Anforderungen an Hochintegrierte UCAV · PDF file1000 1500 2000 2500 3000 3500 4000 4500 ......

23
Anforderungen an Hochintegrierte UCAV Antriebsysteme DGLR Workshop UAV / UCAV / MAV 21. – 22. April 2004 Bremen K.-H. Kurz New OEM Business, ASO MTU Aero Engines

Transcript of Anforderungen an Hochintegrierte UCAV · PDF file1000 1500 2000 2500 3000 3500 4000 4500 ......

Anforderungen an Hochintegrierte UCAV Antriebsysteme

DGLR Workshop UAV / UCAV / MAV21. – 22. April 2004

Bremen

K.-H. KurzNew OEM Business, ASO

MTU Aero Engines

Apr-04 Kurz, ASO 2

Contents

IntroductionKey Requirement Features for UCAV SystemsDetailed Engine FeaturesKey Technologies Key Technologies forfor affordableaffordable UCAV UCAV PropulsionPropulsionSummary

Apr-04 Kurz, ASO 3

Highly Complex Future Air Combat Scenarios-manned,unmanned system, strong electronic data network-

Manned Systems

UCAV

HALE

AGS

Target

Mobile Groundstation

AGS Air to Ground Surveillance

HALE High Altitude Long Endurance

UCAV Unmanned Comabt Aerial Vehicle

Sensor Datalink

Control Datalink

Apr-04 Kurz, ASO 4

Design Governing Mission Requirements forFuture Systems

Flight Conditions of Future Air Vehicles

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

0 0,5 1 1,5 2 2,5

Mach Number

Altit

ude

(ft)

SupercruiseManned Fighter

UCAV

HALE

UAVpropeller

UCAV = Unmanned Combat Aerial VehicleUAV = Unmanned Aerial VehicleHALE = High Altitude Long Endurance

Apr-04 Kurz, ASO 5

Unmanned Low Cost Systems/UCAVs to Cover 3D Missions

Dangerous (e.g. Suppression of Enemy Air Defence)Dull (e.g. Long Endurance)Dirty (e.g. Polluted Environment)

ThreatThreat

UCAV UCAV FlightFlight PathPath

UCAVUCAV

Range of Surface Air Missile(SAM) of Threat

WeaponWeapon Flight

Flight PathPath

UCAV = Unmanned Combat Aerial Vehicle

Apr-04 Kurz, ASO 6

Contents

IntroductionKey Requirement Features for UCAV SystemsDetailed Engine FeaturesKey Technologies Key Technologies forfor affordableaffordable UCAV UCAV PropulsionPropulsionSummary

Apr-04 Kurz, ASO 7

Key Requirement Features for UCAV Systems

M ≈ 0.8

Engine AttributesMain Operation Requirements

• Long Mission Range/Endurance

• No Supersonic Flight

• Low Signature / Survivability

• High Power Off Takes ( ≥ 30 kW in high Alt.)

• Long Term Storage Capability ( ≥ 5 years)

• Life Cycle Cost (Goal 1/3 of Manned Syst. LCC)

• Long Mission Range/Endurance

• No Supersonic Flight

• Low Signature / Survivability

• High Power Off Takes ( ≥ 30 kW in high Alt.)

• Long Term Storage Capability ( ≥ 5 years)

• Life Cycle Cost (Goal 1/3 of Manned Syst. LCC)

Low SFC / High Bypass Ratio

No Reheat

LO Integration / LO Inlet & Nozzle

Large Surge Margin

Oil Less/Free Engine & MEE

Low Cost Derivative Engines

MEE = More Electric EngineSFC = Specific Fuel Consumption

Apr-04 Kurz, ASO 8

Contents

IntroductionKey Requirement Features for UCAV SystemsDetailed Engine FeaturesKey Technologies Key Technologies forfor affordableaffordable UCAV UCAV PropulsionPropulsionSummary

Apr-04 Kurz, ASO 9

Alt. = 11 000 mM cruise = 0.8

Radius of Action (RoA)

Simplified UCAV Mission

m 1

m 2

m 2

Bypass Ratio BPR = m 2m 1

RoA out = RoA in Startmasse = 16 550 kg , Fuelmasse = 6 350 kg, Payload = 2 040 kg,

v= 236 m/s (M=0,8, Alt. = 11 000 m)

1000

1500

2000

2500

3000

3500

4000

4500

15 17 19 21 23 25 27 29

SFC (g/kN/s)

RoA

(km

)

BPR = 3.0

BPR = 0.5

cl/cd = 8

cl/cd = 10

SFC = Specific Fuel Consumption

~ 500 km

Fuel Efficient Engines forLong Range / Long Endurance

Apr-04 Kurz, ASO 10

Fuel Efficient Engines Key Driver for

Light/Small Vehicle

PropulsiveWeight

MTOW

Fuel

Engine

AvionicsPayload

Structure

Not to scale

Radius of Action = 2 329 km = konst. cl/cd = 10, v = 236 m/s

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

15 17 19 21 23 25 27 29

SFC (g/kN/s)

Fuel

-Mas

se (k

g) BPR = 3.0

BPR = 0.5

~ 1500 kg

MTOW = Maximum Take Off WeightSFC = Specific Fuel Consumption

Apr-04 Kurz, ASO 11

Low Signature Technologies to ImproveSurvivability and Mission Success

• Exhaust

Low Exhaust Temperature of Engine Plumeand Engine Surfaces (Nozzle)Ejector NozzleSupercruise Capability (supersonic flight w/o Afterburner, for Fighter Aircraft)Shielding of Exhaust System (Elevation & Azimuth Angle)

• Exhaust

Low Exhaust Temperature of Engine Plumeand Engine Surfaces (Nozzle)Ejector NozzleSupercruise Capability (supersonic flight w/o Afterburner, for Fighter Aircraft)Shielding of Exhaust System (Elevation & Azimuth Angle)

• Inlet (Airframer)S-ShapingRadar Absorbing Material (RAM)

• ExhaustCrown NozzleRectangular Nozzle

• Manoevering (UCAV)Thrust Vectoring Nozzle to replacevertical tail (signature reduction)

• Inlet (Airframer)S-ShapingRadar Absorbing Material (RAM)

• ExhaustCrown NozzleRectangular Nozzle

• Manoevering (UCAV)Thrust Vectoring Nozzle to replacevertical tail (signature reduction)

Radar Cross Section (RCS)Radar Cross Section (RCS) Infrared Signature (IR)Infrared Signature (IR)

Apr-04 Kurz, ASO 12

Advanced Integration Concepts

S-Shaped Inlet

Distortion Tolerant Engine

Shielded Nozzle

Thrust Vectored Nozzle(no vertical tail)

Decrease Signature

Raised Survivability

Increased Mission Success

Apr-04 Kurz, ASO 13

Influence of Exit Area Contours on Radar Cross Section

B/H = 1.64

B/H = 3.7

Scaled PW 530 NozzleB/H

RCS = Radar Cross SectionRCS

Cf

Cf = Thrust Coefficient

Apr-04 Kurz, ASO 14

More Electric Engine (MEE)

• Increased Electric Power Demand by Aircraft/Vehicle- Radar/Sensor Power- High Energy Weapons (e. g. High Power Microwave)

• Replacing Hydomechanical/Pneumatic Engine Systems by Electro-mechanical Systems

- Fuel/ Oil Pumps- Actuators- Air Turbine Starter

• High Resistance to Energy Weapons

• Weight of el. Systems

Customer Requirement

New EngineAccessory

Concept

Precondition

Critical Issue

Apr-04 Kurz, ASO 15

More Electric Engine – Stepwise Introduction

Near Term (More Electric Engine)Near Term (More Electric Engine) Long Term (All Electric Engine)Long Term (All Electric Engine)• External Starter/Generator• Electrical Power Management System (PMS)• Electrically driven auxiliaries

• Integral Starter/Generator (ISG)• Active Magnetic Bearings (AMB)

AuxiliaryGearbox

Starter/Generator

FuelPumps

OilPumps

IgnitionSytem Actuators

El. Power Management System

A/C

El. Power Management System

A/C

ISG

AMB Controls

FuelPumps

IgnitionSytem Actuators

AMB

Apr-04 Kurz, ASO 16

Technologies Covered by More Electric Engine (MEE) - Systems

Smart SensorsElectric Fuel Pump and Metering Unit

Distributed ControlSystem

Electromechanical, Smart Actuators

Integrated Starter/Generator Power Distribution / Management

Magnetic Bearings

Apr-04 Kurz, ASO 17

Long Term Storage Technologies (UCAV)

• Maintenance & Storage friendly Fluid Systems• Durable Sealing Devices• Durable Electronic Equipment• Corrosion Resistant Materials & Design• Durable Diagnostics• Excellent Reliability of Starting System

• Oil free engine => More El. Engine

Apr-04 Kurz, ASO 18

Life & Usage Monitoring• Thermal Transient Counting• Lifing, Cyclic Counting

On Board Diagnostics• Oil Analysis• Debris Monitoring : FOD Detection

Ground Based Fault Detection• Advanced Sensoric• Visual Inspection

Future• Intelligent Systems• Neural Networks• Data Fusion• Thrust Vectoring

Inflight Health ConditionMonitoring• Data Capture:

SnapshotContinuous Record

• ECS: Blade Health• Vibration Analysis

Improved Prognostics• Fleet Management

Software•Trend Prediction

Engine Control & Monitoring Technologies Gain Increasing Importance

Apr-04 Kurz, ASO 19

UCAV Derivative Engine Concept Cost Saving

• Available Core Engine (civil/mil.) and

Low Pressure Turbine modified from civil/mil. Programmes

• Fan and Bypass Duct/Nozzle new design

Bypass Ratio = 2 - 3/4 (depending on Mission) to reduce SFCOverall Pressure Ratio ~ 25 - 30Fan Pressure Ratio ~ 1.8 - 3 (1 to 2 stages)Turbine Inlet Temperature moderate (uncooled Low Pressure Turbine) to reduce Cost

Apr-04 Kurz, ASO 20

Contents

IntroductionKey Requirement Features for UCAV SystemsDetailed Engine FeaturesKey Technologies for affordable UCAV PropulsionSummary

Apr-04 Kurz, ASO 21

Key Technologies Key Technologies forfor affordableaffordable UCAV UCAV PropulsionPropulsion

ReliabilityAvailability

Maintenance

Survivability

LowUnit Cost

Max Performance

Minimum Costof Ownership

SFCThrust to

Weight

Research &Development

• Civil/Mil. Existing Cores• Mature Technologies

• Civil/Mil. Cores• No Afterburner• Moderate Temperatures(Low Cost Matrials;Low Cost Low Pressure Turbine)

•Small tank•Small A/C Size

• Enhanced BPR Cycle, low sfc (civil type)• Low Weight Design & Materials

• Low Signature Installation• High BPR• 2D Nozzles

• Damage Tolerant Design• Longterm Storage (MEE)• High Reliability (civil airspace)• Health Sensoric

• Adv. Health Management& sensoric• Excellent Maintainability (if necessary)

Apr-04 Kurz, ASO 22

Essential Interrelations between Propulsion and UAV-Design

Performance Aspects (Range, Flight Envelope, Vehicle Size, etc.)

Signature (IR, RCS => L/O Inlet & Nozzle)

Power/Energy Management (Electrical Power Demand e.g. Sensors, energy weapons)

Thermal Management (Rejection of Avionic & Sensors generated Heats)

Integration of Engine Control in Flight Control System (among others Thrust Vectoring)

Apr-04 Kurz, ASO 23

Summary

Requirements for National UCAV System (SFF) to be established soonto match with France and UK

Highly Influence of Propulsion System on UCAV Design, Performance and Life Cycle Cost

From the Beginning a very Close Cooperation of essential Subsystems Suppliers is highly recommended to result in an optimal UCAV System

SFF = SystemFähigkeitsForderungen (CP2000)