Andrew Scholbrock - Wake Steering for Improved Wind Plant Performance

18
Wake Steering for Improved Wind Plant Performance Andrew Scholbrock, NREL 2016 Wind Turbine Blade Workshop Albuquerque, NM, USA August 31, 2016

Transcript of Andrew Scholbrock - Wake Steering for Improved Wind Plant Performance

Page 1: Andrew Scholbrock - Wake Steering for Improved Wind Plant Performance

WakeSteeringforImprovedWindPlantPerformanceAndrewScholbrock,NREL

2016WindTurbineBladeWorkshopAlbuquerque, NM,USAAugust31,2016

Page 2: Andrew Scholbrock - Wake Steering for Improved Wind Plant Performance

2

Problem

Photoby:ChristianSteiness

Page 3: Andrew Scholbrock - Wake Steering for Improved Wind Plant Performance

3

ResearchMethodology

CFDModeling ofAtmosphere/WindPlant

SimplifiedEngineering

ModelsofWakes

WindPlantOptimizationSimulations

FieldTestingValidationofWakeModels

FieldTestingTurbine

InteractionsCoordinatedWind

PlantControl

Page 4: Andrew Scholbrock - Wake Steering for Improved Wind Plant Performance

4

• SOWFA:SimulatorfOrWindFarmApplicationso Usedtoinvestigatewindturbineandwindplantperformanceundervariousatmosphericconditions

o LESmodelofatmosphericboundarylayer(ABL)basedonOpenFOAMCFDtoolbox

o FASTturbinemodelusingrotatingactuatorlinestomodelrotor

CFDModeling

AdaptedFrom:J.Annoni et.al.“Analysisofaxial-induction-basedwindplantcontrolusinganengineeringandahigh-orderwindplantmodel”WindEnergy.Vol.19.pp.1135-1150.DOI:10.1002/we.1891.2016.More information: nwtc.nrel.gov/SOWFA

Page 5: Andrew Scholbrock - Wake Steering for Improved Wind Plant Performance

5

WakeEngineeringModel

• FLORIS(FLOw RedirectionandInductioninSteady-state):o Steady-stateengineeringmodelbasedonJensenandJimenezmodelswithextensions

Page 6: Andrew Scholbrock - Wake Steering for Improved Wind Plant Performance

6

Methodsforwakemanipulation

o Axial-basedcontrolo WakeSteering:

– Repositioning(layoutoptimization)– Tilt-basedwake-steering– Yaw-based

AdaptedFrom:J.Annoni et.al.“Analysisofaxial-induction-basedwindplantcontrolusinganengineeringandahigh-orderwindplantmodel”WindEnergy.Vol.19.pp.1135-1150.DOI:10.1002/we.1891.2016.

Page 7: Andrew Scholbrock - Wake Steering for Improved Wind Plant Performance

7

AxialBasedMethod– SimulationResults

AdaptedFrom:J.Annoni et.al.“Analysisofaxial-induction-basedwindplantcontrolusinganengineeringandahigh-orderwindplantmodel”WindEnergy.Vol.19.pp.1135-1150.DOI:10.1002/we.1891.2016.

Page 8: Andrew Scholbrock - Wake Steering for Improved Wind Plant Performance

8

WakeSteering– InitialCFDInvestigations

AdaptedFrom:P.Fleming,et.al.“Simulationcomparisonofwakemitigationcontrolstrategiesforatwo-turbinecase”WindEnergy.Vol.18.pp.2135-2143DOI:10.1002/we.1810.2014.

Page 9: Andrew Scholbrock - Wake Steering for Improved Wind Plant Performance

9

WindPlantOptimizationSimulationResults

AdaptedFrom:Gebraad,P.M.O.;Teeuwisse, F.W.;vanWingerden,J.W.;Fleming,P.A.;Ruben,S.D.;Marden,J.R.;Pao,L. Y. (2014).“Data-DrivenModelforWindPlantPowerOptimizationbyYawControl.”Proceedingsofthe2014AmericanControlConference(ACC);June4-6,2014,Portland,Oregon.NREL/CP-5000-61405.Piscataway,NJ:InstituteofElectricalandElectronicsEngineers;pp.3128-3134.

Page 10: Andrew Scholbrock - Wake Steering for Improved Wind Plant Performance

10

FieldTesting

MoreinformationonSWiFT:energy.sandia.gov/energy/renewable-energy/wind-power/wind_plant_opt/More informationonNWTC:nwtc.nrel.govMoreinformationonDTULidar:www.windscanner.dk/MoreinformationonSWELidar:www.ifb.uni-stuttgart.de/windenergie/index.en.html

ScaledWindFarmTechnology Facility(SWiFT),Lubbock,Texas

PhotobyThomasHerges,SandiaNationalLaboratory PhotobyDennisSchroeder,NREL

NationalWindTechnologyCenter(NWTC),Boulder,Colorado

• WindTurbine:Vestas V27• Lidar:DanishTechnicalUniversity(DTU)modified

ZephIR

• WindTurbine:GE1.5 MW• Lidar:UniversityofStuttgart (SWE)modified

Leosphere

Page 11: Andrew Scholbrock - Wake Steering for Improved Wind Plant Performance

11

LidarpatternsampledCFDdata

SimulatedLidarSamplingofYawedWakeforSWiFT(CourtesyMattChurchfield–NREL)

q =30°

winddirection

g =-20°b =-10°

PureCFDdata

Datareconstructed fromlidarsampling

Page 12: Andrew Scholbrock - Wake Steering for Improved Wind Plant Performance

12

Lidarsamplingatdifferentranges

ImagecourtesyofTommyHerges,SandiaNationalLaboratory

Page 13: Andrew Scholbrock - Wake Steering for Improved Wind Plant Performance

13

SimulatedLidarSamplingofWakeforGE1.5(CourtesyMattChurchfield–NREL)

Page 14: Andrew Scholbrock - Wake Steering for Improved Wind Plant Performance

14

GE1.5FieldTestWakeSteering

WakebehindGE1.5AlignedwithWindDirection

WakebehindGE1.5+25ᵒYawMisalignment

ImagescourtesyofJenniferAnnoni, NREL

Page 15: Andrew Scholbrock - Wake Steering for Improved Wind Plant Performance

15

SWiFT Fieldtestresults– StableABLWakebehindSWiFTwindturbineStableAtmosphericBoundaryLayer

VideocourtesyofTommyHerges,SandiaNationalLaboratory

Page 16: Andrew Scholbrock - Wake Steering for Improved Wind Plant Performance

16

SWiFT Fieldtestresults– UnstableABL

WakebehindSWiFTwindturbineUnstableAtmosphericBoundaryLayer

VideocourtesyofTommyHerges,SandiaNationalLaboratory

Page 17: Andrew Scholbrock - Wake Steering for Improved Wind Plant Performance

17

• CFDsimulationshelpedimmenselyinguidingthedesignoffieldexperiments

• Intentionalwakesteeringisfeasiblefromfieldexperiments

• Atmosphericstabilityplaysalargeroleinwakemeanderingandneedstobetakenintoaccountforcoordinatedwindfarmcontrol

• Needtoquantify“steered”wakefromfieldtestsandcomparetosimulationmodelsforvalidation

• Needtoquantifyturbinetoturbineinteractions

Conclusions

Page 18: Andrew Scholbrock - Wake Steering for Improved Wind Plant Performance

Thankyouforyourtime!

Photoby:DennisSchroeder,NREL