Application of Cooling Methods to NICA Project · Booster KRION + “New” HILAC Nuclotron...

23
August 31, 2009 COOL Workshop, Lanzhou, China 1 A.Smirnov, Application of Cooling Methods to NICA Project Application of Cooling Methods to NICA Project Application of Cooling Methods to Application of Cooling Methods to NICA NICA Project Project ( ( N N uclotron uclotron - - based based I I on on C C ollider ollider f f A A cility cility ) ) A A . . Smirnov Smirnov , , E E . . Ahmanova Ahmanova , V , V . . Bykovsky Bykovsky , A , A . . Kobets Kobets , , D D . . Krestnikov Krestnikov , , I I . . Meshkov Meshkov , R , R . . Pivin Pivin , A , A . . Rudakov Rudakov , , A A . . Sidorin Sidorin , S , S . . Yakovenko Yakovenko (JINR, Dubna, Russia) (JINR, Dubna, Russia) J J ü ü r r gen gen Dietrich Dietrich (FZJ, (FZJ, J J ü ü lich lich ) ) Takeshi Takeshi Katayama Katayama (GSI, (GSI, Darmstadt Darmstadt ) )

Transcript of Application of Cooling Methods to NICA Project · Booster KRION + “New” HILAC Nuclotron...

Page 1: Application of Cooling Methods to NICA Project · Booster KRION + “New” HILAC Nuclotron Collider MPD SPD Beam dump. August 31, 2009 COOL Workshop, Lanzhou, China 5 A.Smirnov,

August 31, 2009 COOL Workshop, Lanzhou, China 1

A.Smirnov, Application of Cooling Methods to NICA ProjectApplication of Cooling Methods to NICA Project

Application of Cooling Methods toApplication of Cooling Methods to NICA NICA ProjectProject( ( NNuclotronuclotron--basedbased IIonon CColliderollider ffAAcilitycility ))

AA..SmirnovSmirnov,, EE..AhmanovaAhmanova, V, V..BykovskyBykovsky, A, A..KobetsKobets, , DD..KrestnikovKrestnikov,, II..MeshkovMeshkov, R, R..PivinPivin, A, A..RudakovRudakov, , AA..SidorinSidorin, S, S..YakovenkoYakovenko (JINR, Dubna, Russia)(JINR, Dubna, Russia)

JJüürrgengen DietrichDietrich (FZJ, (FZJ, JJüülichlich))

TakeshiTakeshi KatayamaKatayama (GSI, (GSI, DarmstadtDarmstadt))

Page 2: Application of Cooling Methods to NICA Project · Booster KRION + “New” HILAC Nuclotron Collider MPD SPD Beam dump. August 31, 2009 COOL Workshop, Lanzhou, China 5 A.Smirnov,

August 31, 2009 COOL Workshop, Lanzhou, China 2

A.Smirnov, Application of Cooling Methods to NICA ProjectApplication of Cooling Methods to NICA Project

The Project goals formulated are the following:1a) Heavy ion colliding beams 197Au79+ x 197Au79+ at

√sNN = 4 ÷ 11 GeV (1 ÷ 4.5 GeV/u ion kinetic energy ) at

Laverage= 1⋅1027 cm-2⋅s-1 (at √sNN = 9 GeV)

1b) Light-Heavy ion colliding beams of the energy range and luminosity

2) Polarized beams of protons and deuterons:p↑p↑ √sNN = 12 ÷ 25 GeV (5 ÷ 12.6 GeV kinetic energy )

d↑d↑ √sNN = 4 ÷ 13.8 GeV (2 ÷ 5.9 GeV/u ion kinetic energy )

Development of the NICA Conceptand Technical Design Report

Page 3: Application of Cooling Methods to NICA Project · Booster KRION + “New” HILAC Nuclotron Collider MPD SPD Beam dump. August 31, 2009 COOL Workshop, Lanzhou, China 5 A.Smirnov,

August 31, 2009 COOL Workshop, Lanzhou, China 3

A.Smirnov, Application of Cooling Methods to NICA ProjectApplication of Cooling Methods to NICA Project

NICA scheme & layout

2.3 m

4.0 m

Booster

Synchrophasotron yoke

Nuclotron

Existing beam lines(solid target exp-s)

Collider

C = 251 m

MPD

Spin Physics Detector (SPD)

Page 4: Application of Cooling Methods to NICA Project · Booster KRION + “New” HILAC Nuclotron Collider MPD SPD Beam dump. August 31, 2009 COOL Workshop, Lanzhou, China 5 A.Smirnov,

August 31, 2009 COOL Workshop, Lanzhou, China 4

A.Smirnov, Application of Cooling Methods to NICA ProjectApplication of Cooling Methods to NICA Project

NICA scheme & layout (Contnd)

“Old” Linac LU-20

KRION + “New” HILACBooster

Nuclotron

Collider MPD

SPD Beam dump

Page 5: Application of Cooling Methods to NICA Project · Booster KRION + “New” HILAC Nuclotron Collider MPD SPD Beam dump. August 31, 2009 COOL Workshop, Lanzhou, China 5 A.Smirnov,

August 31, 2009 COOL Workshop, Lanzhou, China 5

A.Smirnov, Application of Cooling Methods to NICA ProjectApplication of Cooling Methods to NICA Project

Booster (25 Tm)1(2-3) single-turn injection,

storage of 2 (4-6)×109,acceleration up to 100 MeV/u,

electron cooling,acceleration

up to 600 MeV/u

Nuclotron (45 Tm)injection of one bunch

of 1.1×109 ions,acceleration up to 1÷4.5 GeV/u max.

Collider (45 Tm)Storage of

17 (20) bunches × 1⋅109 ions per ring at 1÷4.5 GeV/u,

electron and/or stochastic cooling

Injector: 2×109 ions/pulse of 197Au32+

at energy of 6.2 MeV/u

IP-1

IP-2

Two superconductingcollider rings

Operation regime and parameters

Stripping (80%) 197Au32+ ⇒ 197Au79+

2х17 (20)injection cycles

Bunch compression (RF phase jump)

Page 6: Application of Cooling Methods to NICA Project · Booster KRION + “New” HILAC Nuclotron Collider MPD SPD Beam dump. August 31, 2009 COOL Workshop, Lanzhou, China 5 A.Smirnov,

August 31, 2009 COOL Workshop, Lanzhou, China 6

A.Smirnov, Application of Cooling Methods to NICA ProjectApplication of Cooling Methods to NICA Project

0.03ΣLoss = 40%Nextr= 109

0.51⋅10-30.253500At extraction

0.0075<121.5E-40.253500After acceleration

0.051<203.13.4E-40.89594Injection (after stripping)

0.00853.13.2E-40.89600At extraction

0.016<107.173.8E-42.45100After cooling (h=1)

0.0221061.3E-3106.2Injection (after bunching on 4th

harmonics

Space charge

ΔQ

Intensityloss,%

lbunchm

Δp/pεunnormπ⋅mm⋅mrad

E MeV/u

Stage

Bunch parameters dynamics in the injection chainOperation regime and parameters

Page 7: Application of Cooling Methods to NICA Project · Booster KRION + “New” HILAC Nuclotron Collider MPD SPD Beam dump. August 31, 2009 COOL Workshop, Lanzhou, China 5 A.Smirnov,

August 31, 2009 COOL Workshop, Lanzhou, China 7

A.Smirnov, Application of Cooling Methods to NICA ProjectApplication of Cooling Methods to NICA Project

0

0,5

1

1,5

2

0 2 4 6

Time Table of The Storage Process

2.1. Operation regime and parameters

B(t)

, arb

. uni

ts0

0,5

11,5

2

0 2 4 6

Booster magnetic field

B(t)

, arb

. uni

ts

Nuclotron magnetic field

t, [s]

t, [s]

electroncooling

1 (2-3) injection cycles,electron cooling (?)

Extraction, stripping to 197Au79+

bunch compression,extraction

injection

Page 8: Application of Cooling Methods to NICA Project · Booster KRION + “New” HILAC Nuclotron Collider MPD SPD Beam dump. August 31, 2009 COOL Workshop, Lanzhou, China 5 A.Smirnov,

August 31, 2009 COOL Workshop, Lanzhou, China 8

A.Smirnov, Application of Cooling Methods to NICA ProjectApplication of Cooling Methods to NICA Project

Electron cooling in BoosterParameters of electron cooling system

5×10-4Misalignment of ion and electron beams axes

200 / 0.5Electron beam temperature long/trans, meV

1.0Electron beam current, A

14Initial bunch length, m

10RF voltage, kV

5×10-4Initial momentum spread

1.5Initial transverse emittance, π mm mrad

2×109Particle number

197Au32+Ion kind

100Ion energy, MeV

Page 9: Application of Cooling Methods to NICA Project · Booster KRION + “New” HILAC Nuclotron Collider MPD SPD Beam dump. August 31, 2009 COOL Workshop, Lanzhou, China 5 A.Smirnov,

August 31, 2009 COOL Workshop, Lanzhou, China 9

A.Smirnov, Application of Cooling Methods to NICA ProjectApplication of Cooling Methods to NICA Project

Layout of Booster Electron Cooler

electron gun

collector

cryostat

superconducting solenoids

“warm” solenoids

Page 10: Application of Cooling Methods to NICA Project · Booster KRION + “New” HILAC Nuclotron Collider MPD SPD Beam dump. August 31, 2009 COOL Workshop, Lanzhou, China 5 A.Smirnov,

August 31, 2009 COOL Workshop, Lanzhou, China 10

A.Smirnov, Application of Cooling Methods to NICA ProjectApplication of Cooling Methods to NICA Project

Electron gun and collector

Collector Electron gun

Page 11: Application of Cooling Methods to NICA Project · Booster KRION + “New” HILAC Nuclotron Collider MPD SPD Beam dump. August 31, 2009 COOL Workshop, Lanzhou, China 5 A.Smirnov,

August 31, 2009 COOL Workshop, Lanzhou, China 11

A.Smirnov, Application of Cooling Methods to NICA ProjectApplication of Cooling Methods to NICA Project

Electron cooling in BoosterSimulation of e-cooling process

Evolution of the bunched ion beam parameters during the cooling process with misalignment angle of 5×10-4. a) horizontal (red) and vertical (blue) emittances, b) ion momentum spread, c) longitudinal emittance.

a) c)b)

Page 12: Application of Cooling Methods to NICA Project · Booster KRION + “New” HILAC Nuclotron Collider MPD SPD Beam dump. August 31, 2009 COOL Workshop, Lanzhou, China 5 A.Smirnov,

August 31, 2009 COOL Workshop, Lanzhou, China 12

A.Smirnov, Application of Cooling Methods to NICA ProjectApplication of Cooling Methods to NICA Project

Beam Profiles withMisalignment of Electron Beam Axis

Ion beam density distribution after 2 seconds of the cooling: a) horizontal (red) and vertical (blue) profiles, b) transverse plane and c) horizontal transverse phase space of the cooled ion beam

a) c)b)

Page 13: Application of Cooling Methods to NICA Project · Booster KRION + “New” HILAC Nuclotron Collider MPD SPD Beam dump. August 31, 2009 COOL Workshop, Lanzhou, China 5 A.Smirnov,

August 31, 2009 COOL Workshop, Lanzhou, China 13

A.Smirnov, Application of Cooling Methods to NICA ProjectApplication of Cooling Methods to NICA Project

00.20.40.60.8

11.21.41.61.8

0.E+00 2.E-04 4.E-04 6.E-04 8.E-04 1.E-03

misaligment, rad

cool

ing

time,

sec

00.20.40.60.811.21.41.61.8

emitt

ance

, pi m

m m

rad

cooling timeemittance

The dependence of the cooling time and transverse emittance after the cooling process on the misalignment angle between electron and ion beams axes; “the cooling time” is defined as a time interval when the longitudinal emittance decreases from 7.5 eV⋅s to 2.5 eV⋅s

Page 14: Application of Cooling Methods to NICA Project · Booster KRION + “New” HILAC Nuclotron Collider MPD SPD Beam dump. August 31, 2009 COOL Workshop, Lanzhou, China 5 A.Smirnov,

August 31, 2009 COOL Workshop, Lanzhou, China 14

A.Smirnov, Application of Cooling Methods to NICA ProjectApplication of Cooling Methods to NICA Project

2 x 4 Number of vertical dipoles per ring24 / 3.0 mNumber of dipoles / length

4 x 8.8 mShort straight sections: number / length,2 x 48.0 mLong straight sections: number / length

29.0Quad gradient (max), [ T/m ]

4.0Dipole field (max), [ T ]

32 / 0.4 mNumber of quads / length

1.0 ÷ 4.56Ion kinetic energy (Au79+), [GeV/u]

251.52Ring circumference, [m]45.0Bρ max [ T⋅m ]

ColliderGeneral Parameters

Page 15: Application of Cooling Methods to NICA Project · Booster KRION + “New” HILAC Nuclotron Collider MPD SPD Beam dump. August 31, 2009 COOL Workshop, Lanzhou, China 5 A.Smirnov,

August 31, 2009 COOL Workshop, Lanzhou, China 15

A.Smirnov, Application of Cooling Methods to NICA ProjectApplication of Cooling Methods to NICA Project

0Beam crossing angle at IP

9 mFree space at IP (for detector)

0.0 / 0.0Dx / Dy in IP, m

0.5 / 0.5βx_min / βy_min in IP, m

5.9 / 0.2Dx_max / Dy_max in FODO period, m

5.26 / 5.17Betatron tunes Qx / Qy

102100

RF system harmonics amplitude, [kV]

100 ÷ 10Vacuum, [ pTorr ]

4.95 / 3.012 GeV/uTransition energy, γ_tr / E_tr

16.8 / 15.2βx_max / βy_max in FODO period, m

-12.22 / -11.85Chromaticity Q’x / Q’y

Collider General parameters (Contnd)

Page 16: Application of Cooling Methods to NICA Project · Booster KRION + “New” HILAC Nuclotron Collider MPD SPD Beam dump. August 31, 2009 COOL Workshop, Lanzhou, China 5 A.Smirnov,

August 31, 2009 COOL Workshop, Lanzhou, China 16

A.Smirnov, Application of Cooling Methods to NICA ProjectApplication of Cooling Methods to NICA Project

1717Number of bunches per ring1E91E9Ion number per bunch

50650IBS growth time, s0.00510.0026Beam-beam parameter ξ0.0470.056Incoherent tune shift ΔQbet

1.1E270.75E26Luminosity per one IP, cm-2·s-10.30.3Rms bunch length, m

1E-31E-3Rms momentum spread0.25 3.8Rms unnormalized beam emittance, π·mm mrad

3.51.0Energy, GeV/u

Collider General parameters (Contnd)

Collider beam parameters and luminosity

Page 17: Application of Cooling Methods to NICA Project · Booster KRION + “New” HILAC Nuclotron Collider MPD SPD Beam dump. August 31, 2009 COOL Workshop, Lanzhou, China 5 A.Smirnov,

August 31, 2009 COOL Workshop, Lanzhou, China 17

A.Smirnov, Application of Cooling Methods to NICA ProjectApplication of Cooling Methods to NICA Project

Electron cooling system of the ColliderMax electron energy, MeV 2.5Max electron current, A 0.5Solenoid magnetic field, T 0.3 - 2“Magnetized” electron beamSolenoid type: “warm” at acceleration/deceleration columns

superconducting at transportation and cooling sectionsHV generator: Dynamitron type

6 m

3 m

Under development in collaboration - All-Russian Institute for

Electrotechnique (Moscow)- IKP (FZ-Juelich)

- Budker INP (Novosibirsk)

Page 18: Application of Cooling Methods to NICA Project · Booster KRION + “New” HILAC Nuclotron Collider MPD SPD Beam dump. August 31, 2009 COOL Workshop, Lanzhou, China 5 A.Smirnov,

August 31, 2009 COOL Workshop, Lanzhou, China 18

A.Smirnov, Application of Cooling Methods to NICA ProjectApplication of Cooling Methods to NICA Project

Electron cooling in ColliderParameters of electron cooling system

1.0Beam lifetime due to recombination, hour

5.0Longitudinal electron temperature meV

50.0Transverse electron temperature, eV

20Beta functions in cooling section, m

2×10-5Magnetic field inhomogeneity in cooling section

2.0Magnetic field in cooling section, T

0.5Electron beam radius, cm

0.5Electron beam current, A

6.0Effective cooler length, m2.4Maximum electron energy, MeV

Page 19: Application of Cooling Methods to NICA Project · Booster KRION + “New” HILAC Nuclotron Collider MPD SPD Beam dump. August 31, 2009 COOL Workshop, Lanzhou, China 5 A.Smirnov,

August 31, 2009 COOL Workshop, Lanzhou, China 19

A.Smirnov, Application of Cooling Methods to NICA ProjectApplication of Cooling Methods to NICA Project

Simulation of e-cooling process

luminosity

emittances (normalized)

momentum spread (GeV/c)

profiles

invariants

core

tail

Page 20: Application of Cooling Methods to NICA Project · Booster KRION + “New” HILAC Nuclotron Collider MPD SPD Beam dump. August 31, 2009 COOL Workshop, Lanzhou, China 5 A.Smirnov,

August 31, 2009 COOL Workshop, Lanzhou, China 20

A.Smirnov, Application of Cooling Methods to NICA ProjectApplication of Cooling Methods to NICA Project

Longitudinal stochastic cooling in Collider(Palmer method)

1. Particle: 197Au79+, 3.5 GeV/u, Gamma=4.76, Beta=0.978 2. Ring circumference: 225 m 3. Number of particles: 1e9 ions/bunch. 4. Achieved Bunch length: ~ 0.12 m, 0.4 nsec (1 sigma)5. Initial (injected) momentum spread : 1.5e-3 (1 sigma)6. Initial (injected) bunch length : 0.7 m, 2.5 nsec (1 sigma)7. Ring slipping factor: 0.02328. Time of flight from PU to Kicker: 0.4 e-6 sec 9. Dispersion at PU: 5.0m, Dispersion at Kicker=0.0 m 10. Band width: 2-4 GHz11. Number of PU, and Kicker=128 12. Pickup Impedance=50 Ohm13. Gain=90 dB. 14. Atmospheric Temperature: 300 K, Noise Temperature=40 K15. RF Voltage = 10 kV, (Harmonic Number=102)16. Transverse emittance = 0.3 Pi mm.mrad (constant)

Page 21: Application of Cooling Methods to NICA Project · Booster KRION + “New” HILAC Nuclotron Collider MPD SPD Beam dump. August 31, 2009 COOL Workshop, Lanzhou, China 5 A.Smirnov,

August 31, 2009 COOL Workshop, Lanzhou, China 21

A.Smirnov, Application of Cooling Methods to NICA ProjectApplication of Cooling Methods to NICA Project

Simulation of s-cooling process

50 sec

Page 22: Application of Cooling Methods to NICA Project · Booster KRION + “New” HILAC Nuclotron Collider MPD SPD Beam dump. August 31, 2009 COOL Workshop, Lanzhou, China 5 A.Smirnov,

August 31, 2009 COOL Workshop, Lanzhou, China 22

A.Smirnov, Application of Cooling Methods to NICA ProjectApplication of Cooling Methods to NICA Project

Longitudinal Stochastic cooling for Nuclotron

kicker

pick up

Page 23: Application of Cooling Methods to NICA Project · Booster KRION + “New” HILAC Nuclotron Collider MPD SPD Beam dump. August 31, 2009 COOL Workshop, Lanzhou, China 5 A.Smirnov,

August 31, 2009 COOL Workshop, Lanzhou, China 23

A.Smirnov, Application of Cooling Methods to NICA ProjectApplication of Cooling Methods to NICA Project

GSI/FAIR (Darmstadt)SC dipoles for Booster/SIS-100SC dipoles for Collider

NICA Collaboration

Budker INP (Novosibirsk)Booster RF systemBooster electron coolingCollider RF systemCollider SC magnets(expertise)HV electron cooler for colliderElectronics

IHEP (Protvino)Injector Linac

IKP (FZ-Jűlich)HV Electron coolerStoch. cooling

Fermilab (Batavia)HV Electron coolerStoch. cooling

All-Russian Institute for ElectrotechniqueHV Electron cooler (Moscow)

Corporation “Powder Metallurgy” (Minsk, Belorussia)Technology of TiN coating of vacuum chamber walls for reduction of secondary emission

BNL (Upton)Electron &Stoch. Cooling

ITEP (Moscow). Beam Dynamics