Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz...

54
Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution Quadrature in Acoustics and Thermoelasticity Martin Schanz joint work with Relindis Rott and Stefan Sauter Space-Time Methods for PDEs Special Semester on Computational Methods in Science and Engineering RICAM, Linz, Austria, November 10, 2016 > www.mech.tugraz.at

Transcript of Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz...

Page 1: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Graz University of TechnologyInstitute of Applied Mechanics

Application of generalized Convolution Quadraturein Acoustics and Thermoelasticity

Martin Schanz

joint work with Relindis Rott and Stefan Sauter

Space-Time Methods for PDEsSpecial Semester on Computational Methods in Science and EngineeringRICAM, Linz, Austria, November 10, 2016

> www.mech.tugraz.at

Page 2: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Content

1 Generalized convolution quadrature method (gCQM)Quadrature formulaAlgorithm

2 Acoustics: Absorbing boundary conditionsBoundary element formulationAnalytical solutionNumerical examples

3 Thermoelasticity: Uncoupled formulationBoundary element formulationNumerical example

Martin Schanz gCQM: Acoustics and Thermoelasticity 2 / 39

Page 3: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Content

1 Generalized convolution quadrature method (gCQM)Quadrature formulaAlgorithm

2 Acoustics: Absorbing boundary conditionsBoundary element formulationAnalytical solutionNumerical examples

3 Thermoelasticity: Uncoupled formulationBoundary element formulationNumerical example

Martin Schanz gCQM: Acoustics and Thermoelasticity 2 / 39

Page 4: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Content

1 Generalized convolution quadrature method (gCQM)Quadrature formulaAlgorithm

2 Acoustics: Absorbing boundary conditionsBoundary element formulationAnalytical solutionNumerical examples

3 Thermoelasticity: Uncoupled formulationBoundary element formulationNumerical example

Martin Schanz gCQM: Acoustics and Thermoelasticity 2 / 39

Page 5: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Content

1 Generalized convolution quadrature method (gCQM)Quadrature formulaAlgorithm

2 Acoustics: Absorbing boundary conditionsBoundary element formulationAnalytical solutionNumerical examples

3 Thermoelasticity: Uncoupled formulationBoundary element formulationNumerical example

Martin Schanz gCQM: Acoustics and Thermoelasticity 3 / 39

Page 6: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Convolution integral

Convolution integral with the Laplace transformed function f (s)

y (t) = (f ∗g)(t) =(f (∂t )g

)(t) =

t∫0

f (t− τ)g (τ)dτ

=1

2πi

∫C

f (s)

t∫0

es(t−τ)g (τ)dτ

︸ ︷︷ ︸x (t,s)

ds

Integral is equivalent to solution of ODE

∂tx (t,s) = sx (t,s) + g (t) with x (t = 0,s) = 0

Implicit Euler for ODE , [0,T ] = [0, t1, t2, . . . , tN ], variable time steps∆ti , i = 1,2, . . . ,N

xn (s) =xn−1 (s)

1−∆tns+

∆tn1−∆tns

gn =n

∑j=1

∆tjgj

n

∏k=j

11−∆tk s

Martin Schanz gCQM: Acoustics and Thermoelasticity 4 / 39

Page 7: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Convolution integral

Convolution integral with the Laplace transformed function f (s)

y (t) = (f ∗g)(t) =(f (∂t )g

)(t) =

t∫0

f (t− τ)g (τ)dτ

=1

2πi

∫C

f (s)

t∫0

es(t−τ)g (τ)dτ

︸ ︷︷ ︸x (t,s)

ds

Integral is equivalent to solution of ODE

∂tx (t,s) = sx (t,s) + g (t) with x (t = 0,s) = 0

Implicit Euler for ODE , [0,T ] = [0, t1, t2, . . . , tN ], variable time steps∆ti , i = 1,2, . . . ,N

xn (s) =xn−1 (s)

1−∆tns+

∆tn1−∆tns

gn =n

∑j=1

∆tjgj

n

∏k=j

11−∆tk s

Martin Schanz gCQM: Acoustics and Thermoelasticity 4 / 39

Page 8: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Time stepping formula

Solution at the discrete time tn

y (tn) =1

2πi

∫C

f (s)xn (s)ds

=1

2πi

∫C

f (s)∆tn1−∆tns

gn ds +1

2πi

∫C

f (s)xn−1 (s)

1−∆tnsds

=f

(1

∆tn

)gn +

12πi

∫C

f (s)xn−1 (s)

1−∆tnsds .

Recursion formula for the implicit Euler

y (tn) =1

2πi

∫C

f (s)n

∑j=1

∆tjgj

n

∏k=j

11−∆tk s

ds

= f

(1

∆tn

)gn +

n−1

∑j=1

∆tjgj1

2πi

∫C

f (s)n

∏k=j

11−∆tk s

ds

Complex integral is solved with a quadrature formula

Martin Schanz gCQM: Acoustics and Thermoelasticity 5 / 39

Page 9: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Time stepping formula

Solution at the discrete time tn

y (tn) =1

2πi

∫C

f (s)xn (s)ds

=1

2πi

∫C

f (s)∆tn1−∆tns

gn ds +1

2πi

∫C

f (s)xn−1 (s)

1−∆tnsds

=f

(1

∆tn

)gn +

12πi

∫C

f (s)xn−1 (s)

1−∆tnsds .

Recursion formula for the implicit Euler

y (tn) =1

2πi

∫C

f (s)n

∑j=1

∆tjgj

n

∏k=j

11−∆tk s

ds

= f

(1

∆tn

)gn +

n−1

∑j=1

∆tjgj1

2πi

∫C

f (s)n

∏k=j

11−∆tk s

ds

Complex integral is solved with a quadrature formula

Martin Schanz gCQM: Acoustics and Thermoelasticity 5 / 39

Page 10: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Time stepping formula

Solution at the discrete time tn

y (tn) =1

2πi

∫C

f (s)xn (s)ds

=1

2πi

∫C

f (s)∆tn1−∆tns

gn ds +1

2πi

∫C

f (s)xn−1 (s)

1−∆tnsds

=f

(1

∆tn

)gn +

12πi

∫C

f (s)xn−1 (s)

1−∆tnsds .

Recursion formula for the implicit Euler

y (tn) =1

2πi

∫C

f (s)n

∑j=1

∆tjgj

n

∏k=j

11−∆tk s

ds

= f

(1

∆tn

)gn +

n−1

∑j=1

∆tjgj1

2πi

∫C

f (s)n

∏k=j

11−∆tk s

ds

Complex integral is solved with a quadrature formula

Martin Schanz gCQM: Acoustics and Thermoelasticity 5 / 39

Page 11: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Algorithm

First Euler step

y (t1) = f

(1

∆t1

)g1

with implicit assumption of zero initial condition

For all steps n = 2, . . . ,N the algorithm has two steps1 Update the solution vector xn−1 at all integration points s` with an implicit Euler step

xn−1 (s`) =xn−2 (s`)

1−∆tn−1s`+

∆tn−1

1−∆tn−1s`gn−1

for ` = 1, . . . ,NQ with the number of integration points NQ .2 Compute the solution of the integral at the actual time step tn

y (tn) = f

(1

∆tn

)gn +

NQ

∑`=1

ω`f (s`)

1−∆tns`xn−1 (s`)

Essential parameter: NQ = N log(N), integration is dependent on q = ∆tmax∆tmin

Martin Schanz gCQM: Acoustics and Thermoelasticity 6 / 39

Page 12: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Algorithm

First Euler step

y (t1) = f

(1

∆t1

)g1

with implicit assumption of zero initial condition

For all steps n = 2, . . . ,N the algorithm has two steps1 Update the solution vector xn−1 at all integration points s` with an implicit Euler step

xn−1 (s`) =xn−2 (s`)

1−∆tn−1s`+

∆tn−1

1−∆tn−1s`gn−1

for ` = 1, . . . ,NQ with the number of integration points NQ .2 Compute the solution of the integral at the actual time step tn

y (tn) = f

(1

∆tn

)gn +

NQ

∑`=1

ω`f (s`)

1−∆tns`xn−1 (s`)

Essential parameter: NQ = N log(N), integration is dependent on q = ∆tmax∆tmin

Martin Schanz gCQM: Acoustics and Thermoelasticity 6 / 39

Page 13: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Numerical integration

Integration weights and points

s` = γ(σ`) ω` =4K(k2)

2πiγ′ (σ`)

for N = 25,T = 5, tn =(

nN

)αT ,α = 1.5

Martin Schanz gCQM: Acoustics and Thermoelasticity 7 / 39

Page 14: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Content

1 Generalized convolution quadrature method (gCQM)Quadrature formulaAlgorithm

2 Acoustics: Absorbing boundary conditionsBoundary element formulationAnalytical solutionNumerical examples

3 Thermoelasticity: Uncoupled formulationBoundary element formulationNumerical example

Martin Schanz gCQM: Acoustics and Thermoelasticity 8 / 39

Page 15: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Absorbing boundary conditions

Materials with absorbing surfaces

Mechanical modell: Coupling of porousmaterial layer at the boundary

Simpler mechanical model: Impedance boundary condition

Z =p

v ·nspecific impedance

Z (x)

ρc= α(x) = cosθ

1−√

1−αS (x)

1 +√

1−αS (x)

with density ρ, wave velocity c, and absorption coefficient αS = f (ω)

Martin Schanz gCQM: Acoustics and Thermoelasticity 9 / 39

Page 16: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Absorbing boundary conditions

Materials with absorbing surfaces

Mechanical modell: Coupling of porousmaterial layer at the boundary

Simpler mechanical model: Impedance boundary condition

Z =p

v ·nspecific impedance

Z (x)

ρc= α(x) = cosθ

1−√

1−αS (x)

1 +√

1−αS (x)

with density ρ, wave velocity c, and absorption coefficient αS = f (ω)

Martin Schanz gCQM: Acoustics and Thermoelasticity 9 / 39

Page 17: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Problem setting

Bounded Lipschitz domain Ω− ⊂ R3 with boundary Γ := ∂ΩΩ+ := R3\Ω− is its unbounded complement.

Linear acoustics for the pressure p

∂tt p− c2∆p = 0 in Ωσ×R>0,

p (x ,0) = ∂t p (x ,0) = 0 in Ωσ,

γσ1 (p)−σ

α

σ0 (∂t p)= f (x , t) on Γ×R>0

with σ ∈ +,−, wave velocity c, and α absorption coefficient

Martin Schanz gCQM: Acoustics and Thermoelasticity 10 / 39

Page 18: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Integral equation

Single layer ansatz for the density

−(

σϕ

2−K′ ∗ϕ

)−σ

α

c(V ∗ ϕ) = f a.e. in Γ×R>0

Retarded potentials

(V ∗ϕ)(x , t) =∫Γ

ϕ

(y , t− ‖x−y‖

c

)4π‖x− y‖ dΓy

(K′ ∗ϕ

)(x , t) =

14π

∫Γ

〈n (x) ,y− x〉‖x− y‖2

ϕ

(y , t− ‖x−y‖

c

)‖x− y‖ +

ϕ

(y , t− ‖x−y‖

c

)c

dΓy

Single layer potential for the pressure

p (x , t) = (S ∗ϕ)(x , t) :=∫Γ

ϕ

(y , t− ‖x−y‖

c

)4π‖x− y‖ dΓy ∀(x , t) ∈ Ωσ×R>0

Martin Schanz gCQM: Acoustics and Thermoelasticity 11 / 39

Page 19: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Integral equation

Single layer ansatz for the density

−(

σϕ

2−K′ ∗ϕ

)−σ

α

c(V ∗ ϕ) = f a.e. in Γ×R>0

Retarded potentials

(V ∗ϕ)(x , t) =∫Γ

ϕ

(y , t− ‖x−y‖

c

)4π‖x− y‖ dΓy

(K′ ∗ϕ

)(x , t) =

14π

∫Γ

〈n (x) ,y− x〉‖x− y‖2

ϕ

(y , t− ‖x−y‖

c

)‖x− y‖ +

ϕ

(y , t− ‖x−y‖

c

)c

dΓy

Single layer potential for the pressure

p (x , t) = (S ∗ϕ)(x , t) :=∫Γ

ϕ

(y , t− ‖x−y‖

c

)4π‖x− y‖ dΓy ∀(x , t) ∈ Ωσ×R>0

Martin Schanz gCQM: Acoustics and Thermoelasticity 11 / 39

Page 20: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Solution for the unit ball

Geometry is the unit ball

Right hand side of the impedance boundary condition is

f (x , t) := f (t)Yn,m

Spherical harmonics are eigenfunctions of the boundary integral operators

ZY mn = λ

(Z)n

(sc

)Y m

n for Z ∈V,K,K′,W

It holds

λ(V)n (s) =−sjn (is)h(1)

n (is) λ(K′)n (s) =

12− is2jn (is)∂h(1)

n (is)

with the spherical Bessel and Hankel functions jn, h(1)n and ∂jn, ∂h(1)

n denoting theirfirst derivatives

Analytical transformation yields time domain solution

Martin Schanz gCQM: Acoustics and Thermoelasticity 12 / 39

Page 21: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Solution for the unit ball

Geometry is the unit ball

Right hand side of the impedance boundary condition is

f (x , t) := f (t)Yn,m

Spherical harmonics are eigenfunctions of the boundary integral operators

ZY mn = λ

(Z)n

(sc

)Y m

n for Z ∈V,K,K′,W

It holds

λ(V)n (s) =−sjn (is)h(1)

n (is) λ(K′)n (s) =

12− is2jn (is)∂h(1)

n (is)

with the spherical Bessel and Hankel functions jn, h(1)n and ∂jn, ∂h(1)

n denoting theirfirst derivatives

Analytical transformation yields time domain solution

Martin Schanz gCQM: Acoustics and Thermoelasticity 12 / 39

Page 22: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Solution for the unit ball

Geometry is the unit ball

Right hand side of the impedance boundary condition is

f (x , t) := f (t)Yn,m

Spherical harmonics are eigenfunctions of the boundary integral operators

ZY mn = λ

(Z)n

(sc

)Y m

n for Z ∈V,K,K′,W

It holds

λ(V)n (s) =−sjn (is)h(1)

n (is) λ(K′)n (s) =

12− is2jn (is)∂h(1)

n (is)

with the spherical Bessel and Hankel functions jn, h(1)n and ∂jn, ∂h(1)

n denoting theirfirst derivatives

Analytical transformation yields time domain solution

Martin Schanz gCQM: Acoustics and Thermoelasticity 12 / 39

Page 23: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Solution in time domain

Solution for σ = +1, i.e., outer space, and n = 0Load function f (t) = (ct)υ e−ct

Density function

ϕ+ (t) =− 2

1 + α

bct/2c∑`=0

((ct−2`)υ e−(ct−2`)

− (1 + α)υ

αυ+1 γ

(υ + 1,

α

1 + α(ct−2`)

)e−

ct−2`1+α

)with the incomplete Gamma function γ(a,z) :=

∫ z0 ta−1e−t dt

Pressure solution

p+ (r , t) =− (1 + α)υ

2√

παυ+1γ

(υ + 1,

α

1 + ατ+

)e−

τ1+α

r.

with r > 1, we define τ := ct− (r −1) and (τ)+ := max0,τ

Martin Schanz gCQM: Acoustics and Thermoelasticity 13 / 39

Page 24: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Solution in time domain

Solution for σ = +1, i.e., outer space, and n = 0Load function f (t) = (ct)υ e−ct

Density function

ϕ+ (t) =− 2

1 + α

bct/2c∑`=0

((ct−2`)υ e−(ct−2`)

− (1 + α)υ

αυ+1 γ

(υ + 1,

α

1 + α(ct−2`)

)e−

ct−2`1+α

)with the incomplete Gamma function γ(a,z) :=

∫ z0 ta−1e−t dt

Pressure solution

p+ (r , t) =− (1 + α)υ

2√

παυ+1γ

(υ + 1,

α

1 + ατ+

)e−

τ1+α

r.

with r > 1, we define τ := ct− (r −1) and (τ)+ := max0,τ

Martin Schanz gCQM: Acoustics and Thermoelasticity 13 / 39

Page 25: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Discretization

Spatial discretization: Linear continuous shape functions on linear trianglesTemporal discretization: gCQM with time grading

tn = T( n

N

, n = 0, . . . ,N with grading exponent χ = 1/υ

Meshes of the unit sphere

h1 = 0.393m h2 = 0.196m h3 = 0.098m h3 = 0.049m

Material data: Air (c = 343.41 m/s)Load function: f (t) = (ct)υ e−ct with υ = 1

2Observation time T = 0.002915905s and β = c∆t/h

Error in time

errrel =

√N

∑n=0

∆tn (u (tn)−uh (tn))2/

√N

∑n=0

∆tn (u (tn))2 eoc = log2

(errh

errh+1

)Martin Schanz gCQM: Acoustics and Thermoelasticity 14 / 39

Page 26: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Solution density

0 0.2 0.4 0.6 0.8 1 1.2·10−2

−0.2

0

0.2

0.4

0.6

time t [s]

dens

ityϕ

+α = 0α = 0.25α = 0.5α = 1analytic α = 0.25analytic α = 0.5analytic α = 1

Martin Schanz gCQM: Acoustics and Thermoelasticity 15 / 39

Page 27: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Solution pressure

0 0.2 0.4 0.6 0.8 1 1.2·10−2

0

0.05

0.1

0.15

time t [s]

pres

sure

u+[N/m

2 ]

α = 0α = 0.25α = 0.5α = 1

Martin Schanz gCQM: Acoustics and Thermoelasticity 16 / 39

Page 28: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Relative density error: mesh size

10−1.2 10−1 10−0.8 10−0.6 10−0.4

10−2.5

10−2

10−1.5

mesh size h

err re

l

∆tvar ,β = 0.125∆tconst ,β = 0.125∆tvar ,β = 0.0625∆tconst ,β = 0.0625eoc = 0.5eoc = 1

Martin Schanz gCQM: Acoustics and Thermoelasticity 17 / 39

Page 29: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Relative pressure error: mesh size

10−1.2 10−1 10−0.8 10−0.6 10−0.4

10−2

10−1

mesh size h

err re

l

∆tvar ,β = 0.25∆tconst ,β = 0.25∆tvar ,β = 0.125∆tconst ,β = 0.125∆tvar ,β = 0.0625∆tconst ,β = 0.0625eoc = 1

Martin Schanz gCQM: Acoustics and Thermoelasticity 18 / 39

Page 30: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Relative density error: time step

10−5 10−4

10−2.5

10−2

10−1.5

time step size ∆t

err re

l

mesh 2, ∆tconst

mesh 2, ∆tvar

mesh 3, ∆tconst

mesh 3, ∆tvar

mesh 4, ∆tconst

mesh 4, ∆tvareoc = 0.5eoc = 1

Martin Schanz gCQM: Acoustics and Thermoelasticity 19 / 39

Page 31: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Relative pressure error: time step

10−5 10−4

10−2

10−1

time step size ∆t

err re

l

mesh 2, ∆tconst

mesh 2, ∆tvar

mesh 3, ∆tconst

mesh 3, ∆tvar

mesh 4, ∆tconst

mesh 4, ∆tvareoc = 2eoc = 1

Martin Schanz gCQM: Acoustics and Thermoelasticity 20 / 39

Page 32: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Problem description

Atrium at University of Zurich (Irchel campus)

Mesh: 7100 elementsTime interval [0,T = 0.15s] with grading

tn =

(n +

(n−1)2

N

)∆tconst with ∆tconst = 0.00037s ⇒ N = 405, Ngraded = 248

Martin Schanz gCQM: Acoustics and Thermoelasticity 21 / 39

Page 33: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Sound pressure field

t ≈ 0.028 s

α = 0.1 α = 0.5 α = 1

t ≈ 0.064 s

Martin Schanz gCQM: Acoustics and Thermoelasticity 22 / 39

Page 34: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Sound pressure level

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16−30

−20

−10

0

10

20

30

time t [s]

soun

dpr

essu

rele

velu

[dB

]α = 0.1α = 0.5α = 1

Martin Schanz gCQM: Acoustics and Thermoelasticity 23 / 39

Page 35: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Content

1 Generalized convolution quadrature method (gCQM)Quadrature formulaAlgorithm

2 Acoustics: Absorbing boundary conditionsBoundary element formulationAnalytical solutionNumerical examples

3 Thermoelasticity: Uncoupled formulationBoundary element formulationNumerical example

Martin Schanz gCQM: Acoustics and Thermoelasticity 24 / 39

Page 36: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Uncoupled thermoelasticity

Governing equations for temperature θ(x, t) and displacement u(x, t)

κ θ,jj (x, t)− θ(x, t) = 0

µ ui,jj (x, t) + (λ + µ)uj,ij (x, t)− (3λ + 2µ)α θ,i (x, t) = 0

κ thermal diffusivity, α thermal expansion coefficient, λ,µ Lamé constantsBoundary integral formulation

c (y)θ(y, t) =∫Γ

[Θ∗q](x,y, t)− [Q ∗θ](x,y, t)dΓ

cij (y)uj (y, t) =∫Γ

Uij (x,y)tj (x, t)−Tij (x,y) uj (x, t)

+ [Gi ∗q](x,y, t)− [Fi ∗θ](x,y, t)dΓ

withΘ(x,y, t) and Q(x,y, t) kernels of the heat equationUij (x,y) and Tij (x,y) kernels from elastostaticsGi (x,y, t) and Fi (x,y, t) kernels for the one sided coupling

Martin Schanz gCQM: Acoustics and Thermoelasticity 25 / 39

Page 37: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Uncoupled thermoelasticity

Governing equations for temperature θ(x, t) and displacement u(x, t)

κ θ,jj (x, t)− θ(x, t) = 0

µ ui,jj (x, t) + (λ + µ)uj,ij (x, t)− (3λ + 2µ)α θ,i (x, t) = 0

κ thermal diffusivity, α thermal expansion coefficient, λ,µ Lamé constantsBoundary integral formulation

c (y)θ(y, t) =∫Γ

[Θ∗q](x,y, t)− [Q ∗θ](x,y, t)dΓ

cij (y)uj (y, t) =∫Γ

Uij (x,y)tj (x, t)−Tij (x,y) uj (x, t)

+ [Gi ∗q](x,y, t)− [Fi ∗θ](x,y, t)dΓ

withΘ(x,y, t) and Q(x,y, t) kernels of the heat equationUij (x,y) and Tij (x,y) kernels from elastostaticsGi (x,y, t) and Fi (x,y, t) kernels for the one sided coupling

Martin Schanz gCQM: Acoustics and Thermoelasticity 25 / 39

Page 38: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Boundary element formulation

Spatial discretisation on some mesh

θ(x, t) =ND

∑k=1

ψk (x) θ

k (t) q(x, t) =NN

∑k=1

χk (x) qk (t)

uj (x, t) =ND

∑k=1

ψk (x) uk

i (t) tj (x, t) =NN

∑k=1

χk (x) tk

j (t)

Semi-discrete BEM

Cθθθ(t) = [ΘΘΘ∗q](t)− [Q∗θθθ](t)

Ceu(t) = Ut(t)−Tu(t) + [G∗q](t)− [F∗θθθ](t)

Temporal discretisation with gCQMto solve the thermal equationto perform the convolution of known data for the coupling terms

[G∗q](t) [F∗θθθ](t)

Martin Schanz gCQM: Acoustics and Thermoelasticity 26 / 39

Page 39: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Boundary element formulation

Spatial discretisation on some mesh

θ(x, t) =ND

∑k=1

ψk (x) θ

k (t) q(x, t) =NN

∑k=1

χk (x) qk (t)

uj (x, t) =ND

∑k=1

ψk (x) uk

i (t) tj (x, t) =NN

∑k=1

χk (x) tk

j (t)

Semi-discrete BEM

Cθθθ(t) = [ΘΘΘ∗q](t)− [Q∗θθθ](t)

Ceu(t) = Ut(t)−Tu(t) + [G∗q](t)− [F∗θθθ](t)

Temporal discretisation with gCQMto solve the thermal equationto perform the convolution of known data for the coupling terms

[G∗q](t) [F∗θθθ](t)

Martin Schanz gCQM: Acoustics and Thermoelasticity 26 / 39

Page 40: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Problem setting

Cube under restrictive boundary conditions to enforce a 1-d solution

q = 0

q = 0

q = 0

θ(t > 0) = 1

x

y or z

• •

Material data:α = 1 κ = 1λ = 0 µ = 0.5

Time discretisation:constant tn = n∆t

increasing tn =

(n +

(n−1)2

N

)∆t

graded tn = N∆t( n

N

)2

Spatial discretisations

Mesh 1 Mesh 2 Mesh 3

Martin Schanz gCQM: Acoustics and Thermoelasticity 27 / 39

Page 41: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Temperature solution: gCQM, graded

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

time t [s]

tem

pera

ture

θ[K

]

mesh 1mesh 2mesh 3analytic

Martin Schanz gCQM: Acoustics and Thermoelasticity 28 / 39

Page 42: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Displacement solution: gCQM, graded

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

time t [s]

disp

lace

men

tux[m

]

mesh 1mesh 2mesh 3analytic

Martin Schanz gCQM: Acoustics and Thermoelasticity 29 / 39

Page 43: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Temperature solution: error, mesh 2

0 1 2 3 4

0

0.5

1

1.5

·10−2

time t [s]

err a

bs

mesh 2, constantmesh 2, gradedmesh 2, increasing

Martin Schanz gCQM: Acoustics and Thermoelasticity 30 / 39

Page 44: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Temperature solution: error, mesh 3

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

·10−2

time t [s]

err a

bs

mesh 3, constantmesh 3, gradedmesh 3, increasing

Martin Schanz gCQM: Acoustics and Thermoelasticity 31 / 39

Page 45: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Displacement solution: error, mesh 2

0 1 2 3 4

0

0.5

1

1.5

·10−2

time t [s]

err a

bs

mesh 2, constantmesh 2, gradedmesh 2, increasing

Martin Schanz gCQM: Acoustics and Thermoelasticity 32 / 39

Page 46: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Displacement solution: error, mesh 3

0 1 2 3 4

1

2

3

4·10−3

time t [s]

err a

bs

mesh 3, constantmesh 3, gradedmesh 3, increasing

Martin Schanz gCQM: Acoustics and Thermoelasticity 33 / 39

Page 47: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Temperature error L2 mesh 3

10−1.8 10−1.6 10−1.4 10−1.2 10−1

10−5

10−4

time step size ∆t

err re

lmesh 3, constmesh 3, gradedmesh 3, increasingeoc = 2eoc = 1

Martin Schanz gCQM: Acoustics and Thermoelasticity 34 / 39

Page 48: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Temperature error Lmax mesh 3

10−1.8 10−1.6 10−1.4 10−1.2 10−1

10−2.5

10−2

10−1.5

time step size ∆t

err a

bsmesh 3, constmesh 3, gradedmesh 3, increasingeoc = 0.7eoc = 1

Martin Schanz gCQM: Acoustics and Thermoelasticity 35 / 39

Page 49: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Displacement error L2 mesh 3

10−1.8 10−1.6 10−1.4 10−1.2 10−1

10−3

10−2

time step size ∆t

err re

l

mesh 3, constmesh 3, gradedmesh 3, increasingeoc = 1.2

Martin Schanz gCQM: Acoustics and Thermoelasticity 36 / 39

Page 50: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Displacement error Lmax mesh 3

10−1.8 10−1.6 10−1.4 10−1.2 10−1

10−3

10−2

time step size ∆t

err a

bs

mesh 3, constmesh 3, gradedmesh 3, increasingeoc = 0.5eoc = 1.3

Martin Schanz gCQM: Acoustics and Thermoelasticity 37 / 39

Page 51: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Conclusions

Indirect BE formulation in time domain for absorbing BC in acoustics

Direct BE formulation for uncoupled thermoelasticity

Time discretisation with generalized Convolution Quadrature Method

Expected rate of convergence in time

Application to real world problems possible

Fast methods to compress matrices is to be done

Fast method only for matrix-vector products

Possible extension to variable space-time formulation

Martin Schanz gCQM: Acoustics and Thermoelasticity 38 / 39

Page 52: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Conclusions

Indirect BE formulation in time domain for absorbing BC in acoustics

Direct BE formulation for uncoupled thermoelasticity

Time discretisation with generalized Convolution Quadrature Method

Expected rate of convergence in time

Application to real world problems possible

Fast methods to compress matrices is to be done

Fast method only for matrix-vector products

Possible extension to variable space-time formulation

Martin Schanz gCQM: Acoustics and Thermoelasticity 38 / 39

Page 53: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Conclusions

Indirect BE formulation in time domain for absorbing BC in acoustics

Direct BE formulation for uncoupled thermoelasticity

Time discretisation with generalized Convolution Quadrature Method

Expected rate of convergence in time

Application to real world problems possible

Fast methods to compress matrices is to be done

Fast method only for matrix-vector products

Possible extension to variable space-time formulation

Martin Schanz gCQM: Acoustics and Thermoelasticity 38 / 39

Page 54: Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

Graz University of TechnologyInstitute of Applied Mechanics

Application of generalized Convolution Quadraturein Acoustics and Thermoelasticity

Martin Schanz

joint work with Relindis Rott and Stefan Sauter

Space-Time Methods for PDEsSpecial Semester on Computational Methods in Science and EngineeringRICAM, Linz, Austria, November 10, 2016

> www.mech.tugraz.at