Analyzing social media networks with NodeXL - Chapter- 08 images

12
1 Copyright © 2011, Elsevier Inc. All rights Reserved Chapter 8 Email: The Lifeblood of Modern Communication Analyzing Social Media Networks with Node Insights from a Connected World

description

 

Transcript of Analyzing social media networks with NodeXL - Chapter- 08 images

Page 1: Analyzing social media networks with NodeXL - Chapter- 08 images

1Copyright © 2011, Elsevier Inc. All rights Reserved

Chapter 8

Email: The Lifeblood of Modern

Communication

Analyzing Social Media Networks with NodeXLInsights from a Connected World

Page 2: Analyzing social media networks with NodeXL - Chapter- 08 images

2Copyright © 2011, Elsevier Inc. All rights Reserved

FIGURE 8.1C

hapter 8

A simple email network visualized in NodeXL. Arrows point from the sender to the receiver(s). Edge thickness (1 to 3) is based on number of messages exchanged. Edge opacity is set to 50. Vertex size (1.5 to 5) is based on out-degree or number of messages sent.

Page 3: Analyzing social media networks with NodeXL - Chapter- 08 images

3Copyright © 2011, Elsevier Inc. All rights Reserved

FIGURE 8.2C

hapter 8

Window’s search results show all 2174 email messages and the folder they are contained in on the desktop containing the search term “NodeXL.”

Page 4: Analyzing social media networks with NodeXL - Chapter- 08 images

4Copyright © 2011, Elsevier Inc. All rights Reserved

FIGURE 8.3C

hapter 8

NodeXL Import from Email Network dialog filtered to only include messages with the term “NodeXL” between 1/1/2009 and 5/31/2009 in a specified folder.

Page 5: Analyzing social media networks with NodeXL - Chapter- 08 images

5Copyright © 2011, Elsevier Inc. All rights Reserved

FIGURE 8.4C

hapter 8

Excel 2007 Find and Replace function used to merge different email addresses in a NodeXL Edges worksheet.

Page 6: Analyzing social media networks with NodeXL - Chapter- 08 images

6Copyright © 2011, Elsevier Inc. All rights Reserved

FIGURE 8.5C

hapter 8

A Lookup table and the Excel VLOOKUP() formula is used to combine duplicate email addresses in NodeXL.

Page 7: Analyzing social media networks with NodeXL - Chapter- 08 images

7Copyright © 2011, Elsevier Inc. All rights Reserved

FIGURE 8.6C

hapter 8

Effects of NodeXL’s Merge Duplicate Edges feature after combining duplicate addresses. A self-loop is shown in red.

Page 8: Analyzing social media networks with NodeXL - Chapter- 08 images

8Copyright © 2011, Elsevier Inc. All rights Reserved

FIGURE 8.7C

hapter 8

Derek Hansen’s email network for May 2009, showing only connections with over five messages (Edge Visibility > 4). Size is based on the Log of total sent messages (1.5 to 3.5). Opacity is based on the Log of total received messages (30 to 100). Edge weight is mapped to Edge Width (1 to 4) and log of edge weight is mapped to Edge Opacity (10 to 70). Shape is set to Label for email lists; Ben Shneiderman and Marc Smith are labeled with the Shape kept as a Disk.

Page 9: Analyzing social media networks with NodeXL - Chapter- 08 images

9Copyright © 2011, Elsevier Inc. All rights Reserved

FIGURE 8.8C

hapter 8

NodeXL visualization of Derek’s personal email message network limited to messages with the term “NodeXL” sent or received over a 5-month period; shown before and after the application of dynamic filters. Size maps to the Log of total sent messages, Opacity maps to the Log of total received messages. Edge width and opacity map to edge weight.

Page 10: Analyzing social media networks with NodeXL - Chapter- 08 images

10Copyright © 2011, Elsevier Inc. All rights Reserved

FIGURE 8.9C

hapter 8

TechABC’s organizational

unit email network “backbone,” focusing on high-traffic connections between units (i.e., those who exchange more than 50 messages per FTE). Color is mapped to betweenness centrality with green vertices playing important roles as bridge spanners. Edge opacity is mapped to messages per FTE. Dynamic filters were used to exclude those with low closeness centrality, which is a trick for filtering out all vertices that are not part of the large component.

Page 11: Analyzing social media networks with NodeXL - Chapter- 08 images

11Copyright © 2011, Elsevier Inc. All rights Reserved

FIGURE 8.10C

hapter 8

TechABC’s organizational unit network including research units (maroon squares) and nonresearch units connected to them (blue disks) through the exchange of email. Only edges with 10 or more messages sent per FTE are included. Edge width (1-2) and opacity (40-100) are based on raw sent messages. Vertex size is based on the number of group members (FTEs). Notice some obvious disconnects (e.g., Market Research 1 and 2), as well as some of the important bridge spanning research groups (e.g., Specific 6) and nonresearch groups (e.g., Blue disk just above General 17).

Page 12: Analyzing social media networks with NodeXL - Chapter- 08 images

12Copyright © 2011, Elsevier Inc. All rights Reserved

FIGURE 8.11C

hapter 8

Enron Corporation’ s network of email including messages with the word “FERC” exchanged between employees. Vertex size (1.5 to 4) is based on indegree. Greener vertices received many FERC messages but did not send many out. The Harel-Karen layout was initially used, followed by Fruchterman-Reingold, to push the more peripheral vertices to the edges. Tim Belden, who pleaded guilty and witnessed against other top Enron executives, is labeled.