contact

holes) ์ด๋‚˜ ๋น„์•„ํ™€(via holes) ๋“ฑ์˜ ์‹๊ฐ์— ๊ด€ํ•ด ์‚ด

ํŽด๋ณด๊ณ ์ž ํ•œ๋‹ค. DRAM ์…€๊ตฌ์กฐ์˜ ๊ธฐ์ˆ ์  ํ•œ๊ณ„๋กœ

20 nm ์ดํ•˜์—์„œ ๋†’์€ ์ข…ํšก๋น„๋ฅผ ๊ฐ–๋Š” ์ปจํƒํ™€(high-

aspect-ratio contact hole, HARC) ์‹๊ฐ ๋‚œ์ด๋„๊ฐ€ ์ 

์  ์ฆ๊ฐ€๋˜๊ณ  ์žˆ๋Š”๋ฐ” 3.2 ์ ˆ์—์„œ๋Š” ์ด์™€ ๊ฐ™์€ DRAM

๋ฏธ์„ธํ™” ํ•œ๊ณ„ ๋ŒํŒŒ๋ฅผ ์œ„ํ•œ ๋Œ€์•ˆ์œผ๋กœ์„œ์˜ ํŽ„์Šค ํ”Œ๋ผ์ฆˆ

๋งˆ์˜ ์‘์šฉ๊ณผ ๊ทธ ํšจ๊ณผ์— ๋Œ€ํ•ด ์‚ดํŽด ๋ณด๊ณ ์ž ํ•œ๋‹ค38,39).

3.3์ ˆ ์—์„œ๋Š” ์ฐจ์„ธ๋Œ€ ๋ฉ”๋ชจ๋ฆฌ๋กœ ์ฃผ๋ชฉ ๋ฐ›๊ณ  ์žˆ๋Š” STT-

MRAM (spin transfer torque-magnetic random access

memory)์˜ ์ œ์ž‘์— ์žˆ์–ด ๊ฐ€์žฅ ํ•ต์‹ฌ์ด ๋˜๋Š” ๊ณต์ •์ธ

์‹๊ฐ ๊ณต์ •์˜ ๋ฌธ์ œ๋ฅผ pulse ๋ฅผ ํ†ตํ•œ ๊ธฐ์ˆ ์  ํ–ฅ์ƒ์œผ

๋กœ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•˜๋Š” ์‹œ๋„๋ฅผ ์†Œ๊ฐœํ•œ๋‹ค.

3.1 ํด๋ฆฌ์‹ค๋ฆฌ์ฝ˜ ์‹๊ฐ์„ ์œ„ํ•œ ํŽ„์Šค ํ”Œ๋ผ์ฆˆ๋งˆ

ํŽ„์Šค ํ”Œ๋ผ์ฆˆ๋งˆ๋ฅผ ์ด์šฉํ•œ ์‹๊ฐ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š”

Boswell๊ณผ Porteous์— ์˜ํ•ด SF6 ํ”Œ๋ผ์ฆˆ๋งˆ๋ฅผ ์ด์šฉํ•œ

์‹ค๋ฆฌ์ฝ˜ ์‹๊ฐ ์—์„œ๋ถ€ํ„ฐ ์‹œ์ž‘๋˜์—ˆ๋‹ค18). ์ดํ›„ Samukawa

์™€ ๊ทธ์˜ ์—ฐ๊ตฌํŒ€์— ์˜ํ•ด ์—ผ์†Œ๊ฐ€์Šค๊ธฐ๋ฐ˜์˜ ํŽ„์Šค ์ž๊ธฐ

๊ณต๋ช… ํ”Œ๋ผ์ฆˆ๋งˆ(pulsed Cl-based ECR plasmas)๋ฅผ ์ด

์šฉํ•œ ํด๋ฆฌ์‹ค๋ฆฌ์ฝ˜ ์‹๊ฐ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜์—ˆ๋‹ค40-43).

๋ฟ๋งŒ ์•„๋‹ˆ๋ผ Ahn ๋“ฑ์˜ ์—ฐ์†ํŒŒ์™€ ํŽ„์Šค ํ”Œ๋ผ์ฆˆ๋งˆ๋ฅผ

์‚ฌ์šฉํ•œ ์—ฐ๊ตฌ์—์„œ๋„ ํŽ„์Šค๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์‹๊ฐ ์ง„ํ–‰ํ•˜์˜€

์„ ๋•Œ ๋…ธ์นญํ˜„์ƒ์ด ์ œ๊ฑฐ๋จ์ด ๋ณด๊ณ ๋˜์—ˆ๋‹ค44). ์ด๋Ÿฌํ•œ

๋…ธ์นญํ˜„์ƒ์˜ ์ œ๊ฑฐ๋Š”(๊ทธ๋ฆผ 8)42) ํŽ„์Šค ํ”Œ๋ผ์ฆˆ๋งˆ๋ฅผ ์‚ฌ์šฉ

ํ–ˆ์„ ๋•Œ ์ „์ž๊ฐ€ ํ‘œ๋ฉด์— ์Œ“์ด๋Š” ํšจ๊ณผ(electron shading

Fig. 6. Ar ion density averaged in CW and pulsing

system (a) just below the dielectric of ICP and

(b) just above the wafer. Reprinted with

permission from P. Subramonium, M. J.

Kushner, J. Appl. Phys. 96 (2004) 82.

Fig. 7. Schematic illustration of charge build up model.

Fig. 8. Notch depth of poly-Si in the pulsed plasma

and CW plasma. Reprinted with permission

from S. Samukawa, H. Ohtake, T. Mieno, J.

Vac. Sci. Technol., A 14 (1996) 3049.

Page 6: Application of Pulsed Plasmas for Nanoscale Etching of ...

365 ์–‘๊ฒฝ์ฑ„ ์™ธ/ํ•œ๊ตญํ‘œ๋ฉด๊ณตํ•™ํšŒ 48 (2015) 360-370

effect)๊ฐ€ ์ค„์–ด๋“ฆ์— ๋”ฐ๋ฅธ ์ „ํ•˜์ถ•์ ์˜ ๊ฐ์†Œ๋กœ ์„ค๋ช…ํ• 

์ˆ˜ ์žˆ์œผ๋ฉฐ45-47) Sumiya ๋“ฑ์˜ ๊ฒฐ๊ณผ์—์„œ๋„ ์ด๋ฅผ ํ™•์ธ

ํ•  ์ˆ˜ ์žˆ๋‹ค45). Tetsuo Ono ๋“ฑ48)์˜ ๊ฒฐ๊ณผ์—์„œ๋Š” ์—ผ์†Œ

๊ฐ€์Šค๊ธฐ๋ฐ˜์˜ ์ž๊ธฐ๊ณต๋ช… ํ”Œ๋ผ์ฆˆ๋งˆ(Cl-based ECR plasmas)

์— ๊ณ ์ฃผํŒŒ ํŽ„์Šค ๋ฐ”์ด์–ด์Šค(pulsed rf biasing) ๊ธฐ์ˆ ์„

์ ์šฉํ•˜์—ฌ ๊ทธ๋ฆผ 9์™€ ๊ฐ™์ด ๋งˆ์ดํฌ๋กœ ํŠธ๋ Œ์นญ(microtren-

ching) ํ˜„์ƒ์„ ๊ฐ์†Œ์‹œํ‚ค๋ฉด์„œ ๋ณด๋‹ค ์ˆ˜์งํ•œ ํ”„๋กœํŒŒ์ผ

์„ ์–ป์—ˆ๊ณ  Kouichi Ono ๋“ฑ49)์˜ Si ์‹๊ฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜

๊ฒฐ๊ณผ์—์„œ๋„ ๊ทธ๋ฆผ 10์˜ ์—ฐ์†ํŒŒ์—์„œ๋Š” ํŒจํ„ด ํ•˜๋ถ€ ์ธก

๋ฉด๋ฐฉํ–ฅ์œผ๋กœ์˜ ์‹๊ฐ์œผ๋กœ ์ธํ•ด ์ ์  ๋„“์–ด์ง€๋Š” ํ”„๋กœํŒŒ

์ผ์„ ๋ณด์ด๋‚˜ ํŽ„์Šค๋ฅผ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ ์—ผ์†Œ์›์ž ํ‘œ๋ฉด๋„

ํฌ์˜ ๊ท ์ผ๋„ ์ฆ๊ฐ€๋กœ ํ”„๋กœํŒŒ์ผ ๊ฐœ์„ ์ด ์ด๋ฃจ์–ด์กŒ์Œ์„

ํ™•์ธ ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ตœ๊ทผ Matsui ๋“ฑ์€ ๋†’์€ ์„ ํƒ๋„๋ฅผ

๊ฐ€์ง€๋Š” ํด๋ฆฌ์‹ค๋ฆฌ์ฝ˜ ๊ฒŒ์ดํŠธ(gate) ์‹๊ฐ์„ ์œ„ํ•˜์—ฌ CHF3

์™€ ๊ฐ™์€ ํ”Œ๋กœ๋กœ์นด๋ณธ๊ณ„ ํ”Œ๋ผ์ฆˆ๋งˆ(fluorocarbon plasma)

์— ํŽ„์Šค๋ฅผ ์ ์šฉํ•œ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๊ณ  ๊ทธ๋ฆผ 11๋ฅผ ๋ณด

๋ฉด ํŽ„์Šค ํ”Œ๋ผ์ฆˆ๋งˆ์™€๋Š” ๋‹ค๋ฅด๊ฒŒ ์—ฐ์†ํŒŒ ํ”Œ๋ผ์ฆˆ๋งˆ(CW

plasma)์—์„œ๋Š” ๊ณผ๋„ํ•˜๊ฒŒ ๋ถ„ํ•ด๋œ CHx ๋ถ„ํ•ด๊ฐ€์Šค๋“ค์ด

์ธก๋ฒฝ ์œ—๋ถ€๋ถ„์— ์‰ฝ๊ฒŒ ์ฆ์ฐฉ๋จ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค50). ์ด

ํ›„ ๋‹ค์–‘ํ•œ ํ”Œ๋ผ์ฆˆ๋งˆ(์œ ๋„๊ฒฐํ•ฉํ˜• ํ”Œ๋ผ์ฆˆ๋งˆ์™€ ์ •์ „๊ฒฐ

ํ•ฉ ํ”Œ๋ผ์ฆˆ๋งˆ) ๋“ฑ์— ๊ทธ๋ฆผ 3(c)์™€ ๊ฐ™์€ ํ”Œ๋ผ์ฆˆ๋งˆ ์†Œ์Šค

์™€ ๋ฐ”์ด์–ด์Šค์— ํŽ„์Šค๊ฐ€ ๋™๊ธฐํ™”๋œ ํŽ„์Šค ํ”Œ๋ผ์ฆˆ๋งˆ๋ฅผ

์ ์šฉํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœ์ด ์ด๋ฃจ์–ด์ ธ ์™”์œผ๋ฉฐ22) Banna ๋“ฑ

์— ๋”ฐ๋ฅด๋ฉด ๋™๊ธฐํ™”๋œ ํŽ„์Šค ํ”Œ๋ผ์ฆˆ๋งˆ๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ํ”Œ

๋ผ์ฆˆ๋งˆ ์†์ƒ์„ ๊ฐ์†Œ์‹œ์ผœ ๋งค์šฐ ์„ ํƒ์ ์ธ ํด๋ฆฌ์‹ค๋ฆฌ์ฝ˜

์‹๊ฐ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•  ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ž„๊ณ„์น˜์ˆ˜์˜ ๊ท ์ผ

๋„ ํ™•๋ณด๋„ ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ์—ฐ๊ตฌ๊ฒฐ๊ณผ๊ฐ€ ๋ณด๊ณ ๋˜๊ณ  ์žˆ๋‹ค27).

๋ฟ๋งŒ ์•„๋‹ˆ๋ผ Petit-Etienne ๋“ฑ์€ ๊ฒŒ์ดํŠธ ์‹๊ฐ ์‹œ์—

๋ฐœ์ƒํ•˜๋Š” ์‹ค๋ฆฌ์ฝ˜ ๋ฆฌ์„ธ์Šค(silicon recess; ํŒจํ„ด๋œ ์‹ค๋ฆฌ

์ฝ˜ ๋ฐ‘์„ ์‹๊ฐ ํ•˜๋Š” ํ˜„์ƒ) ํ˜„์ƒ์„ ์ตœ์†Œํ™” ํ•˜๊ธฐ ์œ„ํ•˜

์—ฌ HBr/O2/Ar ๊ฐ€์Šค์กฐํ•ฉ์„ ์ด์šฉํ•œ ๋™๊ธฐํ™”๋œ ํŽ„์Šค ํ”Œ

๋ผ์ฆˆ๋งˆ๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค22). ๋™๊ธฐํ™”๋œ ํŽ„์Šค ํ”Œ๋ผ์ฆˆ๋งˆ๋ฅผ

์‚ฌ์šฉํ•˜๋ฉด ๊ฒŒ์ดํŠธ ์‚ฐํ™”๋ฌผ (gate oxide)์˜ ์ด์˜จ์œผ๋กœ ์ธ

ํ•œ ์†์ƒ์„ ์ตœ์†Œํ™” ์‹œํ‚ค๊ณ  ๊ฒŒ์ดํŠธ ์‹๊ฐ ์‹œ์— ์‹ค๋ฆฌ์ฝ˜

์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์†์ƒ์„ ๊ฐ์†Œ ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค22,51).

3.2 ์ปจํƒํ™€ ์‹๊ฐ์„ ์œ„ํ•œ ํŽ„์Šค ํ”Œ๋ผ์ฆˆ๋งˆ

๊ณต์ •๋ฏธ์„ธํ™”๊ฐ€ ์ง„ํ–‰๋ ์ˆ˜๋ก DRAM ์ปคํŒจ์‹œํ„ฐ(capaci-

Fig. 9. Cross sectional SEM images of the poly-Si profile etched in (a) pulsed plasma and (b), (c) CW plasma.

Reprinted with permission from T. Ono, T, Mizutani, Y. Goto, T. Kure, Jpn. J. Appl. Phys., 39 (2000) 5003.

Fig. 10. Etched profiles simulated for (a) CW plasma

and (b) pulsed plasma. Reprinted with

permission from K. Ono, M. Tuda, Thin Solid

Flims, 374 (2000) 208.

Fig. 11. Schematic illustration of the CH layer formation

on poly-Si gate pattern etched in (a) CW plasma

and (b) pulsed plasma. (a) A large number of

weakly dissociated CHx radicals produced in the

pulsed plasma and deposited at the bottom of

the pattern. (b) Highly dissociated radicals pro-

duced in the CW plasma and attached easily to

the upper part of the sidewall.

Page 7: Application of Pulsed Plasmas for Nanoscale Etching of ...

์–‘๊ฒฝ์ฑ„ ์™ธ/ํ•œ๊ตญํ‘œ๋ฉด๊ณตํ•™ํšŒ 48 (2015) 360-370 366

tor)์˜ ์ข…ํšก๋น„(A/R, aspect ratio)๋„ ์ ์ฐจ ์ฆ๊ฐ€ํ•˜๋Š”๋ฐ”

20 ๋‚˜๋…ธ๋ฏธํ„ฐ ์ดํ•˜์—์„œ DRAM ์ œ์กฐ์‹œ ์š”๊ตฌ๋˜๋Š” ๋†’

์€ ๊ธฐ์ˆ ์  ๋‚œ์ด๋„๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ๋ฏธ์„ธ๊ณต์ •๊ฐœ๋ฐœ์˜

ํ•„์š”์„ฑ์ด ์ฆ๋Œ€๋˜๊ณ  ์žˆ๋‹ค58-61). C-F ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ํ”Œ

๋กœ๋กœ ์นด๋ณธํ”Œ๋ผ์ฆˆ๋งˆ(fluorocarbon plasma)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ

์‹ค๋ฆฌ์ฝ˜ ์‚ฐํ™”๋ฌผ(SiO2)์„ ์‹๊ฐํ•œ ์—ฐ๊ตฌ๋Š” ์ด๋ฏธ ๋งŽ์€ ์—ฐ

๊ตฌ์ง„์— ์˜ํ•ด ์†Œ๊ฐœ๋˜๊ณ  ์žˆ์œผ๋ฉฐ ์‹๊ฐ ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ๊ทธ

๋ฆผ 12์— ๋‚˜ํƒ€๋‚ธ Sankaran ๋“ฑ์˜ ํ”Œ๋กœ๋กœ์นด๋ณธ์„ ํ•จ์œ 

ํ•œ ํ”Œ๋ผ์ฆˆ๋งˆ(fluorocarbon containing plasmas) ๋ฉ”์ปค๋‹ˆ

์ฆ˜ ๊ทธ๋ฆผ์„ ํ†ตํ•ด ์‰ฝ๊ฒŒ ํ™•์ธ ํ•  ์ˆ˜ ์žˆ๋‹ค52,53,58). ํ•˜์ง€๋งŒ

20 ์ด์ƒ์˜ ๋†’์€ ์ข…ํšก๋น„์—์„œ๋Š” ์‹๊ฐํ•œ ํ”„๋กœํŒŒ์ผ ํ•˜

๋ถ€์˜ ์™œ๊ณก(distortion), ํœจ(twisting) ๋“ฑ์œผ๋กœ ์ธํ•œ ํ”„๋กœ

ํŒŒ์ผ ์—ดํ™”ํ˜„์ƒ37,39) (๊ทธ๋ฆผ 13) ์ด ๋ฐœ์ƒํ•˜๊ฒŒ ๋œ๋‹ค. ์ด๋กœ

์ธํ•ด ๋น„์ •์งˆ์นด๋ณธ์ธต(ACL, amorphous carbon layer) ๋“ฑ

์„ ๋งˆ์Šคํฌ๋กœ ์‚ฌ์šฉํ•œ ๋‚˜๋…ธ ์‚ฌ์ด์ฆˆ์˜ ์‹ค๋ฆฌ์ฝ˜ ์‚ฐํ™”๋ฌผ

์ปจํƒํ™€(SiO2 contact hole) ์‹๊ฐ ์‹œ์— ๋†’์€ ์‹๊ฐ ์„ ํƒ

๋„ ํ™•๋ณด๊ฐ€ ์–ด๋ ต๋‹ค๋Š” ๋ฌธ์ œ์ ์ด ์žˆ๋‹ค54,55). ๋”ฐ๋ผ์„œ ์ด๋ฅผ

ํŽ„์Šค ๊ธฐ์ˆ ์„ ์ ์šฉํ•˜์—ฌ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ๋ฐ” ๊ทธ๋ฆผ 14๋Š” ํŽ„

์Šค ์ง„๋™์ˆ˜๋ฅผ 5 kHz๋กœ ์œ ์ง€ํ•˜๋ฉด์„œ ํŽ„์Šค ์ž‘๋™๋น„์œจ์„

(a) 100% (CW) (b) 75% (c) 50% (d) 25% ๋กœ ๋ณ€ํ™”

์‹œ์ผœ ๊ฐ€๋ฉฐ ์‹ค๋ฆฌ์ฝ˜ ์‚ฐํ™”๋ฌผ ์ปจํƒํ™€ (SiO2 contact hole)

์„ ์‹๊ฐํ•œ ์ฃผ์‚ฌ์ „์žํ˜„๋ฏธ๊ฒฝ(SEM) ํ”„๋กœํŒŒ์ผ ์‚ฌ์ง„์ด๋‹ค.

ํŽ„์Šค ์ž‘๋™๋น„์œจ์ด ๊ฐ์†Œํ• ์ˆ˜๋ก ๋น„์ •์งˆ์นด๋ณธ(ACL) ๋งˆ์Šค

ํฌ ๋Œ€๋น„ ์‹ค๋ฆฌ์ฝ˜ ์‚ฐํ™”๋ฌผ(SiO2)์˜ ์‹๊ฐ ์„ ํƒ๋„๋Š” ์ฆ๊ฐ€

ํ•˜๊ณ  ์ปจํƒํ™€์˜ ํฌ๊ธฐ ๋ฐ ๋ชจ์–‘๋„ ํ‰ํ‰ํ•˜๊ฒŒ ๊ฐœ์„ ๋จ์„

ํ™•์ธ ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Š” ์—ฐ์†ํŒŒ(CW)์—์„œ๋Š” ์ „์ž ์˜จ

๋„๊ฐ€ ๋†’์•„ ์ฃผ์ž…๋œ ๋ฐ˜์‘์„ฑ ๊ฐ€์Šค์˜ ๋ถ„ํ•ด๊ฐ€ ๊ณผ๋„ํ•˜๊ฒŒ

์ด๋ฃจ์–ด์ง€๋Š” ๋ฐ˜๋ฉด ํŽ„์Šค ์กฐ๊ฑด์—์„œ๋Š” ํŽ„์Šค์˜คํ”„(pulse-

off) ๊ตฌ๊ฐ„์ด ๊ธธ์–ด์งˆ์ˆ˜๋ก C4F8 ๊ฐ€์Šค์˜ ๋ถ„ํ•ด์œจ์ด ๊ฐ์†Œ

ํ•˜๊ณ  ์ง์ง„์„ฑ์„ ๊ฐ€์ง€๋Š” ๋ฐ˜์‘์„ฑ ์ด์˜จ์ด ์ฆ๊ฐ€ํ•˜์˜€๊ธฐ ๋•Œ

๋ฌธ์œผ๋กœ ์‚ฌ๋ฃŒ๋œ๋‹ค. ๋” ๋‚˜์•„๊ฐ€์„œ ๊ทธ๋ฆผ 15์™€ ๊ฐ™์€ ๋™๊ธฐ

ํ™”๋œ ํŽ„์Šค(synchronized pulsing)๋ฅผ ์ด์šฉํ•˜์—ฌ ์‹ค๋ฆฌ์ฝ˜

์‚ฐํ™”๋ฌผ ์ปจํƒํ™€(SiO2 contact hole)์„ ์‹๊ฐํ•œ ์—ฐ๊ตฌ๋„

์ง„ํ–‰ํ•˜์˜€๋‹ค. ๋‹จ์ผ์ฃผํŒŒ์ˆ˜์˜ ๊ณ ์ฃผํŒŒ ํŽ„์Šค๋ฅผ ์ธ๊ฐ€ํ•˜๋Š”

๊ฒƒ๋ณด๋‹ค๋Š” ์†Œ์Šค์™€ ๋ฐ”์ด์–ด์Šค ํŒŒ์›Œ ๋‘ ๊ฐœ์˜ ๋™๊ธฐํ™”๋œ

ํŽ„์Šค ์‹œ์Šคํ…œ์„ ์ด์šฉํ•  ๊ฒฝ์šฐ ์†Œ์Šค์™€ ๋ฐ”์ด์–ด์Šค ๊ณ ์ฃผ

Fig. 12. Surface reaction mechanism during etching of

SiO2/Si in fluorocarbon-containing plasmas.

Reprinted with permission from A. Sankaran,

M.J. Kushner, Appl. Phys. Lett., 82 (2003)

1824.

Fig. 13. Illustration of the critical problems in the

plasma etching of a SiO2 contact hole with a

high aspect ratio.

Fig. 14. SiO2 contact hole etch profiles observed by

SEM after the etching of SiO2 for different

pulse duty ratios of (a) 100% (CW), (b) 75%,

(c) 50%, and (d) 25% while keeping the pulse

frequency at 5 kHz. The etch time was varied

to obtain the same etch depth of SiO2 contact

hole.

Page 8: Application of Pulsed Plasmas for Nanoscale Etching of ...

367 ์–‘๊ฒฝ์ฑ„ ์™ธ/ํ•œ๊ตญํ‘œ๋ฉด๊ณตํ•™ํšŒ 48 (2015) 360-370

ํŒŒ ํŒŒ์›Œ์˜ ์˜จ/์˜คํ”„(rf power on/off)๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์ œ

์–ด๊ฐ€๋Šฅํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ด์˜จ์ถฉ๋Œ์— ์˜ํ•œ ์†์ƒ์„ ๊ฐ์†Œ์‹œ

ํ‚ค๊ณ  ์‹๊ฐ ์„ ํƒ๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋ฆผ 15๋Š”

60 MHz ์†Œ์ŠคํŒŒ์›Œ์™€ 2 MHz ๋ฐ”์ด์–ด์ŠคํŒŒ์›Œ์— ํŽ„์Šค๋ฅผ

๋™์‹œ์— ์ธ๊ฐ€ํ•œ ํ›„ ๋‘ ํŽ„์Šค ๊ฐ„์˜ ์œ„์ƒ์ฐจ ๋ณ€ํ™”์— ๋”ฐ

๋ฅธ ์œ„์ƒ์ฐจ ๋™๊ธฐํ™”๋œ ํŽ„์Šค ํ˜•ํƒœ๋ฅผ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์ด๋‹ค. ๊ทธ

๋ฆผ 16์€ ์ด์™€ ๊ฐ™์€ ์œ„์ƒ์ฐจ ๋™๊ธฐํ™”๋œ ํ”Œ๋ผ์ฆˆ๋งˆ๋ฅผ ์‚ฌ

์šฉํ•˜์—ฌ ๋ฐ”์ด์–ด์Šค ํŒŒ์›Œ์™€ ์†Œ์ŠคํŒŒ์›Œ์˜ ์œ„์ƒ์ฐจ๋ฅผ 0ยฐ,

90ยฐ, 180ยฐ๋กœ ๋ณ€ํ™”์‹œํ‚ค๋ฉฐ ์‹คํ—˜ ์ง„ํ–‰ํ•˜๊ณ  ์ฃผ์‚ฌ์ „์žํ˜„

๋ฏธ๊ฒฝ(SEM)์„ ํ†ตํ•ด ์‹๊ฐ ํ”„๋กœํŒŒ์ผ์„ ๋น„๊ตํ•œ ๊ฒฐ๊ณผ์ด

๋‹ค. ์‹๊ฐ ์ง„ํ–‰ ์‹œ์— ํŽ„์Šค ๊ฐ„ ์œ„์ƒ์ฐจ๊ฐ€ 180ยฐ์—์„œ 0ยฐ

์œผ๋กœ ๊ฐ์†Œํ•จ์— ๋”ฐ๋ผ ๋น„์ •์งˆ ์นด๋ณธ ๋งˆ์Šคํฌ ๋Œ€๋น„ ์‹ค๋ฆฌ

์ฝ˜ ์‚ฐํ™”๋ฌผ (SiO2)์˜ ์‹๊ฐ ํ”„๋กœํŒŒ์ผ์ด ๊ฐœ์„ ๋จ์„ ํ™•์ธ

ํ•  ์ˆ˜ ์žˆ๋‹ค7). Agarwal ๋“ฑ์˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ(๊ทธ๋ฆผ 17)

์—์„œ๋„ Ar/Cl2 ํŽ„์Šค ํ”Œ๋ผ์ฆˆ๋งˆ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ž‘๋™๋น„์œจ

์ด 50% ์ผ ๋•Œ ์†Œ์Šค์™€ ๋ฐ”์ด์–ด์Šค์˜ ์œ„์ƒ์ฐจ ๋ณ€ํ™”์— ๋”ฐ

๋ฅธ ์‹๊ฐ ํ”„๋กœํŒŒ์ผ์„ ๋ถ„์„ํ•˜์˜€๊ณ  ์ด๋ฅผ ํ†ตํ•˜์—ฌ ์‹๊ฐ

์†๋„๊ฐ€ ์ด์˜จํ”Œ๋Ÿญ์Šค์™€ ์ด์˜จ์—๋„ˆ์ง€์— ๋”ฐ๋ผ ๋‹ฌ๋ผ์ง€๋Š”

๊ฒƒ์„ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ ํŽ„์Šค ์ฃผ๊ธฐ ๋™์•ˆ์˜ ์ด์˜จ์—๋„ˆ์ง€๋ถ„

ํฌ, ์ „์ž๋ฐ€๋„ ๋“ฑ์˜ ์ธก์ •์„ ํ†ตํ•ด ํŽ„์Šค๋ฅผ ํ†ตํ•œ ๋‹ค์–‘ํ•œ

ํŒŒ๋ผ๋ฏธํ„ฐ๋“ค์˜ ๋…๋ฆฝ์  ์กฐ์ ˆ์ด ๊ฐ€๋Šฅํ•จ์„ ์ฆ๋ช…ํ•˜์˜€๋‹ค56).

3.3 ์ž๊ธฐํ„ฐ๋„์ ‘ํ•ฉ๋ฌผ์งˆ (MTJ) ์‹๊ฐ์„ ์œ„ํ•œ ํŽ„์Šค

ํ”Œ๋ผ์ฆˆ๋งˆ

๊ธฐ์กด์˜ DRAM์„ ๋Œ€์ฒดํ•  ์ˆ˜ ์žˆ๋Š” ์ฐจ์„ธ๋Œ€ ๋ฉ”๋ชจ๋ฆฌ

ํ›„๋ณด์ธ MRAM ์€ ์‹œ์Šคํ…œ ๋ฉ”๋ชจ๋ฆฌ๋กœ์„œ ๊ทธ๋ฆผ 18์—

๋‚˜ํƒ€๋‚œ ๋ฐ”์™€ ๊ฐ™์ด ์ž๊ธฐํ„ฐ๋„์ ‘ํ•ฉ๋ฌผ์งˆ(magnetic tunneling

junction (MTJ)) ์ด๋ผ๋Š” ์ž์„ฑ๋ฐ•๋ง‰์ธต์„ ์‚ฌ์šฉํ•˜์—ฌ ์Šค

ํ•€ ์˜์กด ์ „๊ธฐ ์ „๋„์— ์˜ํ•ด ์ƒ๊ธฐ๋Š” ํ„ฐ๋„๋ง ์ž๊ธฐ์ €ํ•ญ

(TMR, Tunneling Magnetroresistance) ํšจ๊ณผ๋ฅผ ์ด์šฉ

ํ•œ ๊ฒƒ์œผ๋กœ ์…€ ๊ตฌ์กฐ๊ฐ€ ๊ฐ„๋‹จํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๊ณ ์ง‘์ ํ™”, ์†Œ

ํ˜•ํ™”์— ์œ ๋ฆฌํ•  ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋‚ฎ์€ ์ž‘๋™์ „๋ ฅ, ๋น ๋ฅธ ์†

๋„, ๋น„ํœ˜๋ฐœ์„ฑ, ๋†’์€ ๋‚ด๊ตฌ์„ฑ ๋“ฑ์˜ ์žฅ์ ์ด ์žˆ๋‹ค66,71).

ํ•˜์ง€๋งŒ ๋‚˜๋…ธ๋ฏธํ„ฐ๊ธ‰์˜ ๊ณต์ • ๋ฏธ์„ธํ™”์™€ ํ•จ๊ป˜ ์ž์œ ์ธต

(free layer), ํ„ฐ๋„ ์žฅ๋ฒฝ์ธต(tunnel barrier), ๊ณ ์ •์ธต

(fixed layer)์˜ ๋‹ค์ธต ์ž์„ฑ ๋ฐ•๋ง‰ ๊ตฌ์กฐ๋กœ ์ด๋ฃจ์–ด์ง„ ์ด

์ž๊ธฐํ„ฐ๋„์ ‘ํ•ฉ ๋‹ค์ธต๋ฌผ์งˆ(MTJ stack)์˜ ์‹๊ฐ์€ ์‹๊ฐ

๊ณต์ •์‹œ ์‹๊ฐ ๋ถ€์‚ฐ๋ฌผ๋“ค์ด ํ˜ผํ•ฉ๋˜์–ด ํŒจํ„ด์ธก๋ฉด์— ์žฌ์ฆ

์ฐฉ(redeposition) ๋˜๊ฑฐ๋‚˜ ์‹๊ฐ ์ž”๋ฅ˜๋ฌผ ๋ฐœ์ƒ, ๋‚ฎ์€ ์‹

๊ฐ ์„ ํƒ๋„ (์ž์„ฑ๋ฐ•๋ง‰/ํ•˜๋“œ๋งˆ์Šคํฌ), ์‹๊ฐ ์†์ƒ ๋“ฑ์˜

๋ฌธ์ œ๊ฐ€ ์—ฌ์ „ํžˆ ๊ณผ์ œ๋กœ ๋‚จ์•„์žˆ๋‹ค62-64). ์ฆ‰ ์ž์œ ์ธต(free

layer), ํ„ฐ๋„ ์žฅ๋ฒฝ์ธต(tunnel barrier), ๊ณ ์ •์ธต(fixed

layer), ๊ทธ๋ฆฌ๊ณ  ํ•˜๋“œ๋งˆ์Šคํฌ์ธต(hardmask) ๋“ฑ์„ ์‹๊ฐ์‹œ

๋ฐœ์ƒํ•˜๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๊ทธ๋ฆผ 19

์— ๋‚˜ํƒ€๋‚ธ ๋ฐ”์™€ ๊ฐ™์€ ํŽ„์Šค ๋ฐ”์ด์–ด์Šค ์‹๊ฐ ์‹œ์Šคํ…œ์„

์‚ฌ์šฉํ•˜๊ธฐ๋„ ํ•œ๋‹ค. ๊ทธ๋ฆผ 19๋Š” ํ”Œ๋ผ์ฆˆ๋งˆ ์‹๊ฐ์‹œ ๊ธฐํŒ

์— ๊ฐ€ํ•ด์ง€๋Š” ์ด์˜จ์—๋„ˆ์ง€๋ฅผ ๋…๋ฆฝ์ ์œผ๋กœ ์กฐ์ ˆ63-65) ํ•˜

Fig. 15. Schematic illustration of the synchronized

pulse waveform for the pulse phase lags (0ยฐ,

90ยฐ and 180ยฐ) for 50% duty cycle.

Fig. 16. Cross sectional SEM images of SiO2 pattern etch profile by changing the pulse phase lag (a) only source

pulsing, (b) phase lag 0ยฐ, (c) phase lag 90ยฐ, and (d) phase lag 180ยฐ.

Page 9: Application of Pulsed Plasmas for Nanoscale Etching of ...

์–‘๊ฒฝ์ฑ„ ์™ธ/ํ•œ๊ตญํ‘œ๋ฉด๊ณตํ•™ํšŒ 48 (2015) 360-370 368

๊ธฐ ์œ„ํ•˜์—ฌ ์œ ๋„๊ฒฐํ•ฉํ˜• ํ”Œ๋ผ์ฆˆ๋งˆ์˜ ์†Œ์ŠคํŒŒ์›Œ(ICP

source power)๋Š” ์—ฐ์†ํŒŒ(CW) ์ƒํƒœ๋กœ ์œ ์ง€ํ•˜๋ฉด์„œ ๊ธฐ

ํŒ๋ถ€์— ๊ณ ์ฃผํŒŒ ํŽ„์Šค ๋ฐ”์ด์–ด์Šค(rf pulse biasing)๋‚˜ ์ง

๋ฅ˜ ํŽ„์Šค ๋ฐ”์ด์–ด์Šค(DC pulse biasing)๋ฅผ ์ ์šฉํ•œ ๊ฒƒ์œผ

๋กœ, ๊ธฐํŒ๋ถ€์— ํŽ„์Šค ๋ฐ”์ด์–ด์Šค ์‹๊ฐ ๊ธฐ์ˆ ์„ ์ ์šฉํ•œ ํ›„

์ž๊ธฐํ„ฐ๋„ ์ ‘ํ•ฉ๋ฌผ์งˆ(MTJ)์„ CO/NH3, CH3OH, CH4/

N2O ๋“ฑ์˜ ์‹๊ฐ ๊ฐ€์Šค์™€ ๋ฐ˜์‘์‹œ์ผœ ํœ˜๋ฐœ์„ฑ์„ ๊ฐ€์ง€๋Š”

์ƒํƒœ์˜ ๋ถˆ์•ˆ์ •ํ•œ ๊ธˆ์†์นด๋ณด๋‹ ํ™”ํ•ฉ๋ฌผ(metal carbonyl

compound)์„ ํ˜•์„ฑํ•˜์˜€๋‹ค67-72). ๊ณ ์ฃผํŒŒ ํŽ„์Šค ๋ฐ”์ด์–ด

์Šค(rf pulse biasing) ๊ธฐ์ˆ ์„ ์ž๊ธฐํ„ฐ๋„ ์ ‘ํ•ฉ๋ฌผ์งˆ(MTJ)

์˜ ์‹๊ฐ ๊ณต์ •์— ๋„์ž…ํ•  ๊ฒฝ์šฐ ๊ทธ๋ฆผ 19์˜ ์•„๋ž˜์— ๋‚˜

ํƒ€๋‚ธ ๋ฐ”์™€ ๊ฐ™์ด ๊ณ ์ฃผํŒŒ ๋ฐ”์ด์–ด์Šค ํŽ„์Šค ์ฃผ๊ธฐ(rf bias

pulse cycle)์˜ ํŽ„์Šค์˜คํ”„(pulse-off) ๊ตฌ๊ฐ„์—์„œ ํœ˜๋ฐœ์„ฑ

์„ ๊ฐ€์ง€๋Š” ๊ธˆ์†ํ™”ํ•ฉ๋ฌผ(metal compound)์ด ๋ณด๋‹ค ์‰ฝ

๊ฒŒ ํ˜•์„ฑ๋  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์‹๊ฐ ๊ฐ€์Šค์™€ ๋ฌผ์งˆ๊ฐ„์˜

ํ™”ํ•™์  ๋ฐ˜์‘์„ ํ–ฅ์ƒ์‹œ์ผœ ์—ฐ์†ํŒŒ(continuous wave)

์—์„œ ๋ณด๋‹ค ๋†’์€ ์‹๊ฐ ์„ ํƒ๋„๋ฅผ ํ™•๋ณดํ•˜๊ณ  ์‹๊ฐ ์ž”๋ฅ˜

๋ฌผ์„ ๊ฐ์†Œ์‹œ์ผœ ์Šคํ•€ ์ฃผ์ž… ์žํ™”๋ฐ˜์ „ ๋ฉ”๋ชจ๋ฆฌ(STT-

MRAM)์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ ์‹œํ‚ฌ ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค70).

4. ๊ฒฐ ๋ก 

๋ฐ˜๋„์ฒด ์†Œ์ž ๋””์ž์ธ๋ฃฐ์ด 20๋‚˜๋…ธ ์ดํ•˜๋กœ ์ง„์ž…ํ•˜๋ฉด

์„œ ๋ฏธ์„ธ ํŒจํ„ด์˜ ๋น„์ด์ƒ์ ์ธ ์‹๊ฐ ํŠน์„ฑ์„ ์ œ๊ฑฐํ•˜๊ณ 

์‹๊ฐ ์„ ํƒ๋„ ํ™•๋ณด ๋ฐ ํ”„๋กœํŒŒ์ผ ๊ฐœ์„  ํšจ๊ณผ๋ฅผ ๊ตฌํ˜„ํ•˜

๊ธฐ ์œ„ํ•œ ์‹๊ฐ ๊ธฐ์ˆ ์˜ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค

. ๋ฏธ์„ธํŒจํ„ด์˜ ๊ณต์ •ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ธฐ์กด

์˜ ํ”Œ๋ผ์ฆˆ๋งˆ ์‹๊ฐ๊ณผ๋Š” ์ฐจ๋ณ„ํ™”๋˜๋Š” ๊ธฐ์ˆ ํ™•๋ณด๊ฐ€ ํ•„์š”

ํ•˜๋ฉฐ ํ˜„์žฌ๊นŒ์ง€ ์—ฐ๊ตฌ๋œ ์‹œ์Šคํ…œ ๊ฐ€์šด๋ฐ ๋‹ค์–‘ํ•œ ํŒŒ๋ผ

๋ฏธํ„ฐ ์กฐ์ ˆ์ด ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ํŽ„์Šค ๊ธฐ์ˆ ์ด ์‹๊ฐ ๊ณต์ •

๋Šฅ๋ ฅ ํ–ฅ์ƒ์— ์šฐ์ˆ˜ํ•˜๋ฉฐ ํ˜„์žฌ ์ผ๋ถ€ ๊ณต์ •์—์„œ ์‹คํ˜„๋˜

๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ํŽ„์Šค ํ”Œ๋ผ์ฆˆ๋งˆ๋ฅผ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ ์•„

์ง ์‹๊ฐ ๋ฉ”์ปค๋‹ˆ์ฆ˜์ด ํ™•์‹คํ•˜์ง€ ์•Š๋‹ค๋Š” ์  ๋“ฑ ํ•ด๊ฒฐํ•ด

์•ผ ๋  ๋ถ€๋ถ„์ด ๋‚จ์•„ ์žˆ์ง€๋งŒ ํ–ฅํ›„ ๋”์šฑ ๊นŒ๋‹ค๋กœ์›Œ์ง€๋Š”

๊ณต์ • ๋ฏธ์„ธํ™”์— ๋Œ€์‘ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ํŽ„์Šค๋ฅผ ์ด์šฉํ•œ

์‹๊ฐ ๊ธฐ์ˆ  ๊ฐœ๋ฐœ์ด ์ง€์†์ ์œผ๋กœ ์ด๋ฃจ์–ด์ ธ์•ผ ํ•œ๋‹ค.

๊ฐ์‚ฌ์˜ ๊ธ€

This work was supported by the Industrial

Strategic Technology Development Program (10041681,

Development of fundamental technology for 10 nm

process semiconductor and 10 G size large area

process with high plasma density and VHF condition)

Fig. 17. Predicted etch profiles with pulse phase lag

variation. Reprinted with permission from A.

Agarwal, P.J. Stout, S. Banna, S. Rauf, K.

Tokashiki, J.Y. Lee, K. Collins, Appl. Phys. Lett,

106 (2009), 103305.

Fig. 18. Structure of spin transfer torque (STT)-MTJ.

Fig. 19. Schematic illustration of a possible reaction

mechanism during the pulsed bias etching.

Page 10: Application of Pulsed Plasmas for Nanoscale Etching of ...

369 ์–‘๊ฒฝ์ฑ„ ์™ธ/ํ•œ๊ตญํ‘œ๋ฉด๊ณตํ•™ํšŒ 48 (2015) 360-370

funded by the Ministry of Knowledge Economy

(MKE, Korea) and also by SEMES cooperative

research project.

References

1. S. Samukawa, Feature profile evolution in plasma

processing using on-wafer monitoring system,

Springer Japan, Tokyo (2014).

2. M. A. Lieberman and A. J. Lichtenberg, Principles

of Plasma Discharges and Materials Processing,

Hoboken, NJ (2005).

3. R. Doering and Y. Nishi, Handbook of Semicon-

ductor Manufacturing Technology, CRC Press,

Cleveland (2007).

4. P. Chabert and N. Braithwaite, Physics of Radio-

Frequency Plasmas, Cambridge University Press,

Cambridge (2011).

5. S. H. Lee, P. K. Tiwari, J. K. Lee, Plasma Sources

Sci. Technol., 18 (2009) 025024.

6. M. H. Jeon, A. K. Mishra, S.-K. Kang, K. N. Kim,

I. J. Kim, S. B. Lee, T. H. Sin, G. Y. Yeom, Curr.

Appl. Phys., 13 (2013) 1830.

7. M. H. Jeon, K. C. Yang, K. N. Kim, G. Y. Yeom,

Vacuum 121 (2015) 294.

8. S. H. Song, M. J. Kushner, J. Vac. Sci. Technol.

A 32 (2014) 021306.

9. J. K. Kim, S. I. Cho, S. H. Lee, C. K. Kim, K.

S. Min, S. H. Kang, G. Y. Yeom, J. Vac. Sci.

Technol., A 31 (2013) 061310.

10. X. Zhao, J. A. del Alamo, IEEE Electron Device

Lett., 35 (2014) 521.

11. W. Kim, J. Jeong, Y. Kim, W. C. Lim, J. H. Kim,

J. H. Park, H. J. Shin, Y. S. Park, K. S. Kim, S.

H. Park, Y. J. Lee, K. W. Kim, H. J. Kwon, H.

L. Park, H. S. Ahn, S. C. Oh, J. E. Lee, S. O.

Park, S. Choi, H. K. Kang, C. Chung, IEDM Tech.

Dig., (2011) 531.

12. P. Bodart, M. Brihoum, G. Cunge, O. Joubert, N.

Sadeghi, J. Appl. Phys., 110 (2011) 113302.

13. K. Eriguchi, Y. Nakakubo, A. Matsuda, Y. Takao,

K. Ono, Jpn. J. Appl. Phys., 49 (2010) 056203.

14. S. Banna, A. Agarwal, G. Cunge, M. Darnon, E.

Pargon, O. Joubert, J. Vac. Sci. Technol., A 30

(2012) 040801.

15. D. J. Economou, J. Phys. D: Appl. Phys., 47 (2014)

303001.

16. A. Agarwal, P. J. Stout, S. Banna, S. Rauf, K.

Collins, J. Vac. Sci. Technol., A 29 (2011) 011017

17. R. W. Boswell, D. Henry, Appl. Phys. Lett., 47

(1985) 1095.

18. R. W. Boswell, R. K. Porteous, J. Appl. Phys., 62

(1987) 3123.

19. C. Grabowski, J. M. Gahl, J. Appl. Phys., 70 (1991)

1039.

20. S. Samukawa, S. Furuoya, Appl. Phys. Lett., 63

(1993) 2044.

21. K. Takahashi, M. Hori, T. Goto, Jpn. J. Appl. Phys.,

32 (1993) L1088.

22. C. P. Etienne, M. Darnon, L. Vallier, E. Pargon, G.

Cunge, F. Boulard, O. Joubert, S. Banna, T. Lill, J.

Vac. Sci. Technol., B 28 (2010) 926.

23. A. Mishra, J. S. Seo, K. N. Kim, G. Y. Yeom, J.

Phys., D 46 (2013) 235203.

24. D. Borah, M. T. Shaw, S. Rasappa, R. A. Farrell,

C. Oโ€™Mahony, C. M. Faulkner, M. Bosea, P. Gleeson,

J. D. Holmes, M. A. Morris, J. Phys., D: Appl.

Phys., 44 (2011) 174012.

25. A. Agarwal, S. Rauf, K. Collins, J. Appl. Phys.,

112 (2012) 033303.

26. J. Matsui, N. Nakano, Z. Lj. Petrovicยด, T. Makabea,

Appl. Phys. Lett, 78 (2001) 883.

27. S. Banna, A. Agarwal, K. Tokashiki, H. Cho, S.

Rauf, V. Todorow, K. Ramaswamy, K. Collins, P.

Stout, J.-Y. Lee, J. Yoon, K. Shin, S.-J. Choi, H.-

S. Cho, H.-Y. Kim, C. Lee, D. Lymberopoulos,

IEEE Trans. Plasma Sci., 37 (2009) 1730.

28. K. Tokashiki, H. Cho, S. Banna, J.-Y. Lee, K. Shin,

V. Todorow, W.-S. Kim, K. Bai, S. Joo, J.-D. Choe,

K. Ramaswamy, A. Agarwal, S. Rauf, K. Collins,

S. Choi, H. Cho, H. J. Kim, C. Lee, D.

Lymberopoulos, J. Yoon, W. Han, J.-T. Moon, Jpn.

J. Appl. Phys., 48 (2009) 08HD01.

29. C. J. Choi, O. S. Kwon, Y. S. Seol, Jpn. J. Appl.

Phys., 37 (1998) 6894.

30. Y. Ichihashi, Y. Ishikawa, R. Shimizu, S. Samukawa,

J. Vac. Sci. Technol., B 28 (2010) 577.

31. T. Ohmori, T. K. Goto, T. Kitajima, T. Makabe,

Appl. Phys. Lett., 83 (2003) 4637.

32. M. V. Malyshev, V. M. Donnelly, J. Appl. Phys.,

87 (2000) 1642.

33. M. V. Malyshev, V. M. Donnelly, J. Appl. Phys.,

90 (2001) 1130.

34. R. Westerman, D. Johnson, S. Lai, U.S. patent 6,

905, 626 (2005).

35. T. Mukai, H. Hada, S. Tahara, Hiroaki Yoda, S.

Samukawa, Jpn. J. Appl. Phys., 45 (2006) 5542.

36. A. Agarwal, S. Rauf, K. Collins, Appl. Phys. Lett,

99 (2011) 021501.

37. K. Nojiri, Dry Etching Technology for Semicon-

ductors, Springer, Switzerland (2015).

38. C. O. Jung, K. K. Chi, B. G. Hwang, J. T. Moon,

M. Y. Lee, J. G. Lee, Thin Solid Films, 341 (1999)

112.

39. M. Miyake, N. Negishi, M. Izawa, K. Yokogawa,

Page 11: Application of Pulsed Plasmas for Nanoscale Etching of ...

์–‘๊ฒฝ์ฑ„ ์™ธ/ํ•œ๊ตญํ‘œ๋ฉด๊ณตํ•™ํšŒ 48 (2015) 360-370 370

M. Oyama, T. Kanekiyo, Jpn. J. Appl. Phys., 48

(2009) 08HE01.

40. C. P. Etienne, M. Darnon, P. Bodart, M. Fouchier,

G. Cunge, E. Pargon, L. Vallier, O. Joubert, S.

Banna, J. Vac. Sci. Technol., B 31(2013) 01120.

41. S. Samukawa, K. Terada, J. Vac. Sci. Technol., B

12 (1994) 3300.

42. S. Samukawa, H. Ohtake, T. Mieno, J. Vac. Sci.

Technol., A 14 (1996) 3049.

43. S. Samukawa, Appl. Phys. Lett., 64 (1994) 3398.

44. T. H. Ahn, K. Nakamura, H. Sugai, Plasma Sources

Sci. Technol., 5 (1996) 139.

45. M. Sumiya, H. Tamura, S. Watanabe, Jpn. J. Appl.

Phys., 41 (2002) 856.

46. N. Fugiwara, T. Maruyama, H. Miyatake, Jpn. J.

Appl. Phys., 37 (1998) 2302.

47. T. Maruyama, N. Fujiwara, S. Ogino, H. Miyatake,

Jpn. J. Appl. Phys., 37 (1998) 2306.

48. T. Ono, T, Mizutani, Y. Goto, T. Kure, Jpn. J.

Appl. Phys., 39 (2000) 5003.

49. K. Ono, M. Tuda, Thin Solid Flims, 374 (2000) 208.

50. M. Matsui, M. Morimoto, N. Ikeda, K. Yokogawa ,

Jpn. J. Appl. Phys., 53 (2014) 03DD04.

51. C. P. Etienne, E. Pargon, S. David, M. Darnon, L.

Vallier, O. Joubert, S. Banna, J. Vac. Sci. Technol.,

B 30 (2012) 1071.

52. A. Sankaran, M. J. Kushner, Appl. Phys. Lett., 82

(2003) 1824.

53. S. Takagi, S. Onoue, K. Nishitani, T. Shinnmura,

Y. Shigesato, Jpn. J. Appl. Phys., 54 (2015) 036501.

54. B. S. Kwon, J. S. Kim, N.-E. Lee, J. W. Shon, J.

Electrochem. Soc., 157 (2010) D135.

55. B. S. Kwon, J. S. Kim, H. K. Moon, N.-E. Lee,

Thin Solid Films, 518 (2010) 6451.

56. A. Agarwal, P. J. Stout, S. Banna, S. Rauf, K.

Tokashiki, J. Y. Lee, K. Collins, J. Appl. Phys.,

106 (2009) 103305.

57. P. Subramonium, M. K. Kushner, J. Appl. Phys.,

96 (2004) 82.

58. T. Tatsumi, H. Hayashi, S. Morishita, S. Noda, M.

Okigawa, N. Itabashi, Y. Hikosaka, M. Inoue, Jpn.

J. Appl. Phys., 37 (1998) 2394.

59. M. Wang, M. K. Kushner, J. Appl. Phys., 107 (2010)

023309.

60. T. F. Yen, K. J. Chang, K.-F. Chiu, Microelectron.

Eng., 82 (2005) 129.

61. M. Darnon, C. P. Etienne, E. Pargon, G. Cunge,

L. Vallier, P. Bodart, M. Haas, S. Banna, T. Lill,

O. Jouberta, ECS Trans., 27 (2010) 717.

62. T. Mukai, H. Hada, S. Tahara, H. Yoda, S.

Samukawa, Jpn. J. Appl. Phys., 45 (2006) 5542.

63. T. Mukai, N. Ohshima, H. Hada, S. Samukawa, J.

Vac. Sci. Technol., A 25 (2007) 432.

64. K. Sugiura, S. Takahashi, M. Amano, T. Kajiyama,

M. Iwayama, Y. Asao, N. Shimomura, T. Kishi, S.

Ikegawa, H. Yoda, A. Nitayama, Jpn. J. Appl. Phys.,

48 (2009) 08HD02.

65. T. Ogata, K. Nakata, T. Ono, Hitachi Rev., 48

(1999) 6.

66. V. M. Donnelly, A. Kornblit, J. Vac. Sci. Technol.,

A 31 (2013) 050825.

67. M. H. Jeon, D. H. Yun, K. C. Yang, J. Y. Youn,

D. Y. Lee, T. H. Shim, J. G. Park, G. Y. Yeom,

J. Nanosci. Nanotechnol., 14 (2014) 9680.

68. M. H. Jeon, J. Y. Youn, K. C. Yang, D. H. Youn,

D. Y. Lee, T. H. Shim, J. G. Park, G. Y. Yeom,

J. Nanosci. Nanotechnol., 14 (2014) 9541.

69. K. C. Yang, M. H. Jeon, G.Y. Yeom, Jpn. J. Appl.

Phys., 54 (2015) 01AE01.

70. M. H. Jeon, H. J. Kim, K. C. Yang, S. K. Kang,

K. N. Kim, G. Y. Yeom, Jpn. J. Appl. Phys., 52

(2013) 05EB03.

71. Terabit Memory Development 1st year of 1st phase

(2010) Work Shop.

72. STT-MRAM 1st year of 1st phase (2009) 2nd Work

Shop.