Appendix: Table of Core-Level Binding Energies978-3-540-35382-9/1.pdf · Appendix: Table of...

29
Appendix: Table of Core-Level Binding Energies This table lists binding energies (up to ~ 1500 eV) of core levels obtained from elements in their natural form using photoemission spectroscopy. Tile binding energies are given in electron volts [eV] relative to the vacuum level for tile rare gases and H2, N2, Oz, F2, C12: relative to the Fermi level for the metals; and relative to the top of the valence bands for semiconductors. Errors in the last digit(s) are given parenthetically as they have been quoted by the authors. Since these errors are in almost all cases (except for 1-40]) a mere measure of the precision of the measurements, we have tried to list whenever possible more than one binding energy to convey a feeling for the accuracy of the binding energies, in a number of elements only a few binding energies were obtai,led under UHV conditions from clean surfaces; we have then used the energy differences of Bearden and Burr [19] to derive the missing energies. For the elements P, CI, Zr, Nb, Ru, I, Hf, Os, and the radioactive elements Po through Pa we had to rely entirely on the compilation by Siegbalm et al. [22] because no new trustworthy data seemed to be available. These values arc set in parentheses. Electrons contributing to the valence bands or molecular orbits of a solid or molecule are marked "VE" (valence electrons). The spin-orbit splitting of levels, which can be measured more accurately than the absolute binding energies of the doublet components, are sometimes given behind the initials s.o.

Transcript of Appendix: Table of Core-Level Binding Energies978-3-540-35382-9/1.pdf · Appendix: Table of...

Page 1: Appendix: Table of Core-Level Binding Energies978-3-540-35382-9/1.pdf · Appendix: Table of Core-Level Binding Energies This table lists binding energies (up to ~ 1500 eV) of core

Appendix: Table of Core-Level Binding Energies

This table lists binding energies (up to ~ 1500 eV) of core levels obtained from elements in their natural form using photoemission spectroscopy. Tile binding energies are given in electron volts [eV] relative to the vacuum level for tile rare gases and H2, N2, Oz, F2, C12: relative to the Fermi level for the metals; and relative to the top of the valence bands for semiconductors. Errors in the last digit(s) are given parenthetically as they have been quoted by the authors. Since these errors are in almost all cases (except for 1-40]) a mere measure of the precision of the measurements, we have tried to list whenever possible more than one binding energy to convey a feeling for the accuracy of the binding energies, in a number of elements only a few binding energies were obtai,led under UHV conditions from clean surfaces; we have then used the energy differences of Bearden and Burr [19] to derive the missing energies. For the elements P, CI, Zr, Nb, Ru, I, Hf, Os, and the radioactive elements Po through Pa we had to rely entirely on the compilation by Siegbalm et al. [22] because no new trustworthy data seemed to be available. These values arc set in parentheses. Electrons contributing to the valence bands or molecular orbits of a solid or molecule are marked "VE" (valence electrons). The spin-orbit splitting of levels, which can be measured more accurately than the absolute binding energies of the doublet components, are sometimes given behind the initials s.o.

Page 2: Appendix: Table of Core-Level Binding Energies978-3-540-35382-9/1.pdf · Appendix: Table of Core-Level Binding Energies This table lists binding energies (up to ~ 1500 eV) of core

374

#

e ~

r ~

('-I

t ~

ii i:ii I i

I ! °

Page 3: Appendix: Table of Core-Level Binding Energies978-3-540-35382-9/1.pdf · Appendix: Table of Core-Level Binding Energies This table lists binding energies (up to ~ 1500 eV) of core

375

@ r-- m;

i I = i

. . . . ]

> ;>

I . 4

d I I ,I

~ ~ ' ~

r ~

, . i"~ - . . J . d II

o 4 0 4

IN r ~ r ~

r ~

a l

F~ o o C~ r q

3

' - -~ L

c~0

r - - ~ r-~ ? 0

4 o

Page 4: Appendix: Table of Core-Level Binding Energies978-3-540-35382-9/1.pdf · Appendix: Table of Core-Level Binding Energies This table lists binding energies (up to ~ 1500 eV) of core

376

I > >

>

S

r~ v r l

> >

I

e-i

r - r -

-- -- r~i

l_. i ~'~-~

s ~ N

~ , ~ , ~ ~ -

~'~ ~'4 n c o d ~ d

t- i ,,h

- ~ - ~ ,~

r~

r ~ '

W

&-

2

~ r-~ C~

~ . ~ _ ~ ~ , - ,

NNNNN ~ R R

c 6 ~ •

Page 5: Appendix: Table of Core-Level Binding Energies978-3-540-35382-9/1.pdf · Appendix: Table of Core-Level Binding Energies This table lists binding energies (up to ~ 1500 eV) of core

F ~ [ " '

r ' ~ O , , 6

e q ' ~ -

e q

, ¢ q

r....3 ¢ q

t ~

7- ¸

6

377

Page 6: Appendix: Table of Core-Level Binding Energies978-3-540-35382-9/1.pdf · Appendix: Table of Core-Level Binding Energies This table lists binding energies (up to ~ 1500 eV) of core

378

i I •

> > >

>

r~ r~ ~

o

Q

1

Page 7: Appendix: Table of Core-Level Binding Energies978-3-540-35382-9/1.pdf · Appendix: Table of Core-Level Binding Energies This table lists binding energies (up to ~ 1500 eV) of core

379

#- H

, ~ ,n -

Page 8: Appendix: Table of Core-Level Binding Energies978-3-540-35382-9/1.pdf · Appendix: Table of Core-Level Binding Energies This table lists binding energies (up to ~ 1500 eV) of core

380

E E

E

I I

E E ' ~ ,

~ E ' ~ ,

g

¢'-i

~ ~ ~ ~ i~1~ I ~ ' ,

Z ~ X

~', ±

II ~ II Q It

L

Page 9: Appendix: Table of Core-Level Binding Energies978-3-540-35382-9/1.pdf · Appendix: Table of Core-Level Binding Energies This table lists binding energies (up to ~ 1500 eV) of core

ii ̧ i it ~ . ~ ' _~'~,,

381

Page 10: Appendix: Table of Core-Level Binding Energies978-3-540-35382-9/1.pdf · Appendix: Table of Core-Level Binding Energies This table lists binding energies (up to ~ 1500 eV) of core

3 8 2

>

~ i # ~ ,,

g ~

.,-, .,-,

-li

r £ I ~-

- -s

- Q

o

E

r~

E

r l

1

Page 11: Appendix: Table of Core-Level Binding Energies978-3-540-35382-9/1.pdf · Appendix: Table of Core-Level Binding Energies This table lists binding energies (up to ~ 1500 eV) of core

383

References

1 This is the vertical ionization potential. The adiabatic value is 15.45 eV. See D. H. Turner: Molecular Photoelectron Spectroscopy (Wiley-Interscience, New York 1970)

2 D.A.Shirley, R.L. Martin, S.P. Kowalczyk, F.R. McFeely, L. Ley: Plays. Rev. B 15, 544 (1977) 3 G. Johansson, J. Hedman, A. Berndtsson, M. Klasson, R. N ilsson: J. Electr. Spectr. 2, 295 (I973) 4 K.Siegbahn, C. Nordling, G.Johansson, J. Hedman, P.F. Hed~n, K. Hamrm, U.Gelius, T.

Bergmark, L. O. Werme, R. Manne. Y. Baer: ESCA Applied to Free Molecules (North-Holland, Amsterdam 1971)

5 This line shows multiplet splitting AE; the energy given is that of the most intense component 6 T.X.Carroll, R.W.Shaw, Jr., T.D. Thomas, C. Kind[e, N. Bartlett: J. Amer. Chem. Soc. 96,

1989 (1974) 7 W. Lotz: J. Opt. Soc. Am. 57, 873 (1967); 58, 236 (1968); 58, 915 (1968); from optical data 8 S. Hiifiaer: Private communication 9 J.C. Fuggle, E. Kiillne, L.M. Watson, D.J.Fabian: Phys. Rev. B 16,750 (1977)

10 P.H.Citrin, G.K. Wertheim, Y. Baer: Phys. Rev. B 16, 4256 (1977) l 1 R.S. Bauer, R.Z. Bachrach, J.C. McMenamin, D.E.Aspnes: Nuovo Cimento 39 B, 409 (1977) 12 F.C. Brown, Om P.Rustgi: Phys. Rev. Lett. 28, 497 (t972) 13 S.A. Flodstrom, R.Z. Bach rach, R.S. Bauer, S. B. M. Hagstr6m : Phys. Rev. Lett. 37, 1282 (1976) 14 The Co binding energies quoted by Shir[ey el. al. [2] appear to be consistently too high by

~2 eV. The Co2p3/2 binding energy deviates by ~ + 1.5 eV from the trend observed for the series Ti through Ni. [.Compare Y. Fuk uda, W.T. Elam, R. L. Park : Phys. Rev. B 16, 3322 ( 1977)]

15 L. Ley, S.P. Kowalczyk, F.R. McFee[y, R.A. Pollak, D.A. Shirley: Phys. Rev. B8, 2392 (1973) 16 R.T. Poole, P.C. Kemeny, J.Liesegang, J.G.Jenkin, R.C.G. Leckey: J. Phys. F: Metal Phys.

3, L 46 (1973) 17 G.K. Wertheim, M.Campagna, S.Hiifner: Phys. Cond. Matter 18, 133 {1974) 18 The splitting is larger than the free atom spin-orbit splitting due to crystal field effects;

see L. Ley, R.A. Pollak, F.R. McFeely, S. P. Kowalczyk, D.A.Shirley: Phys. Rev. B9,600 (1974) 19 Obtained by combining the photoemission binding energies with energy differences from

J.A.Bearden, A.F. Burr: Rev. Mod. Phys. 39, 125 (1967) 20 S.P. Kowalczyk, Ph.D.Thesis, University of California, Berkeley (1976) unpublished 20a W. Eberhardt, G. Kalkofen, C. Kunz, D. Aspnes, M. Cardona: Phys. Stat. Sol. (b) 88, 135 (1978) 21 N.J.Shevchik, M.Cardona, J.Tejeda: Phys. Rev. B8, 2833 (1973) 22 K.Siegbahn, C. Nordling, A. Fahlman, R. Nordberg, K. Hamrin, J. Hedman, G.Johansson,

T. Bergmark, S. E. Karlsson, 1. Lindgren, B. Lindberg: Nova Acta Regiae Soc. Sci. Ups. Ser. IV, Vol. 20 (Uppsala 1967)

23 C.E. Moore: Atomic Energy Levels, Washington, Nat. Bureau of Standards, Circ. 467 (1949, 1952, 1958)

24 G. Ebbinghaus: Ph. D. Thesis, Stuttgart (1977) unpublished 25 R.G.Oswald, T.A. Catlcott: Phys. Rev. B4, 4122 (1971). 26 R.A. Pollak, S. P. Kowalczyk, L. Ley, D. A. Shirley: Phys. Rev. Lett. 29, 274 (1972) 27 Broadened beyond recognition due to multielectron effects. See for example, U.Gelius:

J. Electr. Spectr. 5, 985 (I967) S. P. Kowalczyk, L. Ley, R.L. Martin, F.R. McFeely, D.A.Shirley: Farad. Disc. Chem. Soc. 60, 7 (1975)

28 H. Petersen: Phys. Star. Sol. (b)72, 591 [1975) 29 F.R. McFeely, S.P. Kowalczyk, L. Ley, R.G. CavelI, R.A. Pollak, D.A.Shirley: Plays. Rev. B9,

5268 (1974) 30 S.P. Kowalczyk, L. Ley, R.A. Pollak, D.A.Shirley: Phys. Lett. 41 A, 455 (1972) 31 L. Ley, R.A. Pollak, S.P. Kowalczyk, D.A.Shirley: Phys. Lett. 41 A, 429 (1972) 32 Z. Hurych, R.L. Benbow: Phys. Rev. Lett. 38, 1094 (1977) 33 B.D. Padalia, W.C. Lang, P.R. Norris, L.W. Watson, D.J.Fabian: Proc. Roy. Soc. London

A 354, 269 (1977)

Page 12: Appendix: Table of Core-Level Binding Energies978-3-540-35382-9/1.pdf · Appendix: Table of Core-Level Binding Energies This table lists binding energies (up to ~ 1500 eV) of core

384

34 Complex multiplet structure; for details see [.33] and also Y. Baer, G. Busch: Phys. Rev. Lett. 31, 35 (1973) Y. Baer, G. Busch: J. Electr. Spectr. 5, 611 (1974) S. P. Kowalczyk, N. Edelstein, F.R. McFeely, L. Ley, D.A.Shirley : Chem. Phys. Lett. 29, 491 (1974) F.R. McFeely, S. P. Kowalczyk, L. Ley, D.A.Shirley: Phys. Lett. 45A, 227 (1973) M. Campagna, G.K. Wertheim, Y. Baer: "Unfilled Inner Shells: Rare Earths and Their Compounds", Chap. 4 of this volume If a binding energy is given, it is that of the most intense peak or a member of the multiplet that is identified

35 S.P. Kowalczyk, N.Edelstein, F.R. McFeely, L. Ley, D.A.Shirley: Chem. Phys. Lett. 29, 491 (1974)

36 F.R. McFee[y, S.P. Kowalczyk, L. Ley, D.A.Sbirley: Phys. Lett. 49A, 301 (1974) 37 Y. Baer, G.Busch: J. Electr. Spectr. 5, 611 (1974) 38 F.R. McFeely, S. P. Kowalezyk, L. Ley, D.A. Shirley: Phys. Lett. 45 A, 227 (1973) 39 G.Sch~Sn: J. Electr. Spectr. 1,377 (1972/73) 40 K. Asami: J. Electr. Spectr. 9, 469 (1976) 41 S. Hfifner, G.K. Wertheim, J.H. Wernick: Sol. State Commun. 17, 417 (1975) 42 Obtained for a solid film of Sa; from W.R.Salaneck, N.O. Lipari, A. Paton, R. Zallen, KS.

Liang: Phys. Rev. 12 B, 1493 (1975); the binding energies have been corrected for a Au4fT/2 energy of 84.0 below Ev

43 S.Svensson, N.Martensson, E. Basilier, P.A. Malmquist, U. Gelius, K.Siegbahn: Physica Seripta 14, 141 (1976)

44 From characteristic electron energy loss measurements; B. M. Hartley: Phys. Stat. Sol. 31,259 (1969)

45 J.Azoulay: Private communication 46 M.Cardona, J.Tejeda, N.J.Shevchik, D.W. Langer: Phys. Star. Sol. (b) 58, 483 (1973) 47 W.D.Grobman, D.E. Eastman, J.L. Freeouf: Phys. Rev. B 12, 4405 (1975) 48 B.von Roedern: Private communication

Page 13: Appendix: Table of Core-Level Binding Energies978-3-540-35382-9/1.pdf · Appendix: Table of Core-Level Binding Energies This table lists binding energies (up to ~ 1500 eV) of core

Additional References with Titles

Chapter 2

A.A. Akhayan, A.N. Brozdnichenko, E.V. Bursion: Influence of the spontaneous polarization on the photoelectric emission from LiNbO3. Sov. Phys .~ol id State 20, 912 (1978)

P.M.Th.M. van Atteleum, .I.M. Trooster: Bulk and surface plasmon loss intensities in photo- electron Auger and electron energy loss spectra of AI metal. Phys. Rev. B18, 3872 (1978)

J. Baars, D. Basselt, M. Schultz: Metal-semiconductor barrier studies of PbTe. Phys. Status Solidi a46, 489 (1978)

R.Z. Bachrach, A. Bianconi: Interface States at the Ga-GaAs interface. J. Vac. Sci. Technol. 15, 525 (1978)

R.L. Benbow, Z. Hurych: Angle resolved photoemission from layered BizTe3: theory and experiment. Solid State Commun. 28, 641 (1978)

K. Berndt, U. Marx, O. Briimmer: Electronic structure of FeNi alloys by means of photo- electron spectroscopy. Phys. Status Solidi b90, 487 (1978)

D.W. Bullett: Electronic band structure and bonding in transition metal layered dichalcogenides. J. Phys. C22, 4501 (1978)

D.J. Chadi: (110) Surface states of GaAs: sensitivity of electronic structure to surface structure. Phys. Rev. B18, 1800 (1978)

P.W. Chye, I. Lindau, P. Pianetta, W.E. Spicer, C.M. Garner: Evidence for a new type of metal-semiconductor interaction on GaSb. Phys. Rev. B 17, 2682 (1978)

M. Cini: Theory of the Auger effect in solids: p/asmon effects in electron spectroscopies of valence states. Phys. Rev. B 17, 2486 (1978)

O.B. Dabbousi, P.S. Wehner, D.A. Shirley: Temperature independence of the angle-resolved X-ray photoemission spectra of Au, Pt, valence bands. Solid State Commun. 28, 227 (1978)

E. Dietz, D.E. Eastman: Symmetry method for the absolute determination of energy band dis- persions E(k). Phys. Rev. Lett. 41, 1674 (1978)

S. Evans, R.G. Pritchard, J.M. Thomas: Relative differential subshell photoionisation cross- sections (MgK~) from lithium to uranium. J. Electr. Spectrosc. 14, 341 (1978)

C.M. Garner, W.E. Spicer: New phenomena in adsorption of 02 on Si. Phys. Rev. Lett. 40, 4O3, (1978)

S.M. Goldberg, C.S. Fadley, S. Kono: Photoelectric cross sections for fixed orientation atomic orbitals: relationship to the plane-wave final state approximation and angle resolved photo- emission. Solid State Commun. 28, 459 (1978)

T. Grandke, L. Ley, M. Cardona: Angle-resolved uv photoemission and electronic band structure of the lead chalcogenides. Phys. Rev. B 18, 3847 (1978)

H.W. Haak, G.A. Sawatzky, T.D. Thomas: Auger photoelectron coincidence measurements in Cu. Phys. Rev. Lett. 41, 1825 (1978)

G.V. Hansson, S.A. Flodstr6m: Photoemission from surface states and surface resonances on the [100], [110], and [111] crystal faces of aluminium. Phys. Rev. BI8, 1562(1978)

G.V. Hansson, S.A. Flodstr6m: Photoemission study of the bulk and surface electronic structure of single crystals of gold. Phys. Rev. B18, 1572 (1978)

F.J. Himpsel, W. Steinmann: Angle resolved photoemission from NaCI (100} face. Phys. Rev. B 17, 2537 (1978)

H. lhara, H. Abe, S. Endo, I. Irie: Valence band densities of states of Cdln2S 4 and In2S 3 from X-ray photoelectron spectroscopy. Solid State Commun. 28, 563 (1978)

Page 14: Appendix: Table of Core-Level Binding Energies978-3-540-35382-9/1.pdf · Appendix: Table of Core-Level Binding Energies This table lists binding energies (up to ~ 1500 eV) of core

386 Additional References with Titles

5th Annual Conference on the Physics of Compound Semiconductor Interfaces. J. Vacuum Sci. Technol. 15 (1978)

N.D. Land, A.R. Williams: Core holes in chemisorbed atoms. Phys. Rev. 16, 2408 (1977) A.I. Larkin, V.I. Molnikov: Energy distribution of X-ray photoelectrons. Soy. Phys.-Solid State

20, 74 (1978) M.G. Mason, L.J. Gerenser, S.T. Lee: Electronic structure of catalytic mutal clusters studied by

X-ray photoemission spectroscopy. Phys. Rev. Lett. 39, 288 (1977) L. Mihich: Self-consistent calculation of energy band structure of (SN) x by the intersecting

spheres model. Solid State Commun. 28, 521 (t978) Y. Mizokawa, H. lwasaki, R. Nishitani, S. Nakamura: ESCA studies of Ga, As, GaAs, Ga20.~,

As20 3, and AszO ~ (core and Auger spectra only). J. Electr. Spectrosc. 14, 129 (1978) I.D. Moore, J.B. Pendry: Theory of spin polarized photoemission from Ni. J. Phys. C22,

4615 (1978) V.V. Nemoshkalenko, V.G. Aleshin, Yu. N. Kucherenko: Theoretical investigation of the

structure of X-ray photoelectron spectra of crystals [diamond, St, GaAs). J. Eleclr. Spectrosc. 13, 361 (1978)

J.A. Nicholson, J.D. Riley, R.C.G. Leckey, J.G. Jenkin, J. Liesegang, J. Azoulay: Ultraviolet photoelectron spectroscopy of the valence bands of some An alloys. Phys. Rev. BIg, 2561 (1978)

A.W. Parke, A. McKinley, R.H. Williams: Surface states and the surface structure of cleaved silicon. J. Phys. C24, L993 11978)

P. Pianelta, I. Lindon, C.M. Garner, W.E. Spicer: Chemisorption and oxidation studies of the (I 10) surface of GaAs, GaSb, InP. Phys. Rev. BI8, 2792 (I978)

A. Platau, S.E. Karlsson: Valence band of ],-Ce studied by UPS and XPS. Phys. Rev. 18, 3820 (1978)

E.W. Plumer, W.R. Salaneck, J.S. Miller: Photoelectron spectra of transition metal carbonyl complexes. Comparison with the spectra of adsorbed CO. Phys. Rev. B I8, 1673 (1978)

W. Pong, C.S. Inouye, S.K. Okada: Ultraviolet photoemission studies of BaF 2 and BaCI z. Phys. Rev. B 18, 4422 11978)

M. Sagurton, D. Liebowitz, N.J. Shevchik: Oxidation-induced breakdown of the conservation of perpendicular momentum in angle resolved photoemission spectra of Cu(l 11). Phys. Rev. Lett. 42, 274 [1979)

W.R. Salaneck, H.R. Thomas: Energy-Gain Satellite in the C(I s) X-ray photoemission spectra of organic macromolecules. Solid State Commun. 27, 685 (1978)

B. Schr6der, W. Grobman, W.L. Johnson, C.C. Tsuei, P. Chaudari: A comparative study of amorphous and crystalline superconducting molybdenum films by ultraviolet photoelectron spectroscopy. Solid State Commun. 28, 631 (1978)

N.J. Shevchik, D. Liebowitz: Theory of angle resolved photoemission from the bulk bands of solids 1. Formalism. Phys. Rev. 16, 1618 (1978)

N.J. Shevchik, D. Liebowitz: Application to Ag (11 I). Phys. Rev. 18, 1630 (1978) J. Szajman, J. Liesegang, R.C.G. Leckey, J.G. Jenkin: Photoelectron determination of mean

free paths of 200-1500 electrons in KI. Phys. Rev. BIg, 4010 (1978) P. Thiry, Y. Petroff, R. Pinchaud, C. Guillot, Y. Ballu, J. Lecante, J. Paigne, F. Levy:

Experimental band structure of GaSe obtained by angular resolved photoemission. Solid Stale Commun. 22, 685 (1977)

S. Tougard: Surface relaxation of zincblende (110). Phys. Rev. BI8, 3799 (1978) S.L. Weng, E.W. Plummer, T. Gustafsson: Experimental and theoretical studies of the surface

resonances on the (100) faces of W and Mo. Phys. Rev. BIg, 1718 (1978) F. Werfel, G. Br~iger, B. Brfimmer, H. Jurisch: XS (X-ray emission) and XPS investigation

of V3Si electrtm structure. Pl~ys. Status Solidi bg0, KSJ (1977) A.R. Williams, N.D. Lang: Core level binding energy sh;rts-metals. Phys. Rev. Lett. 40, 954

(1978) K.C. Woo, F.C. Brown: Infrared study of superlattice formation in Ti~+~Se2. Solid State

Commun. 28, 341 (1978)

Page 15: Appendix: Table of Core-Level Binding Energies978-3-540-35382-9/1.pdf · Appendix: Table of Core-Level Binding Energies This table lists binding energies (up to ~ 1500 eV) of core

Additional References with Titles 387

Chapter 5 D.T. Clark: "ESCA Applied to Organic and Polymeric Systems", in: Handbook q! X-ray aml

Ultraviolet Photoelectron Spectroscopy, ed. by D. Briggs (Heyden, London I977) Chap. 6, p. 211

J. A. Connor: "X PS Studies of Inorganic and OrganometalIic Compotmds', in : Handbook q/'X-rav and Ultraviolet Photoetectrm7 Spectroscopy, ed. by D. Briggs (14eyden, London 1977) Chap. 5, p. 183

D.T. Clark: Some experimental and theoretical aspects of structure, bonding and reactivity of organic and polymeric systems as revealed by ESCA. Phys. Scr. 16, 307 (1977)

S. Hashimoto, S. Hino, K. Seki, 14. Inokuchi: Anisotropic photoemission from oriented polyethylene. Cllem. Phys. Lett. 40, 279 (1976)

K. Seki, S. Hashimoto, N. Sato, Y. 14arada, K. lshii, H. lnokuchi, J. Kanbe: Vacuum-ultraviolet photoelectron spectroscopy of hexatriacontane (n-C3,HT,,) polycrystaI: a model compound of polyethylene. J. Chem Phys. 66, 3644 (1977)

J.J. Pireaux, J. Riga, R. Caudano, J.J. Verbist, 3. Delhalte, S. Delhalle, J.M. Andr6, Y. Gobillon: Polymer primary structures studied by ESCA and E14CO methods. Phys. Scr. 16, 329 (1977)

M. Fujihira, 14. Inokuchi: Photoemission from polyethylene. Chem. Phys. Lett. 17, 554 (1972) D. Betteridge, D.J. Joyner, F. Gruming, N.R. Shoko, M.E.A. Cudby, H.A. Willis, T.E. Attwood,

L. Henriksen: The analysis of polymer degradation products by UV-photoelectron spectro- scopy. Phys. Scr. 16, 339 (1977)

J. Riga, J.J. Pireaux, J.J. Verbist: An ESCA study of the electronic structure of solid benzene. Valence levels, core level, and shake-up satellites. Mol. Phys. 34, 131 (1977)

J. Riga, J.J. Pireaux, R. Caudano, J.J. Verbist: Y comparative ESCA study of the electronic structure of solid acenes: benzene, naphthalene, anthracene, and tetracene. Phys. Scr. 16, 346 (1977)

F.E. Fischer, S.R. Kelemen, I4. P. Bonzel: Adsorption of acetylene and benzene on the Pt(100) surface. Surf. Sci. 64, 157 (1977)

J.E. Demuth: Initial-state shift of the carbon 2 s levels of chemisorbed hydrocarbons on nickel Phys. Rev. Lett. 40, 409 (1978)

WR. Salaneck: lntermolecu[ar relaxation energies in anthracene. Phys. Rev. Lett. 40, 60 (1978) W.R. Salaneck, H.R. Thomas: Energy-gain satellite structure in the C (1 s) X-ray photo-

emission spectra of organic macromolecules. Solid State Commun. 27, 685 (1978) S. Hino, K. Seki, H. Inokuchi: Photoelectron spectra of p-Terphenyl in gaseous and solid slate.

Chem. Phys. Lett. 36, 335 (1975) K. Seki, 14. lnokuchi, N. Sato, K. Ishii: "'VUV-Photoelectron Spectroscopy of Hexatriacontane

(n-C36Hv,,) in Solid and Gaseous Phases", in: 8th Mol. Cryst. Syrup. Santa Barbara Calif., May 29-June 2, 1977

L. Nemec, H.J. Gaers, L. Chia, P. Delahay: Photoelectron spectroscopy of liquids up to 21.2 eV. J. Chem. Phys. 66, 4450 (1977)

J. Knecht, 14. B~issler: An ESCA-study of solid 2,4-hexadiyne-l,6-diol-bis-(toluenesulfonate) and its constituents before and after polymerization. Chem. Phys. 33, 179 (1978)

J.J. Ritsko, P. Nielsen, J. S. Miller: Photoemission from ferrocene, decamethylferrocene, and decamethylferrocene bis-(7,7,8,8-tetracyano-p-quinodimethane). J. Chem. Phys. 67, 687 (1977)

N.S. Hush, A.S. Cheung: Study of valence level splitting in a porphin type rc-cation dimer by He I photoelectron spectroscopy. Chem. Phys. Lett. 47, 1 (1977)

S. Muralidharan, R.G. Hayes: XPS studies of the valence electron levels of meta/lophorphyrins. Chem. Phys. Lett. 57, 630 (1978)

H. H6chst, A. Goldmann, S. Htifner, 14. Malter: X-ray photoelectron valence band studies on phthalocyanine compounds. Phys. Status Solidi (b/76, 559 (1976)

H. Malter: On the electronic molecular structure of the organic semiconductor copper phthalocyanine Phys. Status Solidi (b) 74, 627 (1976)

F.L. Battye, A. Goldmann, L. Kasper: Ultraviolet photoelectron valence band studies on phthalocyanine compounds. Phys. Status Solidi (b) 80, 425 (1977)

Page 16: Appendix: Table of Core-Level Binding Energies978-3-540-35382-9/1.pdf · Appendix: Table of Core-Level Binding Energies This table lists binding energies (up to ~ 1500 eV) of core

388 Additional References with Titles

M. lwan, W. Eberhardt, G. Kalkoffen, E.E. Koch, C. Kunz: Photoemission studies on phthalocyanine compounds: cross section dependence of outer core levels. Chem. Phys. Lett., in press (DESY preprint SR-78/04)

J. Berkowitz: Photoelectron spectroscopy of phthalocyanine vapors. J. Chem. Phys., in press (preprint Nov. 1978)

M. Iwan, E.E. Koch: 3p-core threshold effects in photoemission from quasiatomic Ni in nickel-phthalocyanine. (preprint Jan. 1979)

R.J. Dam, C.A. Burke, O.H. Griffith: Photoelectron quantum yields of the amino acids. Biophys. J. 14, 467 (1974)

R.J. Dam, K.F. Kongslie, O.H. Griffith: Photoelectron quantum yields of heroin, hemoglobin, and apohemoglobin. Biophys. J. 14, 933 (1974)

C.A. Burke, G.B. Birrelli, G.H. Lesch, O.H. Griffith: Depth resolution in photoelectron microscopy of organic surfaces. The photoelectric effect of phthalocyanine thin films. Photochem. Photobiol. 19, 29 (1974)

R.J. Dam, K.F. Kongslie, O.H. Griffith: Photoelectron quantum yields and photoelectron microscopy of chlorophyll and chlorophyllin. Photochem. Photobiol. 22, 265 (1975)

R.J. Dam, K.K. Nadakavukaren, O.H. Griffith: Photoelectron microscopy of cell surfaces. J. Microsc. 3, 211 (1977)

D. Bloor, G.C. Stevens, P.J. Page, P.M. Williams: Photoelectron spectra of single crystal diacetylene polymers. Chem. Phys. Lett. 33, 61 (1975)

G.C. Stevens, D. Bloor, P.M. Williams: Photoelectron valence band spectra of diacetylene polymers. Chem. Phys. 28, 399 (1978)

C. B. Duk e, A. Paton, W. R. Salaneck, H. R. Thomas, E. W. Plu tamer, A. J. Heeger, A. G. M acdiramid : Electronic structure of polyenes and polyacetylene. Chem. Phys. Lett. 59, 146 (1978)

W.R. Salaneck, J.W. Lin, A.J. Epstein: X-ray photoemission spectroscopy of the core levels of polymeric sulfurnitride (SN)~. Phys. Rev. B 13, 5574 (1976)

H.J. Stolz: ,,Gittcrdynamische und elektronische Eigenschaften von Polyschwefelnitrid (SN)x". Dissertation, Universit~it Stuttgart 1977

J. Sharma, Z. Iqbal: X-ray photoelectron spectroscopy of brominated (SN)x and $4N4. Chem. Phys. Lett. 56, 373 (1978)

K. Seki, Y. Kamura, J. Shirotani, H. Inokuchi: Absorption spectra and photoemission of amonium-TCNQ salt evaporated films. Chem. Phys. Lett. 35, 513 (1975)

J.J. Ritsko, A.J. Epstein, W.R. Salaneck, D.J. Sandman: Surface electronic structure of tetrathiafulvalene-tetracyanoquinodimethane. Phys. Rev. BIT, 1506 (1978)

P. Nielsen: Substrate dependent ionization and polarization energies of molecules: dibenz- tctr~thiafulvalene. Solid State Commun. 26, 835 (1978)

J.A. Riga, J.J. Verbist, F. Wudl, A. Kruger: The electronic structure and conductivity of tetrathiotetracene, tetrathionaphtalene, and tetraselenotetracene studied by ESCA. J. Chem. Phys. 69, 3221 (1978)

Page 17: Appendix: Table of Core-Level Binding Energies978-3-540-35382-9/1.pdf · Appendix: Table of Core-Level Binding Energies This table lists binding energies (up to ~ 1500 eV) of core

Subject Index

Page numbers in italics refer to Photoemission in Solids I: General Principles, Topics in Applied Physics, Vol. 26, ed. by M. Cardona, L. Ley (Springer, Berlin, Heidelberg, New York 1978)

Absorption coefficient 41 Alloys, concentrated 210 - edge 14,41 , dilute 206 - index 41 -, minimum polarity model 206 Acenes 268 - of transition metals 206 -, molecular orbitals 270 , virtual bound state model(Friedel-Anderson)

Adenine 280 206 AIN 23, 120

Adsorbates, alkali metals 43 -, synchrotron radiation experiments 341, AISb 21

343, 344 -, amorphous 101 Ag 194~201 -, critical points 59

- , w o r k function 49 -, core line asymmetry 225,228 -, 4d subshell-photoionization cross sections , XPS spectrum 57

315 Amorphous I II-V compounds 100-104

-, photoionization cross section 68 - group V semiconductors 104, 108 -, UPS spectra 199, 209 - group V] semiconductors 111-114

-, valence band spectra (XPS) 196 - semiconductors 41 Analysis, elemental concentration through core

-, work function 19 level intensities 80 AgBr 21,67-72 Angular asymmetry parameter (cross sections) AgCI 21,67-72 81 -, band structure 22 Angular resolution 242 -, partial density of states 71 Angular resolved photoemission

Agl 23, 67-72 (ARP, ARPES) 319, 237 -, band structure 22 - - -, conduction band states 333-335 -, partial density of states 69 - in metals 258-262 -, valence band spectra (XPS and UPS) 69, 70 - - - in semiconductors 249,254 259 Ag-O-Cs 6 - - - of surface states 139 AgPd alloys 210 - - orbital information 249 - , valence band spectra (XPS) 207 , valence bands of semiconductors - - , virtual bound state parameters 208 80-85

AgPt alloys, virtual bound state parameters Anodes 52 208 Anthracene 272 277

Ag2S 13 -, absorption spectrum 276 AI 9, 350, 149 -, Frenkel exciton 272,273 -, core level spectrum 359, 363 -, MO calculations 273 -, oxidized UPS spectra 343 -, photoemission spectrum 269, 273, 274, 276

-, photoabsorpt ion coefficient 149 - - , angle resolved 274

-, plasmons 359-361,363 Antifluorite structure 24 -, SXPS spectra (synchrotron radiation) 320 At, photoionizat ion cross section 68

-, valence band spectrum 369 -, solid UPS spectra (synchrotron radiation)

-, work function 39 332 -, yield spectrum and absorption spectra 323 Aromatic hydrocarbons 267

Alkali halides 124, 74, 76, I78 As, 104 metals 365, 366, 5 -, amorphous 105-107

Page 18: Appendix: Table of Core-Level Binding Energies978-3-540-35382-9/1.pdf · Appendix: Table of Core-Level Binding Energies This table lists binding energies (up to ~ 1500 eV) of core

390 Subject Index

As, orthorhombic 107

, photoabsorption cross section 154, 155 -, Raman spectrum 105 -, valence band spectrum 106

As2S 3 I I ,31 ,32 ,86 As4S 4, valence band spectrum (X PS) 110 As2Se 3 86,111 AszTe 3 32, 86,111 A7 structure 96, 104, 107 Asymmetry, core lines 352, 353, 15 Au 194 200. 202 -, 5d and 4.[ subshell photoionization cross

sections 315 , angular resolved PES 251 , core lines 207

-, photoionization cross section (photoabsorption) 45, 146, 147, 153, 154

- s tandard 13 AuAg alloy 210 AuAI 212 AuzAI 212 AuAI 2 212, 75

, yield spectrum 328 AuCu alloys 210 Auger decay 78~80

processes, interatomic 245 249,80 - spectroscopy 9, 15,60

spectrum, Na 365 AuPd alloys, virtual bound state parameter

2O8 Auo.t Pto, 9 75 AuSn 75 AuSn4 75

Back-bound, Si 140, 142 , S i ( l l t ) : H 153

Background in photoemission spectra (inelastic tail) 193, 354

Band bending 128. 133, 156, 24 - gap spectroscopy 319 - structure calculations 15-36 - , augmented plane waves (APW) 35, 44

- , bond, orbital model (BOM) I8, 22 - - -, empirical pseudopotential method

(EPM) 16, 19, 22, 25, 26, 29, 30 -- , empirical t ight-binding model (ETBM)

t7 -, orthogonalized plane waves [OPW) 32

- ,complex 90, 98 - of semiconductors 15

- - regime in photoemission, Ge 51 - , two-dimensional 32 39,255,256

tailing 115 -, photoemission spectrum a-Si 116

- width, 3delectrons 191

Ba, photoabsorpt ion cross section 157-159 -, photoionization t87-189 Be 350, 358 -, core level spectrum 357 - ,dens i ty of states 366 -, plasmon 357, 360 -, valence band spectrum 366 Benzene, UPS spectrum 269, 271 Bethe lattice 94,95 Beyond the one-electron picture 165 B i 1 0 4 , 105 -, amorphous 105

, photoabsorpt ion cross section 147, 148, 153, 154

-, Raman spectrum 105 -, spin-orbit splitting 105 -, valence band spectrum (XPS) 106 Bil 3 77 Binary alloys, stability 51 Binding energies, 4.f and 4d electrons in rare

earths 253, 254 , core levels 373, 60-70, 265

- - in ionic solids 73 - - in semiconductors 126-129

-, 5s and 5p electrons in rare earths 236

Bi2S % 32 BizTe 3 32 Black phosphorus structure 29, 107 Bond orbital model (BOM) 17, 18, 93 Bonding charge 118, 130 Born-Oppenheimer approximat ion 177 Brillouin zone, fcc lattice 83 Bulk incoming wave state 112

- outgoing wave components 11I, 12l, 123 Butane, UPS spectrum 267

CaB6 245 Calibration, energy 13 Catalysis, heterogeneous 153 Cd, core line asymmetry 228 Cd3As 2 24 Cdl 2 33 CdlnzS. ~ 26 CdS 23 -, band structure 23 CdSe 23 CdSnAs 2, vatence band spectrum (XPS) 60 Ce 235, 240, 252 -, 4J 'orbitals 235

,a-phase 237 -, ,,,-phase 237 -, ? ,~e transition 235 -, halides 238 --, photoionization cross sections 68, 157

, XPS spectrum 230, 237

Page 19: Appendix: Table of Core-Level Binding Energies978-3-540-35382-9/1.pdf · Appendix: Table of Core-Level Binding Energies This table lists binding energies (up to ~ 1500 eV) of core

Subject Index 391

CcAs, X P S s p e c t r a 241 ,251 ,252 C E L 43

see Electron energy losses

CcF 3 252 Ccnt ra l field a p p r o x i m a t i o n 136. 140 CeSb, XPSspech-a 241.251 253 C F 4 I79 CH 4 56, 179

, valence band spcc t rum (XPS) 267 C h a l c o p y r i t e c o m p o u n d s 24, 61, 70 Channe l t ron , channel plate 56 Charge densi ty waves ( C D W ) 36-38

• a m p l i t u d e 38 • c o m m e n s u r a t e 37

• - - , effect on core levels 38 , f i rs t -order phase t r ans i l ions 38 , i n c o m m e n s u r a t e 37. 39 , phase 38

. . . . . , R a m a n effect 38 - transfer 126 Charg ing , in organic c o m p o u n d s 262

• m pho toemiss ion 262, 13, 17 Chemica l po ten l ia l 33

shill 14, 60-75 of core levels of rare gases, imp lan ted in

noble meta ls 70 73 - shift in a l loys 74, 75 C h e m i s o r p t i o n 151,154,57 Clean ing by mil l ing, filing, b rush ing 59 Cleavage face, polar , n o n p o l a r 148 Cleav ing 58 Clusters , finite 98 Co 200, 179

, va lence band spec t rum [XPS) 20[ Coheren t po ten t ia l a p p r o x i m a t i o n 210, 211 Cohes ive energy 35, 36 C o m p a t i b i l i t y relat ions, z i ncb l ende -d i amond

20 C o m p o u n d s , l III VI 2 24 -, I I - I V - V 2 24

, I I3-V 2 24 • l l V I 19,23

-, I I -VI : valence band spectra (X PS) 57 • I I 1 V 19 • III V: valence band spect ra (XPS) 57

-, I I I - V I I 28 --, I l l 2 - V l ~ 24

, IV VI 62 -, IV-VI : valence band spect ra 63

,V2VI 3 30, 31 Conf igu ra t ion in terac t ion 14, 170, 182 186 - - final s tate (FSCI) 182-186 - - in the c o n t i n u u m (CSCI) 156, 182, 184,

187 - , ini t ial s ta te (ISCI) 182, 184, 189

Conse rwl t i on OfklL 53, I2/, 239, 254 257 C o n s t a n t final s tate spec t roscopy [CFS)

300• 314, 316, 317, 240, 260, 262 ini t ial state spec t roscopy (CIS) 2, 79, 300, 314, 317, 318

Con tac t po ten t ia l 4.13, 22 difference 150

C o n t a m i n a t i o n 265 ,57 ,58 Contmuousrandomnelwork 87, 99 C o O 183

• UPS spec t rum and par t ia l d-, p - componen t s 182

• valence band s p e c t r u m ( X P S ) 188 C o o p e r i n in imum 314, 315, 145, 156 Core exci tons 337-339, 9 - levels 60

, cross sect ions 8(I l ifetime 79, 80

, line a s y m m e t r y 353, 201,202, 205 . . . . Imc shape 353, 197 229 - re laxa t ion 14l, 152 - shifts 121, 126, 127, 129,60 75 - - ,effect of molecu la r po la r i za t ion 290,

291

- in charge transfer sal ts 288, 289 - in o rgan ic molecu les 288 293

- - , po ten t ia l model 288, 289, 6t, 64-70 - , s ingular i ty index 353, 354, 202, 204• 226

• spect ra of s imple metals 357 364, 210-224

width 76~0, 208 217 , v ib ra t iona l con t r i bu t i on 335, 76

- po la r i za t ion 167 Cor re l a t i on 16, 156, 18l 186 - energy 176, 191,224,35,36 - - , Ce 235

, i n t r a a tomic 257 - , in tershel l 250

, mtrashe l l 250 Cova len t gap 121 Cri t ical po in ts 52, 59, 65, 84, 8 - - , i n l e rband 41 Cr203 180 CHO3, UPS spectra and par t ia l d-,

p - componen t s 182,189 C H O 3, valence band spec t rum (XPS) 181 Cross section, par t ia l 68, 219, 271,367

- , p h o t o a b s o r p t i o n (pho to ion iza t ion ) 82, 83,136 I60

- - , , accura te ca lcu la t ions 149 159 , , C , S i , G e 55,56

Crysta l field sp l i t t ing 179 Cs coverage 87, 5, 17, 42, 43 C s P b B H 28 CsPbCI 3 28

Page 20: Appendix: Table of Core-Level Binding Energies978-3-540-35382-9/1.pdf · Appendix: Table of Core-Level Binding Energies This table lists binding energies (up to ~ 1500 eV) of core

392 Subject Index

Cs3Sb photocathode 12,6 8 Cu 194 201,315,8,87 89

, angular resolved photoemission 199, 258 -, core line 223

,densi tyofslates 175, 195 , photoionization cross section 68 • UPS spectrum 175, 195, 315, 87,89 , wllence band spcctrum (XPS) 175, 196, 197 • work function 38

CuBr 21,67 72 -, temperature effect on EDC 72

, wllcnce band spectrum (XPS) 71) CuCI 21,67--72

, valence band spectrum (XPS) 70 Cul 21,67 72

, valence band spectrum (XPS) 70 CuNialloys 206, 210 C'uo.c,2Ni0.,u, UPS spectrum 211 Cuo,,2Nio..~u, theoretical density of states 211 C u e 177, 192

, XPS spectrum 178 Cu20 177, 179, 192

,XPSspectra 178,185 CuF'd alloys, virtual bound state parameters

2(18 Cyclotron resonance 14 Cytosine 280

1)angIing bond 48, 114, 131, 140, 142, 145 o n G a A s 148 151 on Si charge density i44

- on Si density ofstates 146 l)ebye-Waller factor 81 Dedicated storage rings 309 Defect tetrahedral structures 24 Delayed absorption maximum 144, 146, 147

onset oftransitions 314 Density ofconduction states 42, 78

states 18, 88, 140 , cross section weighted 193, 221, 367,

368 - ,joint 369, 86 -- , one-dimensional 83, 198

- - - ,optical 41,42 • partial 46, 47, 50, 68 71, 73, 366 368

-- ,surface 137,140 143,145 147,150,194 DESY, experimental layout 312

- synchrotron, intensity compared with other sources 306

- , intensity distribution and brightness 304 Detailed balance theorems 123, 125 Diamond 11,/5 -, valence band spectrum(XPS) 56, 15 Dielectric constant 41 - -, longitudinal 44

Dipole acceleration 130, /39 approximation expression 137, 138

Dipole layer (surface) 32, 33, 38 -. length expression 139, 141

matrix element 138, 142 velocity expression 139

Direct transitions 53, 85• 87 Dispersion compensation 227, 12 Doniach-Sunjid shape 232, 240, 246, 355, 200,

206,232 Doping 133 DOR[S storage ring: intensity distribution and

brightness 304 DOS see Density of states Double quantum photoemission 276, 277 Dy, density of valence states 233 , valence band spectrum (XPS) 228,231,233

DySb, valence band spectrum(XPS) 241

Eclipsed configuration 23, 26 EDJDOS see Energy distribution of joint

density of states Effective electronlagnctic

field 119, 127 indcpendenl particlc sytcm 110

Effusion method (work function) 3I Einstein's law 3,135 Electrochemical potcntial 16 Electron affinity 17

, for Si 133 Electron escape depth {mean free path) 354,

362, 367, 2, 3, 8, 55, 57, 81, 92, 122• 125, 192, 193, 247

in organic materials 264, 283 - - for Si 49 - energy analyzers 9, 11, 55, 65, 241 244

, losses (CEL) 12, 40, 43 - , loss spectroscopy 132, 150

- mean free path, see Electron escape depth momentum parallel to surface 81,239, 247 spectrometer, calibration 57

, resolution 193,227, 228, 56 - storage rings 299 - synchrotrons 299

transport term iia pholocmission 174, 85, 91 Eleclronegativity 119,48, 5l

see also inside cover Electron-electron scattering 109 Electron-hole excitations 193, 350, 201, 202,

204 interaction effccts on core absorption 327

- pair production 53 Elemental analysis, composition determinalion

byXPS 59, 60

Page 21: Appendix: Table of Core-Level Binding Energies978-3-540-35382-9/1.pdf · Appendix: Table of Core-Level Binding Energies This table lists binding energies (up to ~ 1500 eV) of core

Subject Index 393

Energy band structure see Band structure distribution curves (EDC) 314, 2, 84-89

o f j o i n t d e n s i t y o f s t a t e s ( E D J D O S ) 174. 88, 23,~ gap 11 sum rule 175 transfer processcs{excitons) 275,339

Epitaxialf ihns 63 Equivalent cores approximat ion 70. 177 Er, UPS and XF'S spectra 233. 252 ErB., valence band spectra (XPS) 248 ErSb, valence band spectra (XPS) 24i ESCA 10, 12 Escape depth .see Electron escape depth

funclion 85 Etlmne, wdcnce band spectrum (XPS) 267 Eu 225, 252

chalcogenides 217, 238 -- wdence band spectrum (XPS) 232 EuO 218,238,254 • valence band spectrum(XPS) 219. 242• 76,

172 EuPI 2 252 EuRh 2 252 EuS 238 • UPSspect ra 73,218

EuTe, XPS spectrum I72 EXAFS see Extended X-ray absorption fine

structure Exchange energy 35,36,143 • Kohn-Sham-Gaspar 37 , S l a t e r 37, 143

splitting see Multiplet splitting Exciton annihilation (organics) 275 277 Excitonic shift in core hole absorption spectra

150, 337 Extended X-ray absorption fine structure

(EXAFS) 86, 136, 329

IAex, els m rare earths 217.22I - I , J o ] l a n s s o n scheme 237

• promotion energy 225, 236 FC-2 98 Fe 21)0--202. 169

, density of valence states 201 , soft X-ray emission spectrum 201

-, wdence band spectra 201 FeAI, absorption spectrum 329 FeAu alloys 210 FeCu alloys 210 FeF 2 181, 170

• valence band spectrum (XPS) 182 F%O, UPS spectra and parlial d-,

p-components 182 Fermi edge, in organic metals 287

Icvcl 14• 10.40 • pinning 134,137•154

stir/ace• two-dimensional 37 Ferronmgnetic metals: Fe. Co, Ni 200 Field emission 132

microscope 30 • photoassisled 4, 29.30• 129

Final state effects ill photoemission 78. 177. 188, 317• 333• 165

Flash evaporation 59 Floodgun•electron 13 Fluorescence yield 78 l:orm factor 89 Er:.lctionul parentage coefficients 181.

221 223, 240• 167 Frank-Condon diagram for NaCI 336

principle 335• 336. 76.77 Frenkelexci ton, inanatlu-acence 271,273•277

GaAs 40, 4,~, ' • amorphous 100, 101

densities of states of model s lruclules 101 • angular resolved PES 248. 261 ,band slruclure 19, 20, 49 • critical points 59 • density of stales 150 • electrorefleclance 43 , LEED 148 • oxidation 343 • photoabsorpt ion cross section 155 • photoemission spectrum 150 • reflectivity 42

- .surface 148 151 - relaxation 148. 149

,valencc band spectrum (XPS) 57. 58. 122 • yield spectrum 150

Gallium. photoabsorpt ion cross section 154. 155

GaN 23, 120 GaP 21

• amorphous 100,101,104 - EDC's 103

-, critical points 59 -. oxidation 343 • work function 49

Gap, indirect or direct 40 Gap states• photoemission spectrmn of

amorphous Ge 117 • amorphoussemiconductors 114 118

St, photoemission spectrum 116. I17 - , metal induced 155

GaS 26, 75 GaSb. amorphous 100. I01

• critical points 59 -. valence band spectrum (XPSI 57

• work function 49

Page 22: Appendix: Table of Core-Level Binding Energies978-3-540-35382-9/1.pdf · Appendix: Table of Core-Level Binding Energies This table lists binding energies (up to ~ 1500 eV) of core

394 Subject Index

GaSe 12.26, 75 • a n g u l a r r c s o l v e d PES 251.255,256 • band s t ruc ture 26 , charge d i s t r ibu t ion 26

G a S e 3 24 Gd, X P S s p e c t r u m 232, 233 G d B u 246 GdBa 246

• valence band spcctl urn IX PS) 247,249 GdS 217, 238

• UPS spec l rum 73 GdSb. X P S s p e c t r u m 241,247 Ge 14,40.315,47 G e l I I 97,98 G e l V 97, 98

, a m o r p h o u s 87 100 - densi ty 89

dielectr ic cons l an t 90 ,93 ...... UPS dcr iwl t ive spec t rum 117

- valence band spec t rum (XPS) 88 , band s t ruc ture 16, 18 • cha lcogen ides 107

a m o r p h o u s 107,108 , dens i ly of s la tes 88

, ox ida t ion 343 , po ly types 97, 98

, UPS cesiated 54 • valence band spectrurn (XF'S) 56 , work funcl ion 49

G e H 4 56 G e e 2 86 GeS 67 GeS, nearest ne ighbor d i s tance 125 GeSe 67 -, a m o r p h o u s 109 • nearest ne ighbor d i s tance 125

GeTe 29 • a m o r p h o u s 108, 109

, c r i t i c a l p o m t s 65, 66 , nearest ne ighbor d i s tance 125

UPS spec t rum 108 , valence band s p e c t r u m ( X P S ) 109

G % T e j ,. 86

G%Te~_~, valence band spectra (XPS) 109 Glasses 85, 86

Go lden rule 109, 125,140 G r a p h i t e 13, 179

, angu l a r resolved PES 255 , va lence band spec t rum (UPS) 270

Gray lin 17 Green ' s funct ions theory of pho toemis s ion

109, 115 G r o u p V e lements (As, Sb, Bi) 28,67 - , valence band spectra (XPS) 106

Hal l cffect 13

I l a r t r ee -Fock 187, 64, 65, 143, 150. 166, 174 -Slaler central f ield wave funct ions 143

t t ca t of formation 51 He-soul-co 9

Hete ro junc t ions 47 H e t e r o p o l a r g a p 102. 121 11[(2', ca lcula ted densi ty o f w l l e n c e s ta tes 190

• valence band spectra (XPS) 190 I-[IS 2 34, 35

• wllence band spectr tun (X PS) 74 Hg, p h o t o a b s o r p t i o n cross sect ion 154, /55 HgS, HgSe, HgTe, work function 49 He, valence band s p e c t r u m ( X P S ) 234 I lol:~,, valerlce band spec t rum (XPS) 248 IJoS, valence band spec t rum (X PS) 244 HoSb, valence band spec t rum (XPS) 241,244 H u b b a r d gap, o f N i O , C o O , M n O 188

-, o f V O 2 189 model 176,192

H u m e - R o t h e r y rule 104 Hund ' s rule 180, 181,225, 173 Husumi cactus lat t ice 94.95 Hybr id iza t ion , t empera tu re dependence 72,

76 H y d r o g e n c h e m i s o r b e d o n S i ( l l l ) 151-154 . . . . . densi ty of s tates 153

- - s t ruc ture 152 - - UPS spectra 153 I~lydrogenic a tom 143

Impur i ty scat ter ing, phase shirts 227 Ill, core level line shape 228

on St(l l I) surface pho toemiss ion spect ra 156

- - - band bending 156 , p h o t o a b s o r p t i o n cross sect ion 155

[nAs, a m o r p h o u s 101,103,104 • --, cri t ical po in ts 59

, valence band spect ra 58 • work function 49

Independen t par t ic le reduct ion of pho toemis s ion theory 109, 117, 119

Inelast ic processes see P l a smons Infrared ca t a s t rophe 179, 202 lnP, a m o r p h o u s 100,101

, cri l ieal po in t s 59 - , valence band spectra 58 -, work function 49 InSb, a m o r p h o u s 100 ,101 ,103 ,104 - , c r i t i c a l po in t s 59 - , ox ida t ion 343

• valence band spect ra 58 - , work function 49

Page 23: Appendix: Table of Core-Level Binding Energies978-3-540-35382-9/1.pdf · Appendix: Table of Core-Level Binding Energies This table lists binding energies (up to ~ 1500 eV) of core

S u h.icct Index 395

InSe, angular resolved photoemission spectrum 255,256

Insulator 11 lneTe 3 24 Intercalation 32 Interconfiguration fluctuations 235 Interface states 134,154

- .extrinsic 155 • metal-semiconductor 154

Interferencetermsinphotoionization 50 Intermediate valence (IV) 250, 254 lntermctallic compounds of transition metals

212 Internal conversion 10 I n ternational con ferences on amorphous

scmiconduetors I3 semiconductors 13

Ioffe-Regel rule 93 Ion bombardment 59 Ionicchargcs 120•121,/74

gap 121 Ionicity 21.118 125 ,critical 123, 125

of octet compounds 124 , pressure depcndencc 125

scale 119 - - based on XPS valence band spectra 121

, dielectric theory 119 -, Pauling 119

Ionization potential (photoemission threshold) 128, 133.17,25,49

Ion neutralization spectroscopy 132 lr, core line shape 229 Itinerant, electrons 192, 258

ferromagnet 202

Jellium model 33,34,43 Joint (optical) density of states 41, 86, 238

KBr valence band spectrum(XPS) 125 , work function 49

KCI, angular resolved photoemission • CIS spectra 318

- valence band spectrum (XPS) 125 -, work function 49

K=Cr20 7 180 • valence band spectrum (XPSt 181

Keldysh formalism 109 Kelvin method 17,22 KF valence band spectrum (XPS) 125 -, work function 49 KI,CIS spectra 321

valence band spectrum (XPS) 125 - ,work function 49

334

Kohn anomaly 38 variational principle 156

Koopmans 's tates 226 theorem 65~57, 174

Koster-Kronigtransitions 79 Kramers-Kronig analysis 42 Krogmann salt 36 Kr 177 . photoionization cross section 68

--. solid UPS spectra (synchrotron radiation) 332

K-TCNQ 282 . UPS spectrum 281

K. UPS spectra 369 . work function 38

K-edge (X-ray emission). Li 215 • AI. Mg 224

La 230. 240 ka. valence band spectrum (XPS) 230

halides 237• 238 • valence band spectra (XPS) 238

-. RAPW calculation 230 LaB~, 246 -. XPS spectrum 245 Langmuir 58 LaSb. XPSspectrum 239.241.251 253 Layer compounds 26. 32. 48. 72. 75. 251.

253-255 Lead chalcogenides see PbS. PbSe. PbTe LEED see Low energy electron diffraction Li 76,211-214 • work function 39

LiF, absorption coefficient and penetration depth vs angle of incidence 325

,coreexcitons 337 • cutoff 218 , refiectivity vs anglc of incidence 324

-, valence band spectrum (XPS) 183 • yield spectrum vs angle of incidence 325

Ligand chemical shift 1(14 Like-atom bonds 101 Linear alkanes 266

• valence band spectra (XPS) 267 Linewidth, phononcontr ibut ion 335, 15, 212,

215, 243 Liquid metals, yield spectra 329 Local density of states 99 Localized orbitals, photoemission 130

- slates 114,118 Loncpairs 31,111 Long range order 86• 114 Low energy electron diffraction (LEED) 132,

135, 141 144, 148, 151, 9,55, 117, 241, 253 Lu 152

Page 24: Appendix: Table of Core-Level Binding Energies978-3-540-35382-9/1.pdf · Appendix: Table of Core-Level Binding Energies This table lists binding energies (up to ~ 1500 eV) of core

396 Subject Index

Lu B,., valence band spectrum (XPS) Lz.~-X-ray edge, AI 223,224

, Mg 223 , Na 222

248

Madclungconstant 127 potcntial 62, 178

Mahan-Nozi6rcs-Dc Dominicis effect 40, 350, 198, 199

Many body features in photoemission 177 179, 193,352 354• 109, 117.165

perturbation theory 156 Mean free path, electrons see Electron escape

deplh Metal non-metal transition: VO: 188

semiconductor interface 154 Metals, d-band 192 206 , free electron like 357 369 • organic 280 287

Methane seeCH 4 Mg 350

, core level spectra 358,359, 190, 218 , density of states 368 , plasmons 358 362 , valence band spectrum(XPS) 368 • work function 39

Mg2Ge 24 MgO (:Ni) 183 MgzPb 24 Mg2Si 24 ,energy bands 26

-, valence band spectrum (XPS) 62 , X-ray emission spectrum 62

MgzSn 24 Mg2X (X=Si, Ge, Sn, Pb) 61 ,dcnsity of valence states 26

Microcrystal model of amorphous phase 86 Microfields 30 Mixed valence in rare earths 254 257• 172 Mn 169 MnF 2 168, 170 MnO 180, 183 , UPS spectra and partial d-, p-components

182 Mo, angular resolved photoemission

spectroscopy 261 , work-function 19

Mobility gap 114 Model densities of states for amorphous

semiconductors 94, 96 Modulation spectroscopy 12,14,40 Monochromatization, X-rays 227, I5,53 Monochromators for synchrotron radiation

311 Mooser and Pearson plot 123

Mortals, ordinary 9 MoS z 33, 34, 35,251.254

• UPS spectrum 73 MoTe 74 MoTe 2, UPS spectrum 73 Mottinsulator 176, 183 - t ransi t ion, Ce 235,237

, V O 2 188 Multichannneldetector 51 Muhidetecting systems 244.245 Multipletsplitting 14, 166, 174

- in rare earths 220, 223, 226. 234, 250• 171-173

, in tensi t iesa t l .5keV 218,219 in transition rnctals 179 183, 167-170

structure 143

Na 350 , absorption coefficient (EXAFS) 147, 148 , core level spectra 358, 210 , density of states 366, 368 , yield spectrum, absorption spectrum for 2p

transitions 330 Na2p linewidth vs temperature 337

• plasmons 358, 360, 361 , soft X-ray emission spectrum 365 • valence band spectra 365, 366, 368 , work function 38, 39

NaBr valence band spectrum(XPS) 125 NaCI 74, 77, 80

, constant final-stale spectra 338 ,coreexcitons 338 , surface core excitons 341--343

-, valence band spectrum (XPS) 125 , work function 49

NaF valence band spectrum(XPS) 125 Nal valence band spectrum(XPS) 125

, work ft, nction 49 Naphtalenc, UPS spectrum 269 -, vapor pressure 263 NbO 2 189 NbS2 34, 35 NbSe 2, UPS spectrum 73 Nb.lSn 212 Nd 230

• valence band spectrum (XPS) 230 NdB 6 246 • valence band spectrum (XPS) 247

NdBi, valence band spectrum (X PS) 244 NdS, valence band spectrum (X PS) 244 NdSb, valeece band spectrum (X PSI 244 Negative electron affinity 7, 25 Ne, solid, UPS spectra (synchrotron radiation)

332

Page 25: Appendix: Table of Core-Level Binding Energies978-3-540-35382-9/1.pdf · Appendix: Table of Core-Level Binding Energies This table lists binding energies (up to ~ 1500 eV) of core

Subject Index 397

Ni 200, 202 205 • angular resolved photoemission

spectroscopy 261 . angular resolved photocmission

spectroscopy, band dispersion 204 • bandwidth 202- 205 , core line 223

-. correlation energy 177 • density ofwllence states 204 • valence band spectra (XPS} 204

NiAI. absorption spectrum 329 NiO 176. 179. 183 187

• band-structure calculations 187 • UPS spectra and partial d-. p-components

182 • UPS spectra with synchrotron radiation

186 • wllence bands 187 • XPS spectra 184, 185

NiS 176 Noble metals 194. 200 Nonane, valence band spectrum (X PS'I 267 Nondi rec t t rans i t ions 83.92.314.262 Non-local pseudopolential 52

Occupied and en]pty stales in photoemission 33O

One-dimensional singularities 48, 198 Optical absorption 12, 40 Organometal l ic phenyl compotmds 270 272 Orlhogonal i ty catastrof, he 199 Orthogonalized plane waves {OPWl 16 Or thorhombics t ruc ture 107,111 Oxidation of AI. synchrotrorl radiation

spectroscopy 343 of Ge 52

Partial densities ofstatcs 12.67 72. 186. 366-369

Partial yield spectroscopy 79, 80 - spectrum of GaAs 80 Passive electrons 185 Patches 1&20.21 Pb 106 , core levels 22,~ , work ftlnction 39

Pbl 2 33 • valence band spectra 76

PbS 28 , angular resolved spectra 47

,cri t ical ionicity 125 -- points 65, 66

, valence band spectra 47, 63 PbSc, critical points 65, 66 • phase transition 126 , UPS spectra 63

PbTe• band structure 29 • critical points 65, 66 • phase transition 126 • valence band spectra 63, 65

Pd, core lines 232 -, valence band spectrum (XPS) and

theoretical density of stales 201 , work function 19

PdAg alloys 207 - . valence band spectra 207

, virtual bound state parameters 208 Pcierls transition 36 Pelticr effect 31 Penn model 123 Pentane. wdence band spectrum (XPSI 267 Phase shift, Coulomb 141

shills 199.201. 204. 219 • sumru le 199.219,226,227

Phononbrc, adening 335 337• 212.215 - in EuO 243

Photoabsorption measurements 135 Photocathode, solar blind 7 Photocathodes 6.7 Photoconduciivity, surface 132 Photoeffect. surface 3 Pholoeleclric cross seclioxls see Cross section

effect 3 -, surface vectorial 3.9

Photoelectron spectroscopy, complementary methods 40

Photoemission, angle resolved 80 85. 199. 204.4.9. 237-263

- - from surface 138 • formal theory 48, 105 131.252 254

from biological materials 278 280 - from organic rnolecularcrystals 262 - of semiconductor surface 130 -, three-step model ,'~4 92. 122 12& 247

threshold see Ionization potential , lime resolved 277

Photohole. localization 287, 356 Pholoionizat ion cross sections seeCross

sections Pholoyield near threshold 22 26 Phthalocyanmes 278,279 -- (H 2, Mg, Pb. Cu). UPS spectra 279 Physisorption 57 P i n n i n g o f E v i n S i 134,137 Plasmon frequm]cy 44

- dispersion 355, 356 Plasmons 45, 89, 351 369• 175, 189-191

,At 358 363,211 , Be 357, 360

and adsorbales 192 • energies 360

Page 26: Appendix: Table of Core-Level Binding Energies978-3-540-35382-9/1.pdf · Appendix: Table of Core-Level Binding Energies This table lists binding energies (up to ~ 1500 eV) of core

398 Subject Index

Plasmons, GaAs 45 , Ge 89

- , intr insic . extrinsic 191, 351, 352, 354. 357, 201,207

, L i 211 • Mg 358 363, 190, 217 • Na 358 363,216 , Si 89

-, surface 190, 356, 360, 363,367 • width 360

Polarization energy 74 shift 127,291

Polk model 87, 95, 98 density of states I00

Polytypes ofGc, Si 9% 98 Porphyrin 279 F'ositron annihilat ion 34 Potential model for core level shifts 127, 69, 70 Propane, wflence band spectrum (XPS) 267 Pr, valence band spectrum (XPS) 230 Pseudopotenlial method 17, 246 Pt, core line 231 • valence band spectrum (XPS) and theoretical

density ofstates 201

Quadrat ic response 106 Quant izeddescr ipt ion of radiation 114 Quantum efficiency (yield) 6, 27, 130

Racah method 221 Radial distribution function 86 Random phase approximation{RPA) 119,156 Rarcear th boridcs 245. 249 - - ,4[ l i fe t imc 249

- , in tera tomicAuger transitions 245 . . . . , s t ructure 245 - , valence band spectra (XPS) 245,

247 249 chalcogenides 238 243

- -- fluorides 171 - halides 237, 238

mtcrmetallics 249 . . . . ions, divalent 221

, t r ivalcnt 221 metals 229 237,174

- pniclides 238-243 Rare earths, 3d and 4de lec t rons 251 253 - -, photoabsorptiou cross sections 158,, 159

trifluorides 234, 237, 238 Rare gas line source 52

solids 330 333 • valence bands 330--333

Rcferencingofbindingencrgics 128, 13 Reflectance, normal incidence 43

Reflection and transmission amplitudes for photoen'dssion spectroscopy 125

Refractive mdcx 41 Rehltivistic dehybridization 105 Relaxation 37, 118, 174

energy 127• 267, 63, 64, 68, 69, 71,72, 118, 175-132 • 41electrons 226, 253

m anthracene 273 - , ex l r aa tomic 63,177

m free molecules 17,'~ in metals 180

, intraatomic 63,176 of k-conservation 92 processes 337 341

Renormalization energy 70, 71, 75 Renormalized atom scheme 22l, 225, 237 RcO 3 176, 189, 190 • calculated density of slates 190 , valence band spectrum (XPS) 190

Resolution 227, 52 Richardson plot 20 Rigid band model 36, 206 Rings• fivefold 97-99

, odd-,nembered 98, 100 , sixfold 95,96,98, 107

R-matrix theory 156 Rotating anodes 227 RusselI-Saunders coupling 221

S, monoclinic 111 ,o r thorhombic II1,112 • -, valence band spectrum (XPS) 113

-, Ss rings 112 Sample preparation 228,229, 57 Satellites 177

• charge transfer 177 , core levels 76,141,175

-, Kotani-Toyozawa 179 - ,multielectron peaks 184, 185, 182 189 -, shake up/off 226, 252, 182-189 Sb 104 ~, amorphous 105

Raman spectrum 105 , - , wdence band spectrum {X PS) 106

Sb2Se 3 I l I Scattering time 53,90 92 Schotlky Barrier 134, 154-156

- effect 21 Screening of core holes 204

see a/.so Relaxation Se 30, 86

, amorphous 112 -- dielectric constant 90

valence band spectrum II0

Page 27: Appendix: Table of Core-Level Binding Energies978-3-540-35382-9/1.pdf · Appendix: Table of Core-Level Binding Energies This table lists binding energies (up to ~ 1500 eV) of core

Subject Index 399

• an i so t ropy in abso rp t ion coefficient 326, 327

• -, energy bands 30 - • m o n o c l i n i c 31,113

valence band s p e c t r u m ( X P S ) 113 -, Ses r ings 31 .112 ,113 Secondary e lec t rons 79, 127• 264

, ene rgy d i s t r ibu t ion 85

in organic c o m p o u n d s 264 Secondary emiss ion processes 319,320 Self-energy of the electron 117 - of the electron, imag ina ry par t 118

S e m i c o n d u c t o r s II • a m o r p h o u s 85 118

surfaces 130 158 Semimeta l s 11,104 Shake-off see Satel l i tes Shake -up see Satel l i tes Shor t range o rde r 87 Si 14 S i l l 97 ,98 Si 2H-4, densi ty of s ta tes 99 S i / l l 97, 98 Si, a m o r p h o u s 87 100

- calcula ted dens i ty o f s t a t e s 91 dielectr ic cons tan t 90, 92 fihns 89 wdencc band spect ra 88, 92 valence band speclra, gap states I I6, 17

, BC-8, densi ty of s ta tes 99 • densi ty of s la tes 88, 99 • electron affinity 133

-, ioniza t ion potent ia l (pho toemiss ion threshold) 133. 134• 143, 46

. o x i d a t i o n 343 - , pho to ion i za t i on cross sect ion 68

, po ly types 97, 98 densi t ies o f s t a t e s 99

-, ST-I 2, densi t ies of s ta tes 99 surface, band bending 138

, chcmisorbed hydrogen 151-154 - - hydrogen densi ty of s la tes 153

- - , pho toemis s ion spectra 153 , e L e c t r o n i c s t r u c t u r e 141,147

-, geomet ry 142 and In pho toemiss ion spect ra 155

• p inn ing o f E v 137 . . . . , r e laxa t ion 142

states, charge densi ty 144 - - , d e n s i t y o f s l a t e s 145 147 - - - , e lect ronic theory . . . . , pho toemis s ion 136. 138. 140, 146, 147 - stales, pho toemiss ion , angle resolved

139 - , un recons t ruc ted 146

, y i c l d s p e c t r u m 133• 135, 140 • vacancies 153

valence band spec t r a (XPS) 56, 88 , X-ray enl iss ion spec l rum 46 , w o r k function 133, 134, 143,49

SiC 23 S i l l 4 56 Simple metals 349 370, 34, 38

SiO, SiO 2 86 Slatcr integrals F and G 224. 250. 16¢~

S m 225. 240. 252. 173 • X P S s p e c t r u m 231,251

SINAI 2 173 Smal l angle sca t te r ing 89 SmB, , .va lence band s p e c t r u m ( X P S ) 247,251 SmS 237, 258 S m S b • X P S s p e c t r u m 239, 242• 251 SmTe. X P S s p e c t r u m 239, 242. 251 Sm~_~Y.,S 255 Sn, core levels 228

, p h o t o a b s o r p t i o n cross sect ion 155

(SN)., 280, 285,287 , band d i spers ion 286 • band s t ruc ture 285 • UPS spec t rum 286

- - , a n g u l a r resolved 286 SnS 67 SnS 2 33, 75 SnSc 67 SnSe 2 75

• wdence band spec l rum (XPS) 76 S n f e 29

• cri t ical ionici ty 125 • cri t ical po in ts 65, 66

- , valence band spec t rum (XPS) 63 Space charge layer 132 134, 14

Spin-orbi t sp l i t t ing 21 ,29 ,67 , Bi 105 , core levels 43 , m r a r e c a r t h s 234

- of 4d e lec t rons 251 - of vir tual bound s ta tes 208

, PbS, PbSc, PbTe 84 • reversal 21

Spin po la r i za t ion : bulk vs surface 203 - in EuS 217

in Ni 202 • polar ized pho toemiss ion 257, 2 ,9

in E u O a n d Eu t ,Gd. ,O 258 Sput te r ing 58• 59

Staggered conf igura t ion 23 Step edges, S i su r facc 138, 146 S t ick ing coefficient 58

Stone r -Wobl f ah r t model 200,202, 2(13 S torage r ings and synchrc, t rons ava i lab le 308

Page 28: Appendix: Table of Core-Level Binding Energies978-3-540-35382-9/1.pdf · Appendix: Table of Core-Level Binding Energies This table lists binding energies (up to ~ 1500 eV) of core

400 Subjcct Index

Structure fuelor 89 Sudden approximation 175 Sum rule, Lundquist 175,181

• Manne und Aberg t,W Superionic conduclors 21 S u rface chemistry ofsemicond uctors 151

effects a! threshold 26, 27 phase transitions 257• 46 photoelectric effect 3, 9. 262 plasmons 130, 190 reconstruction 132. 148,46 relaxation 46 48, 132, 14g resonance 131, 140, 129 sensitivity of photoemission 192 stnles 9, 14,44.47.51, 122• 12g

• l l l -Vcompounds 14g 151 • effects in photoemission 12& 129

of GaAs 149 GaAs, density of slates 151) GaAs. energy loss 150 GaAs, excitonic shift 150 GaAs. UPS spectrum 150 GaAs, yield spectrum 150

of Si 133,134 Si, dens i tyofs ta tes 145 147 Si. dispersion 139 £i, inflared spectroscopy 144 Si. UPS speclrum 136, 13g 140. 146.

147 , synchrotron radiation cxpcrimenls

341 343 transition lerrn in photoernission 174, 126

Surfaces, semiconductor 130 150 SXPS, sofl X-ray photoemission spectra 174 Synchrotron radiation 43. 44. 51, 205, 218,

299 344 • angular emission pattern 301 , available or projected sources 308. 309 • compared with olher sources 305. 306,

9, 54 .255 ,260 , 262 , its uses 299 • Inboratory layout 311 • monochromators 311,313 , polarization 302 • properties 301 305 • spectroscopic techniques 313

TaC, calculated density of states 190 , valence band spectrum (X PS) 190

Tantalus I, Experimental Iayoul 31l "I'aS 2 35,39

• angular resolved UPS spectrum 253, 254

• t.lPS spectrum 73 TaSc 2 38

• angular resolved UPS spectrum 254

TbB,. valencc band spectrum (XF'S) 247 Tb. vulence band spectrum(XPS) 234 TCNQ. molecular orbitaIculculat ion 281

. UPS spectrum 281 Te 30. 3I

• amorphous 112.113 • wtlence bund speclrum (XPS) 110 . wflence band spectrum 110

Terrace site. S i ( l l l ) 138.146 Tetracene. UPS spectrum 263• 269

• wlpour pressure 263 TetrahedraI coordination, semiconductors 18 Tetraphenyl tm (Ph.~Sn) 271

• partial cross sections 271 • photoemission spectrum 271

Th B~, 246 • valence hand spectrum (XPS) 245

Theory of photoemission, independent particle model 105 131

Thermionic emission 4, 19, 10,~ Thermionicemit ters 7 Thomas-Fcrmirnodel 34. 143 Three step model 351, ,'¢, 84 ,~>9, 190 Thymine 280 Tight-binding method (LCAO) 17 TiO 2, wdence band spectrum (X PSI 185 TiS 2 35

, valence band spectra 73, 74 TiSe 2 35

• allgtll~lr resolved UPS spectrum 255 TICI 28 Tm 240, 252

• wflence band spectrum (XPS) 234 TmB,,. valencc bands spectrum (XPS) 248 TmSb. valence balms spectrum {XPS) 241 TmSe, valence band spectra 255 Transistor 14 Transit ional metal, chlorides 188

compounds 176 191 diehalcogenides 32, 33, 36, 72 75

• stacking modifications 33, 34 . fluorides 188 • oxides 183 191

metals 192 206,45, f67, 170 operator method 67 69 potential model 70 probabilily, dipole 7& 138

Transitions. direct 8 .25 .26 • indirect b;. 25.26

Transmission probabili ty 174./25 Trklecane. valence band spectrum (XPS) 267 TSeF 285

• UPS spectrum 284 TTF, molecular orbi ta lcalculat ion 282

• UPSspec l rum 281. 284

Page 29: Appendix: Table of Core-Level Binding Energies978-3-540-35382-9/1.pdf · Appendix: Table of Core-Level Binding Energies This table lists binding energies (up to ~ 1500 eV) of core

Subject Index 4 0 1

TTF-TCNQ 280,281•287 -, charge transfer 280• 281 • core level spectra 292• 293 • wtlence band spectrum 281 , valence charges, self-consistent calculation

291

Ultra high wlctmm 58 Unfillcd inner shells: rare carlhs and

cornpounds 217 -- : transilion metal compounds

UPS regime 174 t lr ical 28(1 IJS, IJPS spectrum 73

173

Vacancies 114 • Sill 1 I ) surface 153

Vacuum incoming w.qve components I11 state I I I , II2, 117, 121

level 16 Valence chargcs, effect of molccuhu

pohuization 290, 291 Van Vleck expression fnr multiplel splitting

166,/69, 171 Vapor deposition 58,59 Vapor pressure, elements 59 Virtual bound stale parameters of transition

metal alloys 208 VO= 176, 188

• valence band spectra (XPS) 183 Voids 89. 114 Volume effects in photoemission 129, 131) Vohlme limit ofphotoemission 122 Volume photoemiss ion:angular integrated 47

V3Si 212

W anguhu" resolved UPS spectrum 260, 261 Wigglers 307 Wigner-Seitz cells (sphcrcsl 32, 33, 35

radius 220 WO 3 189 Work function 3, 16

determination, break point of retarding potential curve 22

-, cMorimetric method 31 - ,effusion method 31

• electron bcarn method 22 - , field emission 29

-- -, Fowler plot 24 • isochromat method 27 • Kelvin method 22

-, photoyicld near threshold 23

, thermionicemission 19 - - -, threshold of EDC 2~

-, lotal photoelectric yield 2,'¢

• semicondtlclors, insulators 4 6

- , t e m p e r a t u r e d e p e n d c l m c 21.41, 42 - , theory 32, 40

• t r a n s i t i o n m e t a l s 44• 45 • volume dependence 41, 42

Wrong bonds 100, 11,)2 Wurtzite 23

X~ cluslcr calculati(ms 34•~57 Xe in Ar• UPS spectra 333 Xe-doped Ar, yield speclra 340

No. UPS spectra 340 Xe-likc ions 186 Xenon, photoionization cross section 68. 144,

145• I52 155, 157 ,solid. UPS spectra (synchrotron radiation)

332 XPS 10, t2

, ar~guhu- resolved /6,249 252 regime 51.62,67. 174

X-ray absorption edge. vibrational broadening 76

spectroscopy 10 edge 198

anomaly set, Mahml-NoziOrcs- De Dominicis effect

threshold exponent 198, 199, 201, 204, 223. 224 emission spectroscopy 40.45 47, 10

X - r a y s • m o n o c h r o n ~ a t i z e d 12

Yb 225, 240, 252 , wllence band spcctrum (X PSI 234, 256

YbAI3, valence band spectrum (X PSI 256 YbTe 243 Yield spectroscopy 80, 150,263. 322 330

• applications 326 • oblique incidence 323

YM~ anodes(sourccs) 54 YS 243

• valence band spectrum IXPS) 244

Zn3As z 24 ZnGeP 2 24

• charge distributions 61 , density of valence states 25,60 , energy band strtlclure 25 • valence band speclrum (XPS) 60

ZnO 11.23 ZnS 23 ZnSe, valcncc band spcclrmnlXPS) 122 ZrC, calculated density of states 190

, valence band speclrum (XPS) 190

Z r S 2 34 ZrS=, valence band spectra 73, 74