Anti-Periodic Presentation

66
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Problem . . . . . . . . . . . . . Preliminaries . . . . . . . . . . . . . . . . . Theorems . . . . . . . . . . . . . . . Extensions Refer’s Anti-periodic solutions for a higher order difference equation with p -Laplacian operator Kaitlin Rizzo, Jacob Parsley, and Nicholas Russell National Science Foundation REU University of Tennessee at Chattanooga Chattanooga, TN 37403 Rizzo, Parsley, and Russell Anti-Periodic Solutions

Transcript of Anti-Periodic Presentation

Page 1: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Anti-periodic solutions for a higher orderdifference equation with p-Laplacian operator

Kaitlin Rizzo, Jacob Parsley, and NicholasRussell

National Science Foundation REUUniversity of Tennessee at Chattanooga

Chattanooga, TN 37403

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 2: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Overview

...1 ProblemThe Actual ProblemAssumptions

...2 PreliminariesBuilding Our Space

...3 TheoremsTheorem 1Theorem 2

...4 ExtensionsCorollaries

...5 Refer’s

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 3: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

The Problem

Let us define some notation:

□ Let n,T ∈ N.□ ϕp(s) = |s|p−2s, where s ∈ R and 1 < p < ∞.

□ ∆u(t) = u(t + 1)− u(t) and ∆iu(t) = ∆(∆i−1u(t)) fort ∈ Z and i ∈ N

□ r : Z → R

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 4: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

The Problem

Define

(Qu)(t) = (−1)n∆n(r(t − n)ϕp(∆nu(t − n))), t ∈ Z.

We are concerned with finding infinitely many anti-periodicsolutions of the higher order difference equation with a p-Laplacianand containing both advance and retardation, i.e.

.. (Qu)(t) = λf (t, u(t+1), u(t), u(t−1))+µg(t, u(t+1), u(t), u(t−1)),(1)

where

□ t ∈ Z; λ, µ > 0;

□ f , g : Z× R3 → R are continuous in the second, third, andfourth variables.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 5: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Anti-Periodic Solutions

Recently, there has been increasing interest in the literature onanti-periodic boundary problems due to their extensiveapplications. For example

interpolation problems

anti-periodic wavelets

the Hill differential operator

neural networks ,

and physics.

One of the early works on anti-periodic solutions can be found in apaper by Okochi, where he used the fixed point theory to obtainthe existence of anti-periodic solutions to a nonlinear parabolicequation in a real Hilbert space.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 6: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Previous Work

Many results in the literature for finding anti-periodic solutionswere obtained by using tools such as upper and lower solutions,monotone iterative techniques, continuation theorem ofcoincidence degree , and critical point theory. However, as far weare aware of, critical point theory has not been used as often asother tools in the literature to study anti-periodic solutions fordifference equations, and the work utilizing variational approachesis even rarer for anti-periodic solutions of a difference equationswith a p-Laplacian operator, advance, and retardation.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 7: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Previous Work

The only work we know of is the paper by Tian and Henderson,where the following 2nth order nonlinear difference equation wasconsidered

∆n(r(t − n)∆nu(t − n)) + f (t, u(t)) = 0, t ∈ Z. (2)

The authors established several existence criteria in [6] foranti-periodic solutions of equation (2) by using a variationalapproach.In this presentation, we apply variational approaches and a criticalpoint theorem that appeared in [3, 4] to study the existence ofinfinitely many anti-periodic solutions of equation.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 8: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Assumptions

(K1) r(t + T ) = r(t) and r(t) > 0 for all t ∈ Z;(K2) there exists a function F : Z× R2 → R such that

F (t, 0, 0) ≡ 0 on Z, F is continuously differentiable in thesecond and third variables, and

f (t, x , y , z) = F ′2(t − 1, y , z) + F ′

3(t, x , y),

where

F ′2(t−1, y , z) =

∂F (t − 1, y , z)

∂yand F ′

3(t, x , y) =∂F (t, x , y)

∂y;

(K3) F ′2 and F ′

3 satisfy

F ′2(t+T ,−t1,−t2) = −F ′

2(t, t1, t2) for all t ∈ Z and t1, t2 ∈ R

and

F ′3(t+T ,−t1,−t2) = −F ′

3(t, t1, t2) for all t ∈ Z and t1, t2 ∈ R.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 9: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Assumptions

(K4) there exists a function G : Z× R2 → R such thatG (t, 0, 0) ≡ 0 on Z, G is continuously differentiable in thesecond and third variables, and

g(t, x , y , z) = G ′2(t − 1, y , z) + G ′

3(t, x , y),

where

G ′2(t−1, y , z) =

∂G (t − 1, y , z)

∂yand G ′

3(t, x , y) =∂G (t, x , y)

∂y;

(K5) G ′2 and G ′

3 satisfy

G ′2(t+T ,−t1,−t2) = −G ′

2(t, t1, t2) for all t ∈ Z and t1, t2 ∈ R

and

G ′3(t+T ,−t1,−t2) = −G ′

3(t, t1, t2) for all t ∈ Z and t1, t2 ∈ R.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 10: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Remarks

(K3) holds when either both F ′2 and F ′

3 are odd periodic functionswith period T or both F ′

2 and F ′3 are even anti-periodic functions

with anti-period T , i.e., (K3) holds if one of the following two setsof equalities holds{

F ′2(t,−t1,−t2) = −F ′

2(t, t1, t2), F ′2(t + T , t1, t2) = F ′

2(t, t1, t2),

F ′3(t,−t1,−t2) = −F ′

3(t, t1, t2), F ′3(t + T , t1, t2) = F ′

3(t, t1, t2),

or{F ′2(t,−t1,−t2) = F ′

2(t, t1, t2), F ′2(t + T , t1, t2) = −F ′

2(t, t1, t2),

F ′3(t,−t1,−t2) = F ′

3(t, t1, t2), F ′3(t + T , t1, t2) = −F ′

3(t, t1, t2).

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 11: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Remarks

Similarly, (K5) holds when either both G ′2 and G ′

3 are odd periodicfunctions with period T or both G ′

2 and G ′3 are even anti-periodic

functions with anti-period T , i.e., (K5) holds if one of thefollowing two sets of equalities holds{

G ′2(t,−t1,−t2) = −G ′

2(t, t1, t2), G ′2(t + T , t1, t2) = G ′

2(t, t1, t2),

G ′3(t,−t1,−t2) = −G ′

3(t, t1, t2), G ′3(t + T , t1, t2) = G ′

3(t, t1, t2),

or{G ′2(t,−t1,−t2) = G ′

2(t, t1, t2), G ′2(t + T , t1, t2) = −G ′

2(t, t1, t2),

G ′3(t,−t1,−t2) = G ′

3(t, t1, t2), G ′3(t + T , t1, t2) = −G ′

3(t, t1, t2).

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 12: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Remarks

The following observations are obviously true.

(a) .. Condition (K1) implies that there exist r2 ≥ r1 > 0 suchthat r1 ≤ r(t) ≤ r2 on Z.

(b) Conditions (K2) and (K3) imply that

.. f (t + T ,−x ,−y ,−z) = −f (t, x , y , z) (3)

for all t ∈ Z and x , y , z ∈ R.(c) Conditions (K4) and (K5) imply that

.. g(t + T ,−x ,−y ,−z) = −g(t, x , y , z), (4)

for all t ∈ Z and x , y , z ∈ R.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 13: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Building Our Space

Let S be a set of sequences

u = (. . . , u(−t), . . . , u(−1), u(0), u(1), . . . , u(t), . . .) = {u(t)}∞−∞,

i.e., S = {u = u(t) : u(t) ∈ R, t ∈ Z}. For any u, v ∈ S anda, b ∈ R, define au + bv by

au + bv = {au(t) + bv(t)}∞t=−∞.

Then, S is a vector space. Now, we define H as a subspace of Ssuch that

.. H = {u = u(t) ∈ S : u(t + T ) = −u(t), t ∈ Z}, (5)

where T ∈ N, given in the preliminaries.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 14: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Building Our Space

H is isomorphic to RT and H is a finite dimensional Hilbert spaceequipped with the inner product

⟨u, v⟩ =T∑t=1

u(t)v(t) for u, v ∈ H,

which induces to a norm ∥u∥2 defined by

∥u∥2 =

(T∑i=1

|u(t)|2)1/2

for u ∈ H.

For p > 1, we define another norm ∥u∥p on H by

∥u∥p =

(T∑i=1

|u(t)|p)1/p

for u ∈ H.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 15: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Building Our Space

Since any two norms on a finite dimensional normed linear spaceare equivalent, there exists two constants C2 ≥ C1 > 0 such that

.. C1∥u∥2 ≤ ∥u∥p ≤ C2∥u∥2 for u ∈ H. (6)

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 16: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Functionals

For any u ∈ H and λ, µ > 0, let the functionals Φ and Ψ bedefined by

.. Φ(u) =1

p

T∑t=1

r(t)|∆nu(t)|p (7)

and

.. Ψ(u) =T∑t=1

F (t, u(t+1), u(t))+µ

λ

T∑t=1

G (t, u(t+1), u(t)). (8)

Lemmas 1–3 below present some properties of the functionals Φand Ψ.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 17: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Lemma 2.1

.Lemma (2.1)..

......

Assume that (K1) holds. Then Φ ∈ C 1(H,R) with

.. ⟨Φ′(u), v⟩ = (−1)n

T∑t=1

∆n(r(t − n)ϕp(∆nu(t − n)))v(t) (9)

for all u, v ∈ H.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 18: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Proof of Lemma 2.1

For any x , y ∈ H, by the summation by parts formula, we have

T∑t=1

r(t)ϕp(x(t))∆y(t) = r(t − 1)ϕp(x(t))y(t)∣∣∣T+1

t=1

−T∑t=1

∆(r(t − 1)ϕp(x(t − 1))y(t). (10)

By (K1), we see that r(t − 1)ϕp(x(t))y(t)∣∣∣T+1

t=1= 0. Thus,

..

T∑t=1

r(t)ϕp(x(t))∆y(t) = −T∑t=1

∆(r(t − 1)ϕp(x(t − 1)))y(t). (11)

For any u, v ∈ H, by simple calculations, it follows that

⟨Φ′(u), v⟩ =

T∑t=1

r(t)ϕp(∆nu(t))∆nv(t).

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 19: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Proof of Lemma 2.1

Note that ∆nu ∈ H and ∆n−iv ∈ H for i = 1, . . . , n. Then,applying .(11) n times yields that

⟨Φ′(u), v⟩ = −

T∑t=1

∆(r(t − 1)ϕp(∆nu(t − 1)))∆n−1v(t)

= (−1)2T∑t=1

∆2(r(t − 2)ϕp(∆nu(t − 2)))∆n−2v(t)

= . . . . . .

= (−1)nT∑t=1

∆n(r(t − n)ϕp(∆nu(t − n)))v(t).

Hence, .(9) holds. This completes the proof of the lemma.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 20: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Lemma 2.2

.Lemma (2.2)..

......

Assume that (K2)–(K5) hold. Then Ψ ∈ C 1(H,R) with

⟨Ψ′(u), v⟩ =T∑t=1

f (t, u(t + 1), u(t), u(t − 1))v(t)

λ

T∑t=1

g(t, u(t + 1), u(t), u(t − 1))v(t) (12)

for all u, v ∈ H.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 21: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Lemma 2.3

.Lemma (2.3)..

......

.. Assume that (K1)–(K5) hold. Then, every critical point u ∈ Hof Φ− λΨ is an anti-periodic solution of equation (1).

Proof: Let u ∈ H be a critical point of Φ− λΨ. Then, u isanti-periodic and

⟨Φ′(u)− λΨ

′(u), v⟩ = 0 for all v ∈ H.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 22: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Proof of Lemma 2.3

Then, by Lemmas 1 and 2, it follows that

(−1)nT∑t=1

∆n(r(t − n)ϕp(∆nu(t − n)))v(t)

− λ

T∑t=1

f (t, u(t + 1), u(t), u(t − 1))v(t)

− µ

T∑t=1

g(t, u(t + 1), u(t), u(t − 1))v(t) = 0,

i.e.,

T∑t=1

[(−1)n∆(r(t − n)ϕp(∆

nu(t − n)))− λf (t, u(t + 1), u(t), u(t − 1))

− µg(t, u(t + 1), u(t), u(t − 1))]v(t) = 0.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 23: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Proof of Lemma 2.3

Thus,

(−1)n∆(r(t − n)ϕp(∆nu(t − n)))− λf (t, u(t + 1), u(t), u(t − 1))

− µg(t, u(t + 1), u(t), u(t − 1)) = 0 for t ∈ [1,T ]Z.

For any t ∈ [1,T ]Z and l ∈ Z, by (K1), parts .(3) and .(4) of ourRemark, and the fact that u ∈ H, we have

(−1)n∆(r(t + lT − n)ϕp(∆nu(t + lT − n)))

−λf (t + lT , u(t + lT + 1), u(t + lT ), u(t + lT − 1))

−µg(t + lT , u(t + lT + 1), u(t + lT ), u(t + lT − 1))

= −(−1)n∆(r(t − n)ϕp(∆nu(t − n))) + λf (t, u(t + 1), u(t), u(t − 1))

+µg(t, u(t + 1), u(t), u(t − 1)) = 0.

Therefore, u satisfies equation (1) for all t ∈ Z. This completesthe proof of the lemma.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 24: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

More Remarks

We now define a T × T matrix A by

.. A =

2 −1 0 . . . 0 1−1 2 −1 . . . 0 00 −1 2 . . . 0 0. . . . . . . . . . . . . . . . . .0 0 0 . . . 2 −11 0 0 . . . −1 2

.

As pointed out in [6], A is a positive definite matrix, and so all ofits eigenvalues are positive. Let σi , i = 1, . . . ,T , be theeigenvalues of A satisfying

0 < σ1 ≤ σ2 ≤ . . . ≤ σT .

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 25: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Lemma 2.4

The following lemma are take from [6, Lemma 2.3]..Lemma (2.4)..

......

.. For u ∈ H, we have

σn1∥u∥22 ≤

T∑t=1

(∆nu(t))2 ≤ σnT∥u∥22.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 26: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Defining Notation

Let the functions F and G be given as in conditions (K2) and(K4), and let the space H be defined by .(5) . For convenience, weintroduce the following notations:

.. α = lim infξ→∞

T∑t=1

max|x|,|y |≤ξ

F (t, x , y)

ξp, β = lim sup

ξ→∞

T−1∑t=1

F (t, ξ, ξ) + F (T ,−ξ, ξ)

ξp,

(13)

.. δ = lim infξ→0+

T∑t=1

max|x|,|y |≤ξ

F (t, x , y)

ξp, η = lim sup

ξ→0+

T−1∑t=1

F (t, ξ, ξ) + F (T ,−ξ, ξ)

ξp.

(14)

From now on, we always assume the following condition holds:

(C) α, β, δ, η ≥ 0.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 27: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Defining Notation

We also use the convention that 1/x = ∞ if x = 0.Let r1 and r2 be given as in the remark, .12 . Then, for u ∈ H,from the previous statement and .(7) , we have

r1p

T∑t=1

|∆nu(t)|p ≤ Φ(u) ≤ r2p

T∑t=1

|∆nu(t)|p.

Thus, by .(6) and Lemma .4 , we see the following:

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 28: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Defining Notation

Φ(u) ≥ r1p

T∑t=1

|∆nu(t)|p

=r1p∥∆nu(t)∥pp

≥ r1pCp1 ∥∆

nu(t)∥p2

=r1pCp1

(T∑t=1

|∆nu(t)|2)p/2

≥ r1pCp1 σ

(np)/21 ∥u∥p2

Φ(u) ≤ r2p

T∑t=1

|∆nu(t)|p

=r2p∥∆nu(t)∥pp

≤ r2pCp2 ∥∆

nu(t)∥p2

=r2pCp2

(T∑t=1

|∆nu(t)|2)p/2

≤ r2pCp2 σ

(np)/2T ∥u∥p2

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 29: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Defining Notation

Let.. d1 =

r1pCp1 σ

np21 and d2 =

r2pCp2 σ

np2T . (15)

Then, we have

.. d1∥u∥p2 ≤ Φ(u) ≤ d2∥u∥p2 . (16)

The following notation are also needed in the statements of ourresults.

.. λ1 =d2T

p/2

β, λ2 =

d1α, (17)

λ3 =d2T

p/2

η, λ4 =

d1δ.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 30: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Lemma 3.1

The proofs of our theorems are based on following particular caseof the variational principle of Ricceri:Let H be a reflexive real Banach space, and let Φ,Ψ : H → R betwo Gateaux differentiable functionals such that Φ is sequentiallyweakly lower semicontinuous, strongly continuous and coercive,and Ψ is sequentially weakly upper semicontinuous. For everyy > infH Φ, let

φ(y) := infu∈Φ−1(−∞,y)

supv∈Φ−1(−∞,y)Ψ(v)−Ψ(u)

y − Φ(u),

andγ := lim inf

y→∞φ(y), ζ := lim inf

y→(infH Φ)+φ(y).

Then,

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 31: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Lemma 3.1

(a) for every y > infH Φ and every λ ∈ (0, 1/φ(y)), the restriction ofthe functional Iλ := Φ− λΨ to Φ−1(−∞, y) admits a globalminimum, which is a critical point (local minimum) of Iλ in H.

(b) If γ < ∞ then, for each λ ∈ (0, 1/γ), the following alternativeholds: either

(b1) Iλ possesses a global minimum, or(b2) there is a sequence {ul} of critical points (local minima) of Iλ

such that liml→∞ Φ(ul) = ∞.

(c) If ζ < ∞ then, for each λ ∈ (0, 1/ζ), the following alternative holds:either

(c1) there is a global minimum of Φ which is a local minimum ofIλ, or

(c2) there is a sequence {ul} of pairwise distinct critical points

(local minima) of Iλ which converges weakly to a global

minimum of Φ.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 32: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Theorem 1

.Theorem (1)..

......

Assume that (K1)–(K5) and the following conditions hold:

(1a) λ1 < λ2;

(2a) G (t, x , y) ≥ 0 on Z× R2;

(3a) G∞ = lim supξ→∞

T∑t=1

max|x|,|y|≤ξ G(t,x ,y)

ξp < ∞.

Then, for each λ ∈ (λ1, λ2) and each µ ∈ [0, µ1), equation (1) hasa sequence of anti-periodic solutions that is unbounded in H, where

.. µ1 =d1 − αλ

G∞. (18)

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 33: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Proof of Theorem 1

Before we start, we make the following comments:

condition (C) implies that λi ≥ 0, i = 1, 2, 3, 4;

By assumption (1a), we see that α < d1d2T p/2β;

the interval [0, µ1) is well defined since µ1 > 0 under thecondition that λ < λ2.

For H defined by (5), let the functionals Φ,Ψ : H → R be definedby .(7) and .(8) , respectively. Then, it is clear that Φ and Ψsatisfy all the regularity assumptions in Lemma 3.1.From (16), we have

.. ∥u∥2 ≤(Φ(u)

d1

)1/p

. (19)

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 34: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Proof of Theorem 1

From the definition of α in .(13) , there exists a sequence {ξm} ofpositive numbers such that limm→∞ ξm = ∞ and

.. α = limm→∞

T∑t=1

max|x |,|y |≤ξm F (t, x , y)

ξpm. (20)

Let sm = d1ξpm. Then, for any u ∈ H with Φ(u) < sm, from (??),

it follows that

maxt∈[1,T ]Z

|u(t)| < ∥u∥2 ≤(Φ(u)

d1

)1/p

<

(smd1

)1/p

= ξm.

Note that Φ(0) = Ψ(0) = 0 by (K2) and (K4).

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 35: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Proof of Theorem 1

Then, we have

φ(sm) = infu∈Φ−1(−∞,sm)

supv∈Φ−1(−∞,sm)Ψ(v)−Ψ(u)

sm − Φ(u)

≤supv∈Φ−1(−∞,sm)Ψ(v)

sm

T∑t=1

max|x |,|y |≤ξm F (t, x , y) +µ

λ

T∑t=1

max|x |,|y |≤ξm G (t, x , y)

sm

=

T∑t=1

max|x |,|y |≤ξm F (t, x , y) +µ

λ

T∑t=1

max|x |,|y |≤ξm G (t, x , y)

d1ξpm

.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 36: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Proof of Theorem 1

Hence, for γ defined in Lemma 3.1, condition (1c) and .(20) implythat

.. γ ≤ limm→∞

φ(sm) ≤1

d1

(α+

µ

λG∞

)< ∞. (21)

We now claim that

.. if λ ∈ (λ1, λ2) and µ ∈ [0, µ1), then λ ∈ (0, 1/γ). (22)

In fact, for λ ∈ (λ1, λ2), we have λ > 0. Then, from .(17) , .(18) ,and .(21) , we see that when G∞ > 0,

γ <1

d1

(α+

µ1

λG∞

)=

1

d1

(α+

d1 − αλ

λ

)=

1

λ

and when G∞ = 0,

γ ≤ α

d1=

1

λ2<

1

λ.

Note that G∞ ≥ 0. Thus, we always have λ < 1/γ. This showsthat (??) holds.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 37: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Proof of Theorem 1

Now, let λ ∈ (λ1, λ2) and µ ∈ [0, µ1) be fixed. Then, by Lemma3.1 (b), we see that one of the following alternatives holds:

(b1) Iλ := Φ− λΨ possesses a global minimum, or

(b2) there is a sequence {um} of critical points of Iλ such thatlim

m→∞∥um∥p = ∞.

In the following, we show that (b1) does not hold, and thus, (b2)must hold.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 38: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Proof of Theorem 1

From the definition of β in .(13) , there exists a sequence {ηm} ofpositive numbers such that limm→∞ ηm = ∞ and

.. β = limm→∞

T−1∑t=1

F (t, ηm, ηm) + F (T ,−ηm, ηm)

ηpm. (23)

For any m ∈ N, we define ωm ∈ H satisfying ωm(t) = ηm for allt ∈ [1,T ]Z. By (16), we have

Φ(ωm) ≤ d2Tp/2ηpm.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 39: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Proof of Theorem 1

By .(8) and (1a.), we see that

Ψ(ωm) =T∑t=1

F (t, ωm(t + 1), ωm(t)) +µ

λ

T∑t=1

G (t, ωm(t + 1), ωm(t))

≥T∑t=1

F (t, ωm(t + 1), ωm(t))

=T−1∑t=1

F (t, ηm, ηm) + F (T ,−ηm, ηm).

Hence,

.. Iλ(ωm) = Φ(ωm)− λΨ(ωm)

≤ d2Tp/2ηpm − λ

(T−1∑t=1

F (t, ηm, ηm) + F (T ,−ηm, ηm)

).

(24)

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 40: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Proof of Theorem 1

We now consider two cases.Case 1. β < ∞. By λ > λ1 and the definition of λ1 in (17), we

have β − d2T p/2

λ > 0. Choose ϵ > 0 satisfying

.. ϵ ∈

(0, β − d2T

p/2

λ

). (25)

From (23), there exists M1 ∈ N such that

T−1∑t=1

F (t, ηm, ηm) + F (T ,−ηm, ηm) > (β − ϵ)ηpm for all m ≥ M1.

Then, from (24),

Iλ(ωm) <(d2T

p/2 − λ(β − ϵ))ηpm.

Thus, by .(25) and the fact that limm→∞ ηm = ∞, we havelimm→∞ Iλ(ωm) = −∞.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 41: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Proof of Theorem 1

Case 2. β = ∞. Choose

.. L >d2T

p/2

λ. (26)

By .(23) , there exists M2 ∈ N such that

T−1∑t=1

F (t, ηm, ηm) + F (T ,−ηm, ηm) > Lηpm for all m ≥ M2.

Then, from .(24) , we have

Iλ(ωm) < (d2Tp/2 − λL)ηpm.

Hence, by (26) and the fact that limm→∞ ηm = ∞, we obtain thatlimm→∞ Iλ(ωm) = −∞.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 42: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Proof of Theorem 1

Combining the above two cases, we see that the functional Iλ isalways unbounded from below. Thus, (b1) does not hold.Therefore, there exists a sequence {um} of anti-periodic criticalpoints of Iλ such that limm→∞ ∥u∥p = ∞. Finally, an applicationof Lemma .3 completes the proof of the theorem.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 43: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Theorem 2

.Theorem..

......

Assume that (K1)–(K5) and the following conditions hold:

(1b) λ3 < λ4;

(2b) G (t, x , y) ≥ 0 on Z× R2;

(3b) G∞ = lim supξ→∞

T∑t=1

max|x|,|y|≤ξ G(t,x ,y)

ξp < ∞.

Then, for each λ ∈ (λ3, λ4) and each µ ∈ [0, µ2), equation (1) hasa sequence of anti-periodic solutions converging uniformly to zeroin H, where

µ2 =d1 − δλ

G∞.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 44: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Proof of Theorem 2

Using Lemma 3.1 (c) and arguing as in the proof of Theorem 1,Theorem 2 can be proved. For the sake of completeness, we sketcha proof below and make the following remarks:

By assumption (1b), we see that δ < d1d2T p/2 η;

The interval [0, µ2) is well defined since µ2 > 0 under thecondition that λ < λ4.

Let the functionals Φ,Ψ : H → R be defined by .(7) and .(8) ,respectively. Then, as before, Φ and Ψ satisfy all the regularityassumptions in Lemma 3.1. From the definition of δ in .(14) , thereexists a sequence {ξm} of positive numbers such that lim

m→∞ξm = 0

and

δ = limm→∞

T∑t=1

max|x |,|y |≤ξm F (t, x , y)

ξpm.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 45: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Proof of Theorem 2

Note that infH Φ = 0. Then, by the definition of ζ, we haveζ = lim infy→0+ φ(y). Then, as in showing .(21) and .(22) in theproof of Theorem 1, we can prove that ζ < ∞ and that ifλ ∈ (λ3, λ4) and µ ∈ [0, µ2), then λ ∈ (0, 1/ζ).

Then, in view of Lemma 3.1 (c), we see that one of the followingalternatives holds:

(c1) there is a global minimum of Φ which is a local minimum ofIλ = Φ− λΨ, or

(c2) there is a sequence {um} of pairwise distinct critical points(local minima) of Iλ which converges weakly to a globalminimum of Φ.

In what follows, we show that (c1) does not hold, and thus, (c2)must hold.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 46: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Proof of Theorem 2

From the definition of η in .(14) , there exists a sequence {ηm} ofpositive numbers such that limm→∞ ηm = 0 and

η = limm→∞

T−1∑t=1

F (t, ηm, ηm) + F (T ,−ηm, ηm)

ηpm.

For any m ∈ N, we again define ωm ∈ H satisfying ωm(t) = ηm forall t ∈ [1,T ]Z.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 47: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Proof of Theorem 2

Then, as in the cases 1 and 2 of the proof of Theorem 1, we canobtain that, for m large enough, if ζ < ∞, then

Iλ(ωm) <(d2T

p/2 − λ(η − ϵ))ηpm,

where

ϵ ∈

(0, η − d2T

p/2

λ

);

if ζ = ∞, then,

Iλ(ωm) < (d2Tp/2 − λL)ηpm,

where L satisfies .(26) . Hence, we always have Iλ(ωm) < 0 for largem.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 48: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Proof of Theorem 2

Thus, sincelim

m→∞Iλ(wm) = Iλ(0) = 0,

we see that 0 is not a local minimum of Iλ. This, together with thefact that 0 is the only global minimum of Φ, shows that (c1) doesnot hold. Therefore, there exists a sequence {um} of critical pointsof Iλ that converges weakly (and thus also strongly) to 0. Finally,in view of Lemma 2.3, the conclusion of the theorem follows.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 49: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Corollaries

The following corollaries are simple extensions of two theorems..Corollary (1)..

......

Assume that (K1)–(K5), (1a), and (2a) with G∞ = 0 hold, α = 0,and β = ∞. Then, for each λ ∈ (0,∞) and each µ ∈ [0,∞),equation (1) has a sequence of anti-periodic solutions that isunbounded in H.

.Corollary (2)..

......

Assume that (K1)–(K5), (1b), and (2b) with G∞ = 0 hold, δ = 0,and η = ∞. Then, for each λ ∈ (0,∞) and each µ ∈ [0,∞),equation (1) has a sequence of anti-periodic solutions converginguniformly to zero in H.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 50: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Corollaries

Consider the special case of equation (??) whereµg(t, u(t + 1), u(t), u(t − 1)) ≡ 0, i.e.,

(−1)n∆n(r(t − n)ϕp(∆nu(t − n)))

= λf (t, u(t + 1), u(t), u(t − 1)), t ∈ Z. (27)

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 51: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Corollaries

.Corollary (3)..

......

Assume that (K1)–(K3) hold, α = 0, and β = ∞. Then, for eachλ ∈ (0,∞), equation (27) has a sequence of anti-periodic solutionsthat is unbounded in H.

.Corollary (4)..

......

Assume that (K1)–(K3) hold, δ = 0, and η = ∞. Then, for eachλ ∈ (0,∞), equation (27) has a sequence of anti-periodic solutionsconverging uniformly to zero in H.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 52: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Corollaries

Note that when f (t, u(t + 1), u(t), u(t − 1)) = f (t, u(t)) andg(t, u(t + 1), u(t), u(t − 1)) = g(t, u(t)), equation (1) reduces to

(−1)n∆n(r(t−n)ϕp(∆nu(t−n))) = λf (t, u(t))+µg(t, u(t)), t ∈ Z,

(28)where f , g : Z× R → R are assumed to be continuous functions.Let

F (t, y) =

∫ y

0f (t, s)ds for all (t, y) ∈ Z× R

and

G (t, y) =

∫ y

0g(t, s)ds for all (t, y) ∈ Z× R.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 53: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Corollaries

Define the following constants

α = lim infξ→∞

T∑t=1

max|y |≤ξ

F (t, y)

ξp, β = lim sup

ξ→∞

T∑t=1

F (t, ξ)

ξp,

δ = lim infξ→0+

T∑t=1

max|y |≤ξ

F (t, y)

ξp, η = lim sup

ξ→0+

T∑t=1

F (t, ξ)

ξp.

We make the following assumptions.

(C1) f (t + T ,−y) = −f (t, y) for all t ∈ Z and y ∈ R;(C2) g(t + T ,−y) = −g(t, y) for all t ∈ Z and y ∈ R;(C3) G (t, y) ≥ 0 for all t ∈ Z and y ∈ R;

(C4) G∞ = lim supξ→∞

T∑t=1

max|y|≤ξ G(t,y)

ξp = 0.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 54: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Corollaries

.Corollary (5)..

......

Assume that (K1), (C1)–(C4) hold, α = 0, and β = ∞. Then, foreach λ ∈ (0,∞) and each µ ∈ [0,∞), equation (28) has asequence of anti-periodic solutions that is unbounded in H.

.Corollary (6)..

......

Assume that (K1), (C1)–(C4) hold, δ = 0, and η = ∞. Then, foreach λ ∈ (0,∞) and each µ ∈ [0,∞), equation (28) has asequence of anti-periodic solutions converging uniformly to zero inH.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 55: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Corollaries

Consider the following special case of equation (28)

(−1)n∆n(r(t − n)ϕp(∆nu(t − n))) = λf (t, u(t)), t ∈ Z. (29)

.Corollary (7)..

......

Assume that (K1) and (C1) hold, α = 0, and β = ∞. Then, foreach λ ∈ (0,∞), equation (29) has a sequence of anti-periodicsolutions that is unbounded in H.

.Corollary (8)..

......

Assume that (K1) and (C1) hold, δ = 0, and η = ∞. Then, foreach λ ∈ (0,∞), equation (29) has a sequence of anti-periodicsolutions converging uniformly to zero in H.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 56: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

A Remark

Clearly, if u ∈ H is an anti-periodic solution of equation (1), then uis a 2T–periodic solution of (1). Hence, under the assumptions ofTheorems 1 and 2 and Corollaries 1–8, we can obtain thecorresponding existence criteria for each of those results for theexistence of infinitely many 2T–periodic solutions

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 57: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

An Example

In this example, we assume that n ∈ N, p = 2, r(t) ≡ 1 on Z, andT = 4. Let F : Z× R2 → R be defined by

.. F (t, t1, t2) = sin2(πt4

)t21 sin(arctan(t

21 + t22 )). (30)

Then, F is continuously differentiable in the second and thirdvariables and satisfies that F (t, 0, 0) ≡ 0 on Z.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 58: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

An Example

Moreover, we have

F ′2(t, t1, t2) = 2t1 sin

2(πt4

)(sin(arctan(t21 + t22 ))

+t21 cos(arctan(t

21 + t22 ))

1 + (t21 + t22 )2

)(31)

and

F ′3(t, t1, t2) =

2t21 t2 sin2(πt4

)cos(arctan(t21 + t22 ))

1 + (t21 + t22 )2

(32)

for all t ∈ Z and t1, t2 ∈ R.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 59: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

An Example

Now, define two functions f , g : Z× R3 → R by

f (t, x , y , z) = F ′2(t − 1, y , z) + F ′

3(t, x , y) (33)

and

g(t, x , y , z) = 2y

(cos2

(π(t − 1)

4

)+ cos2

(πt4

)).

In view of Remarks and from (30)–(33), we can see that(K2)–(K3) holds. With

G (t, x , y) = cos2(πt4

)(x2 + y2),

from our Remarks, we see that (K4), (K5), (1a), and (2a) whereG∞ = 4, are also satisfied.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 60: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

An Example

Since p = 2, we can choose C1 = C2 = 1 in .(6) . Note thatr(t) = 1. Then, (K1) holds, and in .12 , we can take r1 = r2 = 1.Since T = 4, the matrix A defined by .24 becomes

A =

2 −1 0 1−1 2 −1 00 −1 2 −11 0 −1 2

.

By calculating the eigenvalues, we have σ1 = 2−√2 and

σT = 2 +√2. Then, from .(15) , we see that

d1 =(2−

√2)n

2and d2 =

(2 +√2)n

2. (34)

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 61: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

An Example

Now, for α defined in .(13) , we have

α = lim infξ→∞

4∑t=1

max|x |,|y |≤ξ

F (t, x , y)

ξ2

= lim infξ→∞

4∑t=1

sin2(πt4

)max

|x |,|y |≤ξx2 sin(arctan(x2 + y2))

ξ2

= lim infξ→∞

4∑t=1

sin2(πt4

)ξ2 sin(arctan(2ξ2))

ξ2

= lim infξ→∞

sin(arctan(2ξ2))4∑

t=1

sin2(πt4

)= 0

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 62: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

An Example

For β defined in (13), we have

β = lim supξ→∞

4∑t=1

max|x|,|y |≤ξ

F (t, x , y)

ξ2

= lim supξ→∞

4∑t=1

sin2(πt4

)max

|x|,|y |≤ξx2 sin(arctan(x2 + y2))

ξ2

= lim supξ→∞

4∑t=1

sin2(πt4

)ξ2 sin(arctan(2ξ2))

ξ2

= lim supξ→∞

sin(arctan(2ξ2))4∑

t=1

sin2(πt4

)=

4∑t=1

sin2(πt4

)= 2

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 63: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

An Example

By .(17) and .(34) , we have that λ1 = (2 +√2)n and λ2 = ∞.

Thus, condition (1a) is satisfied. As well, from .(18) , we have

µ1 =(2−

√2)n

8 . Therefore, by Theorem 1, for each

λ ∈((2 +

√2)n,∞

)and each µ ∈

[0, (2−

√2)n

8

), equation (1) has

a sequence of anti-periodic solutions that is unbounded in H whereT = 4.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 64: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

References

A. R. Aftabizadeh, S. Aizicovici, and N. H. Pavel, Anti-periodic boundary value problems for higher order

differential equations in Hilbert spaces, Nonlinear Anal. 18 (1992), 253–267.

R. P. Agarwal, A. Cabada, V. Otero-Espinar, and S. Dontha, Existence and uniqueness of solutions for

anti-periodic difference equations, Arch. Inequal. Appl. 2 (2004), 397–411.

G. Bonanno and G. Molica Bisci, Infinitely many solutions for a boundary value problem with discontinuous

nonlinearities, Bound. Value Probl. 2009 (2009), 1–20.

A. Cabada, The method of lower and upper solutions for periodic and anti-periodic difference equations,

Electron. Trans. Numer. Anal. 27 (2007), 13–25.

H. Chen, Antiperiodic wavelets, J. Comput. Math. 14 (1996), 32–39.

F. J. Devlos and L. Knoche, Lacunary interpolation by antiperiodic trigonometric polynomials, BIT 39

(1999), 439–450.

P. Djiakov and B. Mityagin, Simple and double eigenvalues of the Hill operator with a two-term potential,

J. Approx. Theory 135 (2005), 70–104.

J. Du, H. Han, and G. Jin, On trigonometric and paratrigonometric Hermite interpolation, J. Approx.

Theory 131 (2004), 74–99.

W. G. Kelly and A. C. Peterson, Difference Equations, an Introduction with Applications, Second Edition,

Academic Press, New York, 2001.

V. L. Kocic and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher order with

Applications, Kluwer Academic Publishers, 1993.

Y. Liu, Anti-periodic boundary value problems for nonlinear higher order functional difference equations, J.

Math. Ineqal. 1 (2007), 409–417.Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 65: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

References

Y. Liu, Anti-periodic solutions of functional difference equations with p-Laplacian, Carpathian J. Math. 24

(2008), 72–82.

H. Okochi, On the existence of periodic solutions to nonlinear abstract parabolic equations, J. Math. Soc.

Japan 40 (3) (1988), 541–553

S. Pinsky and U. Tritman, Antiperiodic boundary conditions to discrete light cone quantization. Phys. Rev.

D. 62 (2000), 0887701.

B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math. 113 (2000),

401–410.

Y. Tian and J. Henderson, Anti-periodic solutions for a gradient system with resonance via a variational

approach, Math. Nachr. 286 (2013), 1537–1547.

Y. Tian and J. Henderson, Anti-periodic solutions of higher order nonlinear difference equations: a

variational approach, J. Difference Equ. Appl. 19 (2013), 1380–1392.

Y. Tian and J. Henderson, Three anti-periodic solutions for second-order impulsive differential inclusions via

nonsmooth critical point theory, Nonlinear Anal. 75 (2012), 6496–6505.

P. Wang and W. Wang, Anti-periodic boundary value problem for first order impulsive delay difference

equations, Adv. Difference Equ. 2015:93 (2015), 13pp.

C. Xu and Y. Wu, Anti-periodic solutions for high-order cellular neural networks with mixed delays and

impulses, Adv. Difference Equ. 2015:161 (2015) 14pp.

F. Zhang, Anti-periodic boundary value problem for impulsive differential equations with delay, Kyungpook

Math. J. 48 (2008), 553–558.

Rizzo, Parsley, and Russell Anti-Periodic Solutions

Page 66: Anti-Periodic Presentation

..........

.....

.....................................................................

.....

......

.....

.....

.

. . . . . . . . . .Problem

. . . . . . . . . . . . .Preliminaries

. . . . . . . . . . . . . . . . .Theorems

. . . . . . . . . . . . . . .Extensions Refer’s

Thank you!

The research by Jacob Parsley, Kaitlin Rizzo, and Nicholas Russellwas conducted as part of a 2015 Research Experience forUndergraduates at the University of Tennessee at Chattanoogathat was supported by NSF Grant DMS-1261308.Special thank you to Dr. Lingju Kong for being our advisor all theway through the REU. Also, a thank you to Dr. AbhinandanChowdhury for help with the presentation formatting.

Thank you for coming!

Rizzo, Parsley, and Russell Anti-Periodic Solutions