and Testing of an Ultra low Piston Heat EnginePiston Heat Engine Joshua Schmitt, Jordan Nielson,...

20
Modelling and Testing of an Ultralow Temperature sCO2 Opposing Piston Heat Engine Joshua Schmitt, Jordan Nielson, Nathan Poerner Southwest Research Institute Partnered with: Thermal Tech Holdings and PwrCor, Inc.

Transcript of and Testing of an Ultra low Piston Heat EnginePiston Heat Engine Joshua Schmitt, Jordan Nielson,...

Page 1: and Testing of an Ultra low Piston Heat EnginePiston Heat Engine Joshua Schmitt, Jordan Nielson, Nathan Poerner Southwest Research Institute Partnered with: Thermal Tech Holdings and

Modelling and Testing of an Ultra‐low Temperature sCO2 Opposing 

Piston Heat Engine

Joshua Schmitt, Jordan Nielson, Nathan PoernerSouthwest Research Institute

Partnered with: Thermal Tech Holdings and PwrCor, Inc.

Page 2: and Testing of an Ultra low Piston Heat EnginePiston Heat Engine Joshua Schmitt, Jordan Nielson, Nathan Poerner Southwest Research Institute Partnered with: Thermal Tech Holdings and

Background• SwRI has a long history of understanding and 

developing CO2 compressors and engines– Design and testing of radial and axial 

turbomachinery and reciprocating machinery with CO2 as operating fluid

– Multi‐million dollar projects with industry and DOE to develop the technology

• SwRI contracted to conceptualize, model, design, assemble, and test a novel CO2 engine for low temperature heat inputs– Opposing piston design with expansive 

properties of CO2 as the driving force

Page 3: and Testing of an Ultra low Piston Heat EnginePiston Heat Engine Joshua Schmitt, Jordan Nielson, Nathan Poerner Southwest Research Institute Partnered with: Thermal Tech Holdings and

Working Principles• CO2 experiences dramatic changes in 

density above the critical point for small changes in temperature

• Trapped CO2 in heat exchanger is heated with water which builds pressure that pushes a piston

• Opposing piston design compresses CO2 into a separate heat exchanger that is cooled

• Processes is rapidly reversed by switching water sources on heat exchangers with trapped CO2

• A central piston cylinder communicates pressurized hydraulic oil to a motor

Page 4: and Testing of an Ultra low Piston Heat EnginePiston Heat Engine Joshua Schmitt, Jordan Nielson, Nathan Poerner Southwest Research Institute Partnered with: Thermal Tech Holdings and

Engine Cycle• Typically operates above the critical point 

of CO2– High pressures over 1100 psi– Low temperatures over 88 F– Can operate under the dome if enough 

cooling is available• P‐v diagram demonstrates how work is 

produced– Area between high and low pressure is 

available work– How fast this cycle repeats determines 

power output• T‐s diagram demonstrates the efficiency 

of the cycle– Area under heating line gives cycle heat load

Page 5: and Testing of an Ultra low Piston Heat EnginePiston Heat Engine Joshua Schmitt, Jordan Nielson, Nathan Poerner Southwest Research Institute Partnered with: Thermal Tech Holdings and

Cycle Modelling• CO2 properties pulled directly from 

REFPROP which is published by NIST• Excel partially time dependent 

model– Estimates of piston movement and 

subsequent P‐v– Work derived from P‐v is path 

dependent which means that the value of pressure affects resulting work

• Matlab fully time dependent model– Control volume approach– Trading of CO2 between different 

volumes over small time steps– CO2 properties from REFPROP 

derived lookup tables for speed

Page 6: and Testing of an Ultra low Piston Heat EnginePiston Heat Engine Joshua Schmitt, Jordan Nielson, Nathan Poerner Southwest Research Institute Partnered with: Thermal Tech Holdings and

Force Balance Model in Matlab• Piston balance of forces 

and acceleration determined by pressures and seal friction– Piston movement changes 

volume of each cylinder– Acceleration and velocity 

over small time step determines the piston displacement

– 5 millisecond time steps used by the model

Page 7: and Testing of an Ultra low Piston Heat EnginePiston Heat Engine Joshua Schmitt, Jordan Nielson, Nathan Poerner Southwest Research Institute Partnered with: Thermal Tech Holdings and

Modeled System in Matlab• A network of possible exchanges 

developed based on connections– Volumes can exchange mass

• Mass heat addition or removal to a volume is tracked by enthalpy values– Table lookup developed to speed 

up code– 2‐D property tables based on 

temperature and pressure• Temperature ranged from 20°F 

to 400°F, • Pressure from 500 to 5000 psi• The ranges were divided into 

1000 equally spaced points

Page 8: and Testing of an Ultra low Piston Heat EnginePiston Heat Engine Joshua Schmitt, Jordan Nielson, Nathan Poerner Southwest Research Institute Partnered with: Thermal Tech Holdings and

Matlab Heat Exchanger Model• Water transfer of heat 

through metal body to CO2 in the heat exchanger

• HX CO2 volume is fixed but mass can be communicated to the piston CO2 volume

• The new mass and volume creates a new density at each time step

• Using density and enthalpy from heat transfer, a new temperature and pressure is calculated

Page 9: and Testing of an Ultra low Piston Heat EnginePiston Heat Engine Joshua Schmitt, Jordan Nielson, Nathan Poerner Southwest Research Institute Partnered with: Thermal Tech Holdings and

Matlab Model Cylinder CO2 Control Volume

• Moving piston head changes volume• Mass transfer to and from cylinder 

based on balance of pressures between piston and HX CO2 volumes– Pressure loss of the lines communicating 

the CO2 is accounted for– Velocity driven by pressure difference at 

time step gives volume flow rate and mass flow rate

• Temperatures and pressures are recalculated as enthalpy and density change

Page 10: and Testing of an Ultra low Piston Heat EnginePiston Heat Engine Joshua Schmitt, Jordan Nielson, Nathan Poerner Southwest Research Institute Partnered with: Thermal Tech Holdings and

Matlab Model versus Recorded Data

0

5

10

15

20

25

30

0

500

1000

1500

2000

2500

3000

0 20 40 60 80

Piston

 Position

 (in)

Presure (psi)

Time (s)HX2 CO2 Pressure HX1 CO2 PressurePiston Position

Page 11: and Testing of an Ultra low Piston Heat EnginePiston Heat Engine Joshua Schmitt, Jordan Nielson, Nathan Poerner Southwest Research Institute Partnered with: Thermal Tech Holdings and

Component Overview (1)

Cold Water Pump

Hot WaterPump

Switching Water Valves (x8)

Heat Exchangers CO2 Tubing

Panel

Water Flows

Page 12: and Testing of an Ultra low Piston Heat EnginePiston Heat Engine Joshua Schmitt, Jordan Nielson, Nathan Poerner Southwest Research Institute Partnered with: Thermal Tech Holdings and

Component Overview (2)

Generator

Opposing Piston

CO2 Tubing

Oil Reservoir

Hydraulic Motor

Hydraulic Manifold

Page 13: and Testing of an Ultra low Piston Heat EnginePiston Heat Engine Joshua Schmitt, Jordan Nielson, Nathan Poerner Southwest Research Institute Partnered with: Thermal Tech Holdings and

How Power is Calculated• Pressure of oil

– Direct measure of sensor at motor inlet• Good for constant supply of pressurized fluid (2 pistons or a pressurized reservoir)• Delay in input if pressure drops below a threshold when operation mode adjusted during 

testing– Calculation of oil pressure from CO2 pressure (Preferred)

• CO2 response is responsive to abrupt changes because they are always pressurized• Calculated from static pressure ratio with dynamic pressure loss

• RPM of motor– Number of pulses over time– Time between pulses (Preferred)

Page 14: and Testing of an Ultra low Piston Heat EnginePiston Heat Engine Joshua Schmitt, Jordan Nielson, Nathan Poerner Southwest Research Institute Partnered with: Thermal Tech Holdings and

Accounting for Engine Losses and Inefficiencies

• Dynamic pressure loss from observed behavior when hydraulic pressure sensor “catches up” with CO2‐based calculation– Hydraulic flow kept constant with regulator, so this loss can be applied 

to the entire stroke• Motor efficiency provided by manufacturer applied to calculate 

shaft power• Calculating thermal efficiency ( )

– Heat flow rate from CO2 T‐s diagram and power from motor shaft power out

Page 15: and Testing of an Ultra low Piston Heat EnginePiston Heat Engine Joshua Schmitt, Jordan Nielson, Nathan Poerner Southwest Research Institute Partnered with: Thermal Tech Holdings and

Best Case P‐V (190°F hot, 45°F cold, 80 GPM)

Page 16: and Testing of an Ultra low Piston Heat EnginePiston Heat Engine Joshua Schmitt, Jordan Nielson, Nathan Poerner Southwest Research Institute Partnered with: Thermal Tech Holdings and

Best Case T‐s (190°F hot, 45°F cold, 80 GPM)

Page 17: and Testing of an Ultra low Piston Heat EnginePiston Heat Engine Joshua Schmitt, Jordan Nielson, Nathan Poerner Southwest Research Institute Partnered with: Thermal Tech Holdings and

Power and Efficiency with Changes in Hot Water Temperature

0

2

4

6

8

10

12

14

130 150 170 190Po

wer (kW)

Hot Water Inlet Temperature (°F)

CO2 CyclePower (kW)

Motor ShaftPower (kW)

30%

35%

40%

45%

50%

55%

60%

0%

1%

2%

3%

4%

5%

6%

130 150 170 190

Cycle Ra

tio to

 Carno

t

Cycle Efficiency (kW)

Hot Water Inlet Temperature (°F)

CO2 CycleEfficiency

Cycle Ratio toCarnot

Page 18: and Testing of an Ultra low Piston Heat EnginePiston Heat Engine Joshua Schmitt, Jordan Nielson, Nathan Poerner Southwest Research Institute Partnered with: Thermal Tech Holdings and

Power and Efficiency with Changes in Cold Water Temperature and Flow Rates

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

0

2

4

6

8

10

12

14

45 55 65 75

Efficiency

Power (kW)

Cold Water Inlet Temperature (°F)

CO2 CyclePower (kW)

Motor ShaftPower (kW)

CO2 CycleEfficiency

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

0

2

4

6

8

10

12

14

60 65 70 75 80

Efficiency

Power (kW)

Water Flow Rate (GPM)

CO2 CyclePower (kW)

Motor ShaftPower (kW)

CO2 CycleEfficiency

Page 19: and Testing of an Ultra low Piston Heat EnginePiston Heat Engine Joshua Schmitt, Jordan Nielson, Nathan Poerner Southwest Research Institute Partnered with: Thermal Tech Holdings and

Conclusions• Conceptual cycle development showed the potential for utilizing 

ultra‐low temperature heat sources to produce power• The first models were moderately successful in predicting the 

behavior of the prototype but are in need of adjustments• Tests of the prototype successfully demonstrated an engine 

producing power with hot inputs ranging from 130°F to 190°F• Warmer cooling temperatures or less water flow decreases power 

output and efficiency• Future engines will introduce cycle modifications to push the 

efficiency above 80% of the Carnot limit– Avoid the alternating of heat sources on the same heat exchanger

Page 20: and Testing of an Ultra low Piston Heat EnginePiston Heat Engine Joshua Schmitt, Jordan Nielson, Nathan Poerner Southwest Research Institute Partnered with: Thermal Tech Holdings and

Thank You