(Application of continuous chromatographic purification...

50
(Application of continuous chromatographic purification technology in the manufacturing of therapeutic monoclonal antibodies) 2019 2

Transcript of (Application of continuous chromatographic purification...

Page 1: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

(Application of continuous chromatographic purification technology in the

manufacturing of therapeutic monoclonal antibodies)

2019 2

Page 2: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

1

CEX1 CEX2 AEX AC

HCP DNA

HMW LMW

96

DOE

4 DNA HCP

Page 3: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

2

3 pH

DOE

pH

15 50

CEX1

CEX2 10

HCP

DNA 96

DOE

pH

HCP DNA

80%

95%

Page 4: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

3

96

2.1

2.2

2.3

2.4

2.5

3.1

3.2

3.3

3.4

6.1

6.2

Page 5: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

4

Figure 1

Figure 2 HCP

DNA

Figure 1.

Page 6: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

5

Figure 2.

Page 7: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

6

Table 1

HCP

DNA

CEX1 CEX2 AEX AC

HCP DNA

HMW LMW

96

DOE

4 DNA HCP

3 pH

DOE

Page 8: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

7

Table 1.

Page 9: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

8

96

2.1

mAb

[1]

[2]

[3] [4]

[2]

[5]

[9]

[10] [11]

[12]

[6 – 8]

[13, 14, 15]

3

A

Page 10: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

9

[13]

HIC

MMC

CHT CEX

AEX [16]

HCP DNA

[17] CEX AEX

/

CEX /

AEX

AEX

[18-20] HIC

[21] MMC

[22]

[23-24]

AEX

AC

CEX

AC

AC

Page 11: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

10

[25] AC

[26]

CEX

[28] pH

1

CEX [29-32]

/

96

DOE

2.2

2.2.1

pH

pH

2

Figure 3

pH

Page 12: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

11

Figure 3. /

3

PCC periodic counter-current

PCC

FTC

Figure 4

Figure 4.

Page 13: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

12

/

Figure 5

Figure 5. /

2.2.2

Figure 6

pI

CEX

AEX

CEX

AEX

Page 14: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

13

Figure 6. [42]

2.3

2.3.1

AC Merck KGaA, Darmstad, Germany, Millistak +® CR40

[33] OmniFit® Diba Industries Inc.,

Danbury, CT, USA 10 mm ×13 mmH

CEX1

[29] S-

m

Merck KGaA, Darmstadt, Germany 0.2mL MediaScout® MiniChrom

5 mm × 10 mmH AEX Eshmuno®

Q 1mL MiniChrom Merck KGaA, Darmstadt, Germany 1250650001

CEX Tricon®™ 0.4 mL

5 mm × 20 mmH SP Sepharose® Fast Flow CEX2 GE Healthcare,

Buckinghamshire, UK 96 AcroPrep™ Advance 96

Filter Plate, Pall, Cat. No. PN8184

Page 15: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

14

2.3.2 96

(Cat. No. 1.37012.5000, Merck KGaA, Darmstadt, Germany)

(Cat. No. 016–17453, Wako, Osaka, Japan) (Cat. No. 17114–08,

Kanto Chemical, Tokyo, Japan) (Cat. No.41101–08, Kanto Chemical)

(Cat. No. 38129–08, Kanto Chemical)

(10M, Cat. No. 37901–08, Kanto Chemical) pH

pH 5 pH 6 1 M pH

2.5 2 M pH 11 pH 5 pH 6

25 mM pH

7 pH 7 25 mM

2.3.3 HPLC

(Cat. No. 197–02865, Wako)

(Cat. No. 28721–55, Nacalai Tesque, Kyoto, Japan) (1 M, Cat. No. 083–

01095, Wako) (Cat. No. 166–04831, Wako) 2-

-2- -1,3- (Cat. No. 207–06275, Wako)

(Cat. No. 167–02166, Wako) HPLC IgG

(Cat. No. 37239–00, Kanto Chemical) (Cat. No.

167–02166, Wako) (Cat. No. 37240–00,

Kanto Chemical) HPLC SEC

(Cat. No. 191–

01665, Wako) (Cat. No. 25183–3B, Kanto Chemical)

2.3.4

mAb-A mAb-B

Table 2 CHO

A

pH

Page 16: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

15

Table 2.

Protein Subtype pI*

mAb-A IgG1 7.66

mAb-B IgG1 8.16

*pI (Isoelectric point) as calculated from the primary amino acid sequence (Genetyx,

Tokyo, Japan).

pH

3 mS / cm

1 M pH 2.5

2 M pH 11 AC

AEX pH 7 CEX

pH 5 pH 0.2 mm

Millex® Merck KGaA, Darmstadt, Germany

2.3.5

ÄKTA® Avant 25 GE

Healthcare, Buckinghamshire, UK Figure 7

4

(Figure 7 #1 - #4)

pH 1 2 2 AC

AEX CEX

2

1 3 AEX 2

4 CEX

Table 3

Page 17: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

16

Figure 7.(*) Sample conditions were adjusted by buffer dilution and/or pH adjustment.

Table 3. 96

Study ProteinConcentration

(mg/mL)

DNA

(pg/mg)

HCP

(ng/mg)

HMW1

( %)

HMW2

( %)

Monomer

( %)

LMW1

( %)

LMW2

( %)

Flow-through study

mAb-A 8.32 17117 782 0.95 1.42 96.1 1.49 0.00

mAb-B 10.9 3985 1888 2.47 1.72 94.2 1.57 0.03

96-well platestudy

mAb-A 9.33 8552 885 1.44 1.35 95.9 1.23 0.09

mAb-B 10.94 4047 2191 1.22 1.86 95.4 1.44 0.11

1 25

mM pH 7

3 2, 4 0.33 mL / min 1, 3 0.66 mL /

min AC 600 mg mAb / mL media

100 mg mAb / mL media

AEX 200 mg mAb / mL resin 40 mg mAb / mL

resin CEX1 pH 5

= 3min 1, 3 0.07 mL / min 2, 4

0.14 mL / min = 3 min

pH 5 3 mS / cm 1000 mg mAb / mL resin

Page 18: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

17

200 mg mAb / mL resin

1900 mg mAb / mL resin

CEX1 CEX2

2.3.6 96

DOE AC

CEX1 AC

CEX1 L 96

500 L

1 500 × g 5 Himac Compact Centrifuges,

CF16RXII, HITACHI 3

mAb Table 7

800 L/ well 20

96

3 pH pH5 pH6 pH7

3 500 mg mAb / mL resin 1000 mg mAb / mL resin

1500 mg mAb / mL resin

DNA HCP

JMP®11 SAS

Institute Inc.,

pH

2.3.7 HPLC

HPLC- A

POROS® A/20 (Life Technologies Japan Ltd,

Tokyo, Cat. No. 1-5024-12) Shimadzu Prominence

280 nm 9.4 mM

0.6 mM 150 mM

Page 19: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

18

5 % IPA pH 7.9 12 mM 125 mM

5 % IPA(pH 2.0

< 1 mg mAb / mL 15 L 1 mg mAb / mL

3 L 1.5 mL/ min

0.05 1 mg / mL 1 20 mg / mL

2.3.8 HPLC

TOSOH TSKgel®G3000SWXL m, 7.8 mm ID

x 300 mm, Tosoh Corp., Cat. No. 08541) Shimadzu Prominence / Nexera

X2 280nm mAb-A

0.3 M NaCl 50 mM pH 6.8

mAb-B 1 M NaCl 20 mM pH 6.5

0.5 mL/ min 10 L

2.3.9 HCP-ELISA

ELISA (Cygnus Technologies, CHO HCP

ELISA kit, 3G, Cat. No. F550) (HCP)

(Cygnus Technologies, Cat. No. 1028)

Perkin Elmer Japan, Wallac, EnVision™, 2104 Multilabel

Reader

2.3.10 DNA

QIAamp DNA Mini Kit 250 (QIAGEN, Cat. No. 51306) DNA

PCR qPCR DNA

7500 PCR Applied Biosystems

DNA(resDNASEQ Quantitative CHO DNA

Kits, Life Technologies Japan, Cat. No. 4403965)

3 300000 pg / mL

Page 20: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

19

2.4

2.4.1

HCP

DNA HMW LMW

4

A Figure

8 HMW

CEX1

98 % AEX

mAb-A LMW

HMW2

CEX1 mAb-B

HMW1 pH AC

AEX

mAb-B pH mAb-A

HCP DNA

Figure 9 AC DNA

HCP DNA

HCP AC

mAb-B Figure 9 pH DNA

HCP pH

0.2

AC 3 mS / cm

A pH

VIA pH7 DNA 99.3 99.4% HCP 72 73%

HMW1 90 95%

Table 4

Page 21: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

20

Page 22: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

21

Figure 8. %

LMW1 LMW2 HMW1 HMW2

HMW1 HMW2

Page 23: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

22

Figure 9. mAb-A mAb-B HCP

DNA

Page 24: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

23

Table 4.Protein Process step Concentration

(mg/mL)

DNA

(pg/mg)

HCP

(ng/mg)

HMW1

( %)

HMW2

( %)

Monomer

( %)

LMW1

( %)

LMW2

( %)

mAb-A

#1 AC-AEX-CEX1 2.55 < 11.8 < 0.4 0.02 0.49 98.4 1.08 0.01

#2 AC-CEX1-AEX 2.67 < 11.2 31.0 0.00 0.31 98.6 1.04 0.01

#3 AEX-CEX1 2.43 < 12.3 < 0.4 0.00 0.07 98.8 1.13 0.02

#4 CEX1-AEX 1.78 < 16.8 < 0.6 0.00 0.36 98.6 0.94 0.06

mAb-B

#1 AC-AEX-CEX1 3.95 < 0.76 < 0.25 0.00 0.07 98.2 1.68 0.03

#2 AC-CEX1-AEX 3.06 < 0.98 < 0.33 0.00 0.57 98.2 1.16 0.03

#3 AEX-CEX1 3.11 1.10 2.00 0.00 0.06 98.5 1.44 0.04

#4 CEX1-AEX 3.60 0.70 < 0.28 0.00 0.29 98.2 1.44 0.04

2.4.2

4 mAb-A mAb-B

Figure 10 (a) 80 86%

AC

mAb-A mAb-B

Figure 10 (b)

AC AEX 94 97 %

CEX1

88 91%

Page 25: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

24

Figure 10.

(a) Total mAb yield for the various flow-through downstream purification trains. (b)

MAb step recovery as a function of the different unit operations applied, where the

previous steps are shown in the left of bar. See text for a complete description of the

different technologies evaluated.

Page 26: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

25

2.4.3

AC HCP DNA dynamic

breakthrough curves Figure 11 (a) 620 mg mAb / mL media

1.9 % HCP

DNA

AC

311 mg mAb / mL media 90 %

Figure 11 (b) AEX

DNA AC

HCP

AC AEX

HCP

CEX HMW

Figure 11 (C) HMW

400 mg /

mLresin

HMW1

HMW2 HMW1

2 CEX

CEX1 HMW2 CEX2

CEX1 10 HMW2

Page 27: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

26

Figure 11.

(a) DNA and HCP effluent from AC (#1 and #2) as a function of mAb-B loading. DNA

feed = 28 pg / mg, HCP feed = 512 ng / mg. (b) DNA and HCP effluent from AEX (#3)

as a function of mAb-B loading. DNA feed = 23 pg / mg, HCP feed = 537 ng / mg. (c)

Breakthrough concentrations of mAb concentration, Monomer, HMW1 and HMW2

species from CEX1 (CEX prototype) and CEX2 (SP Sepharose® Fast Flow) as a

function of mAb-B loading.

Page 28: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

27

2.4.4

AC CEX1

pH

HCP

DNA pH

DOE

AC DOE Figure 12

mAb-A mAb-B 98%

1000 mg mAb / mL resin

AC [33] pH

pH

mAb-A HCP pH

DNA mAb-B

HCP DNA pH

HCP

mAb-A

mAb-B HCP

AC 1500 mg mAb /

mL media

CEX1 DOE

Figure 13 AC

HCP DNA

1500 mg mAb / mL resin 95 %

4 mS / cm

HCP DNA

pH mAb-A

pH5.5 pH6.0 mAb-B pH6.5 pH7.0

Page 29: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

28

Figure 12. AC DOE

The effect of three input parameters (pH, conductivity, mAb loading) was evaluated for

four response parameters: monomer yield, DNA, HCP, % monomer. Both response

contour plots for pH and conductivity (a) and (c) were plotted at the loading of 1000 mg

mAb / mL resin.

Page 30: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

29

Figure 13. (CEX1) DOE

The effect of three input parameters (pH, conductivity, mAb loading) was evaluated for

four response parameters: monomer yield, DNA, HCP, % monomer. Both response

contour plots for pH and conductivity (a) and (c) were plotted at the loading of 1000 mg

mAb / mL resin.

Page 31: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

30

2.5

2 AC

AEX CEX

2

[34]

1 DNA

HCP AEX

3 log10

DNA AC

HCP 2

HCP 2 AC

HCP AC

HCP DNA

Figure 11 (a) HCP

pH

HCP [26]

[35, 36] pH

HCP

DOE AC

pH6 pH7 4mS / cm

AEX HCP

DNA AC

AEX Figure 10(b) AC

AEX

HCP Figure 11(b)

Page 32: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

31

HCP DNA AC

AEX

AEX AC

Figure 9 AC

AEX mAb-A

HCP

CEX1

Figure 11

CEX1 CEX1

DOE

Figure 13

/

CEX1 CEX2 Figure 11

/

10 HMW2

DOE 30

100 mg mAb / mL resin /

[37] 15 50

[38] HMW

[39 ] Figure 11

CEX2 HMW1

HMW2

HMW1

3 AEX

HMW2

Page 33: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

32

CEX1

CEX1

pI

Figure 13 pH

pI pI mAb-A

CEX1 pH

pH5 pH6

pH7 VIA

pH5 pH7 pH

2 3 pH 1 3%

DOE pH7

mAb-B

mAb-A pH6 VIA

pH

CEX

[31]

1

Page 34: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

33

3.1

DOE

AC

CEX AEX

pH

HCP DNA

[43]

3.2

3.2.1

AC CEX GE Healthcare,

Buckinghamshire, UK Tricon® 5 mm 2.5 cmH 0.5 mL

AEX 1 mL

ÄKTA®

Avant 25 GE Healthcare, Buckinghamshire, UK

AC-AEX-CEX AEX-CEX 2

3.2.2

25 mM 15 mL

pH 6 1.87 mS / cm

DOE [40]

0.2 mL/ min 20 mL

Page 35: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

34

200 mL 1500 mg

pH pH 6 4 mS / cm

AC = 2.5 min AEX = 5 min CEX = 2.5 min

60 mL 120 mL 180 mL 3

25 mM pH 6,

1.87 mS / cm 10 CV 1 M NaCl 25 mM

pH 6, 83.9 mS / cm 10 CV

3.2.3

HMW LMW DNA

HCP Shimadzu Prominence

Shimadzu Corp., Kyoto, Japan POROS ® A/20

Life Technologies Japan Ltd, Tokyo HPLC-

A HMW

LMW SEC Shimadzu Prominence / Nexera X2

TOSOH TSKgel® G3000SWXL

ELISA CHO HCP ELISA Cygnus

Technologies HCP

DNA PCR 7500 PCR Applied

Biosystems

3.3

AEX-CEX AC-AEX-CEX

Figure 14

2

AEX-CEX = 23 min AC-AEX-CEX = 29 min 0.2 mL / min

Page 36: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

35

Figure 15 AEX-CEX

HCP

< 328 mg HCP

AEX [40]

DNA 656 mg

AC HCP

DNA

HCP 70 ng / mg IgG DNA 1306 mg

CEX

[41] 1 CEX

2 328 mg

Figure 16 AC AEX CEX 2 mL

1469 mg HCP 14 ng / mg

DNA 0.18 pg / mg monomer 97.2 % HCP < 100 ng

/ mg DNA < 10 pg / mg monomer > 95 %

96 % AC

HCP DNA

AC

CEX AEX

/

CEX AEX

1 / 75 1 / 15

CEX 40 g IgG / L resin AEX 100 g IgG / L resin

95 %

Page 37: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

36

Figure 14.

(A) AEX-CEX, (B) AC-AEX-CEX.

Page 38: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

37

Figure 15.

Feed condition is; mAb concentration = 8.2 mg / mL, HCP = 567 ng / mg IgG, DNA

= 7276 pg / mg IgG, HMW1 = 0.78 %, HMW2 = 1.65 %, Monomer = 96.53 %,

LMW1 = 0.93 %, LMW2 = 0.1 %.

Page 39: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

38

Figure 16.

(A) Yield, (B) HCP, (C) DNA, (D) Monomer, (E) HMW, (F) LMW.

Bold dot line is target bulk drug specification.

Page 40: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

39

3.4

DOE

pH

AC HCP

DNA LMW AEX

HCP

DNA CEX

Page 41: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

40

4.1

1. Marichal-Gallardo PA, Alvarez MM. State-of-the-Art in Downstream Process of

Monoclonal Antibodies: Process Trends in Design and Validation. Biotechnol Prog.

2012;28 (4): 899-916. doi: 10.1002/btpr.1567.

2. Kelley B. Very large scale monoclonal antibody purification: the case for

conventional unit operations. Biotechnol Prog. 2007;23(5): 995–1008. doi:

10.1021/bp070117s.

3. Sommerfeld S, Strube J. Challenges in biotechnology production – generic

processes and process optimization for monoclonal antibodies. Chemical

Engineering and Processing. 2005;44: 1123-1137. doi: 10.1016/j.cep.2005.03.006.

4. Shukla AA, Hubbard B, Tressel T, Guhan , Low D. Downstream processing of

monoclonal antibodies-Application of platform approaches. J Chromatogr B.

2007;848: 28–39. doi: 10.1016/j.jchromb.2006.09.026.

5. Konstantinov K. Cooney C, White Paper on Continuous Bioprocessing. ISCMP

White Paper. 2014;4: 1-14.

6. Jungbauer A. Continuous downstream processing of biopharmaceuticals. Trends in

Biotechnology. 2013;31(8): 479-492. doi:10.1016/j.tibtech.2013.05.011

7. Zydney AL. Perspectives on integrated continuous bioprocessing – opportunities

and challenges. Curr Opin Chem Eng. 2015;10: 8-13.

doi:10.1016/j.coche.2015.07.005

8. Walther J, Godawat R, Hwang C, Abe Y, Sinclair A, Konstantinov K. The business

impact of an integrated continuous biomanufacturing platform for recombinant

protein production. J Biotechnol. 2015;213: 3-12.

doi:10.1016/j.jbiotec.2015.05.010

9. Shamashkin M, Godavarti R, Iska T, Coffman J. A tandem laboratory scale protein

purification process using Protein A affinity and anion exchange chromatography

operated in a weak partitioning mode. Biotechnol Bioeng. 2013;110(10):2655-2663.

doi: 10.1002/bit.24955.

10. Winters D, Chu C, Walker K. Automated Two Step Chromatography Using an

Page 42: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

41

AKTA Equipped with In-Line Dilution Capability. J Chromatogr A. 2015;1424:51-

58. doi: 10.1016/j.chroma.2015.10.092.

11. Holzer M, Osuna-Sanchez H, David L. Multi-column chromatography: anew

approach to relieving capacity bottlenecks for downstream processing efficiency.

Bioprocess Int. 2008;6:74–82.

12. Dizon-Maspat J, Bourret J, D’Agostini A, Li F, Single Pass Tangential Flow

Filtration to Debottleneck Downstream Processing for Therapeutic Antibody

Production. Biotechnol Bioeng. 2012;109(4):962-970. doi: 10.1002/bit.24377.

13. Warikoo V, Godawat R, Brower K, Jain S, Cummings D, Simons E, Johnson T,

Walther J, Yu M, Wright B, McLarty J, Karey K, Hwang C, Zhou W, Riske F,

Konstantinov K. Integrated continuous production of recombinant therapeutic

proteins. Biotechnol Bioeng. 2012;109(12):3018-3029. doi: 10.1002/bit.24584.

14. Pollock J, Bolton G, Coffman J, Ho SV, Bracewell DG, Farid SS. Optimizing the

design and operation of semi-continuous affinity chromatography for clinical and

commercial manufacture. J Chromatogr A. 2013;1284:17–27. doi:

10.1016/j.chroma.2013.01.082.

15. Godawat R, Konstantinov K, Rohani M, Warikoo V. End-to-end integrated fully

continuous production of recombinant monoclonal antibodies. J Biotechnol.

2015;213: 13-19. doi: 10.1016/j.jbiotec.2015.06.393.

16. Liu HF, Ma J, Winter C, Bayer R. Recovery and purification process development

for monoclonal antibody production. mAbs. 2010;2(5): 480-499.

doi:10.4161/mabs.2.5.12645.

17. Goswami S, Wang W, Arakawa T, Ohtake S. Developments and Challenges for

mAb-Based Therapeutics. Antibodies. 2013;2(3):452-500.

doi:10.3390/antib2030452

18. Wang C, Soice N, Ramaswamy S, Gagnon B, Umana J, Cotoni K, Bian N, Cheng

KS. Cored anion-exchange chromatography media for antibody flow-through

purification. J Chromatogr A. 2007;1155(1):74–84. doi:

10.1016/j.chroma.2007.04.030.

19. Weaver J, Husson S, Murphy L, Wickramasinghe SR. Anion Exchange Membrane

Adsorbers for Flow-Through Polishing Steps: Part II. Virus, Host Cell Protein, DNA

Clearance, and Antibody Recovery. Biotechnol Bioeng. 2013;110(2):500-510. doi:

Page 43: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

42

10.1002/bit.24724.

20. Gjoka X, Gantier R, Schofield M. Transfer of a three step mAb chromatography

process from batch to continuous: Optimizing productivity to minimize consumable

requirements. J Biotechnol. 2017;242, 11–18. doi: 10.1016/j.jbiotec.2016.12.005.

21. Ghose S, Tao Y, Conley L, Cecchini D. Purification of monoclonal antibodies by

hydrophobic interaction chromatography under no-salt conditions. mAbs.

2013;5(5):795–800. doi: 10.4161/mabs.25552.

22. O’Connora E, Aspelunda M, Bartnika F, Bergec M, Coughlinb K, Kambaramia M,

Spencerb D, Yanb H, Wanga W. Monoclonal antibody fragment removal mediated

by mixed mode resins. J Chromatogr A. 2017;1499:65–77.

Doi:10.1016/j.chroma.2017.03.063

23. Phillips M, Mann F, Ribault S. Continuous mAb processing. Euro Biotech News.

2013;12(6-7):40-41.

24. Zhang J, Conley L, Pieracci J, Ghose S. Pool-less processing to streamline

downstream purification of monoclonal antibodies. Eng Life Sci. 2017;17(2):117–

124. doi:10.1002/elsc.201600104

25. Marsh H. Rodríguez-Reinoso F. Activated Carbon; Elsevier Science: Oxford;2006.

26. Stone MT, Kozlov M. Separating proteins with activated carbon. Langmuir.

2014;30(24): 8046–8055. doi:10.1021/la501005s.

27. Hill DA, Mace P, Moore D. Frontal chromatographic techniques in preparative

chromatography. J Chromatogr A. 1990; 523: 11-21. Doi:10.1016/0021-

9673(90)85007-I

28. Suda EJ, Thomas KE, Pabst TM, Mensah P, Ramasubramanyan N, Gustafson ME,

Hunter AK, Comparison of agarose and dextran-grafted agarose strong ion

exchangers for the separation of protein aggregates. J Chromatogr A.

2009;1216(27):5256–5264. doi: 10.1016/j.chroma.2009.05.021.

29. Kozlov M, Potty A, Galipeau K, Hamzik J, Umana J, Peeck L. Removal of protein

aggregates from biopharmaceutical preparations in a flow-through mode. EMD

Millipore Corporation. WO2013138098A1. 2013.

30. Gillespie C, Kozlov M, Phillips M, Potty ASR, Skudas R, Stone M, Xenopoulos A,

Dupont A, Jaber J, Cataldo W. Integrating continuous and single-use methods to

establish a new downstream processing platform for monoclonal antibodies. In:

Page 44: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

43

Subramanian, G. (Ed.). Continuous Processing in Biopharmaceutical

Manufacturing: Wiley-VCH; 2015.

31. Xenopoulos A, Phillips M, Moya W, Jaber J, Kozlov M, Potty A, Stone MT, Cataldo

W, Gillespie C, Purification of Biological Molecules. EMD Millipore Corporation.

WO2014004281 A1. 2014.

32. Xenopoulos A, A new, integrated, continuous purification process template for

monoclonal antibodies: Process modeling and cost of goods studies. J Biotechnol.

2015; 213:42-53. doi: 10.1016/j.jbiotec.2015.04.020.

33. EMD Millipore. The use of Millistak+R Activated Carbon (AC) for downstream

purification of monoclonal antibodies. Application note; 2015. Lit No. AB57750000

Rev. A.

34. Chon JH, Zarbis-Papastoitsis G. Advances in the production and downstream

processing of antibodies. New Biotechnology. 2011;28(5):458-463. doi:

10.1016/j.nbt.2011.03.015.

35. Chase HA. Prediction of the performance of preparative affinity chromatography. J

Chromatogr A. 1984;297:179–202.

36. Nash DC, Chase HA. Comparison of diffusion and diffusion-convection matrices

for use in ion-exchange separations of proteins. J Chromatogr A. 1998;807(2):185–

207.

37. Stein A, Kiesewetter A. Cation exchange chromatography in antibody purification:

pH screening for optimized binding and HCP removal. J Chromatogr B.

2007;848(1):151–158. doi: 10.1016/j.jchromb.2006.10.010.

38. Reck JM, Pabst TM, Hunter AK, Wang X, Carta G, Adsorption equilibrium and

kinetics of monomer–dimer monoclonal antibody mixtures on a cation exchange

resin. J Chromatogr A. 2015;1402: 46–59. doi: 10.1016/j.chroma.2015.05.007.

39. Reck JM, Pabst TM, Hunter AK, Carta G. Separation of antibody monomer-dimer

mixtures by frontal analysis. J Chromatogr A. 2017;1500:96–104. doi:

10.1016/j.chroma.2017.04.014.

40. Ichihara, T., ITO, T., Kurisu, Y., Galipeau, K. et. al., Integrated flow-through

purification for therapeutic monoclonal antibodies processing. Mabs, 2018 Vol.10,

Issue 2, 325-334.

41. Suda, E.J., Thomas, K.E., Pabst,T.M., Mensah, P. et al., Comparison of agarose and

Page 45: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

44

dextran-grafted agarose strong ion exchangers for the separation of protein

aggregates. J Chromatogr A. 2009, 1216, 5256–5264.

42. Yoshimoto, N., Yamamoto, S. Simplified methods based on mechanistic models for

understanding and designing chromatography processes for proteins and other

biological products -Yamamoto Models and Yamamoto Approach- in Preparative

chromatography for separation of proteins, Chp.4, pp, 111-157, Wiley, 2017.

43. Takamitsu Ichihara, Takao Ito, Christopher Gillespie. Polishing approach with fully

connected flow-through purification for therapeutic monoclonal antibody.

Engineering in Life Sciences. 2019 Vol.19, Issue 1, 31-36.

Page 46: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

45

CEX1 CEX2 AEX AC

HCP DNA

HMW LMW

96

DOE

4 DNA HCP

Page 47: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

46

3 pH

DOE

pH

15 50

CEX1

CEX2 10

HCP

DNA 96

DOE

pH

HCP DNA

80%

95%

Page 48: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

47

6.1

6.1.1

(1) Takamitsu Ichihara, Takao Ito, Yasuhiko Kurisu, Kevin Galipeau,

Christopher Gillespie

Integrated flow-through purification for therapeutic monoclonal antibodies

processing

mAbs

volume 10, Issue 2, pp. 325-334

30 2

( )

(2) Takamitsu Ichihara, Takao Ito, Christopher Gillespie

Polishing approach with fully connected flow-through purification for

therapeutic monoclonal antibody

Engineering in Life Sciences

volume 19, Issue 1, pp. 31-36

31 1

( )

6.1.2

(1) Noriko Yoshimoto, Takamitsu Ichihara and Shuichi Yamamoto

: Connected flow-through chromatography processes as continuous

downstream processing of proteins

25th Regional Symposium on Chemical Engineering (RSCE 2018)

21-22 Nov. 2018 in Makati City, Philippines

( )

Page 49: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

48

6.1.3

(1)

Newsletter

Vol.46, pp.21-22

30 1

( 1 )

6.2

6.2.1

(1) Tomoya Sugita, Makoto Katayam, Mina Okochi, Ryuji Kato, Takamitsu

Ichihara, Hiroyuki Honda

Screening of peptide ligands that bind to the Fc region of IgG using peptide

array and its application to affinity purification of antibody.

Biochemical Engineering Journal

79, 33-40.

2013

Page 50: (Application of continuous chromatographic purification ...petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/...(Application of continuous chromatographic purification technology in the

49