Analysis optimization and monitoring system

101
NO. Content Page Chapter one Introduction 2 1.1 Energy sector in Palestine 2 1.2 Power system 3 1.3 Load flow analysis 4 1.4 Etab power station 5 1.5 SCADA System 6 1.5.1 SCADA hardware 6 1.5.2 SCADA software 6 1.6 About project 8 Chapter two Elements of the network 9 2.1 Distribution transformer 10 2.2 Medium voltage lines 11 2.2.1 Over head lines 11 2.2.2 Underground cables 12 2.2.3 Daily load curve 12 Chapter three Maximum Load Case Analysis 13 3.1 Maximum load case 14 3.2 Problems 14 3.3 The Maximum Load Case Improvement 15 3.4 Overloaded Transformers Problem 17 3.5 New connection Point Study for the maximum load case 18 3.6 Improving the network with the new connection point 19 Chapter four Minimum Load Case Study 20 4.1 Minimum Case Study 21 4.2 Minimum Load Study After The Connection Point And Solving Overloaded Transformers Problem 22 Chapter five Economical Study 24 Chapter six Monitoring System 27 6.1 Monitoring System 28 6.2 Current Measurement 28 6.3 Voltage Measurement 29 6.4 Power Factor Measurement 31 6.5 Frequency Measurement 33 6.6 The Remote Terminal Unit (RTU) 34 Appendices Tables 36 References 101

Transcript of Analysis optimization and monitoring system

  • NO. Content Page

    Chapter one Introduction 2

    1.1 Energy sector in Palestine 2

    1.2 Power system 3

    1.3 Load flow analysis 4

    1.4 Etab power station 5

    1.5 SCADA System 6

    1.5.1 SCADA hardware 6

    1.5.2 SCADA software 6

    1.6 About project 8

    Chapter two Elements of the network 9

    2.1 Distribution transformer 10

    2.2 Medium voltage lines 11

    2.2.1 Over head lines 11

    2.2.2 Underground cables 12

    2.2.3 Daily load curve 12

    Chapter three Maximum Load Case Analysis 13

    3.1 Maximum load case 14

    3.2 Problems 14

    3.3 The Maximum Load Case Improvement 15

    3.4 Overloaded Transformers Problem 17

    3.5 New connection Point Study for the maximum load case

    18

    3.6 Improving the network with the new connection point

    19

    Chapter four Minimum Load Case Study 20

    4.1 Minimum Case Study 21

    4.2 Minimum Load Study After The Connection Point And Solving Overloaded Transformers Problem

    22

    Chapter five Economical Study 24

    Chapter six Monitoring System 27

    6.1 Monitoring System 28

    6.2 Current Measurement 28

    6.3 Voltage Measurement 29

    6.4 Power Factor Measurement 31

    6.5 Frequency Measurement 33

    6.6 The Remote Terminal Unit (RTU) 34

    Appendices Tables 36

    References 101

  • Page 1

    Chapter One

    Introduction

  • Page 2

    1.1 Energy Sector in Palestine

    Energy sector in Palestine faced many difficulties because of occupation. Till now

    there is no unified power system in Palestine. Most of electrical energy depends on

    IEC Company except Jericho which connected with Jordan and Gaza to Egypt

    (17MW) through the interconnection project. The only generation plant is in Gaza

    with generating capacity of 140MW. Distribution companies take the role of

    distributing electricity in the different regions of Palestine.

    The average annual growth rate of energy demand in west bank is 6.4%, and in Gaza

    is 10% from 1999 to 2005. The following figure shows the growth pattern in West

    Bank, Gaza Strip and the total Palestine forecast:

    Fig. 1.1

    The following table shows the forecast summary - peak demand (MW):

    Table1.1

    2025 2020 2015 2010 2009 2008 Year

    1,714 1,347 1,059 885 845 806 Total

    1,012 809 646 548 525 502 W.B.

    701 538 413 336 320 303 Gaza

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    2005 2010 2015 2020 2025 2030

    Po

    we

    r (M

    W)

    Year

    Power Demand

    Total

    W.B.

    Gaza

  • Page 3

    1.2 Power System

    The power system in general consists of these parts:

    1. Generating station: And this part consists of

    a. Generators in which electric power is produced by 3-phase alternators

    operating in parallel. And usually electric power is generated at voltages of

    12kv to 25kv.

    b. Sub-station, where the power transformers step up the voltage to between

    66kv 1000kv.

    1. Primary transmission. The electric power at high voltages is transmitted by 3-

    phase 3-wire overhead system to the outskirts of the city. This forms the primary

    transmission.

    2. Secondary transmission. The primary transmission line terminates at the

    receiving station which usually lies at the outskirts of the city. At the receiving

    station the voltage is reduced to 33kv or 22kv by step-down transformers.

    3. Primary distribution. the secondary transmission line terminates at the sub-

    station where voltage is reduced from the secondary voltage to the primary

    distribution voltage usually 11kv could be 6.6kv 3-phase 3-wire .the 11kv lines

    run along the important road sides of the city. And forms the primary

    distribution.

    4. Secondary distribution. The electric power form primary distribution line is

    delivered to distribution sub-stations. These sub-stations are located near the

    consumers localities and step down the voltage to 400v 3-phase 4-wire for

    secondary distribution. And this forms secondary distribution.

  • Page 4

    1.3 Load Flow Analysis

    Load flow analysis is probably the most important of all network calculations since it concerns the network performance in its normal operating conditions. It is performed to investigate the magnitude and phase angle of the voltage at each bus and the real and reactive power flows in the system components. Load flow analysis has a great importance in future expansion planning, in stability studies and in determining the best economical operation for existing systems. Also load flow results are very valuable for setting the proper protection devices to insure the security of the system. In order to perform a load flow study, full data must be provided about the studied system, such as connection diagram, parameters of transformers and lines, rated values of each equipment, and the assumed values of real and reactive power for each load.

    Bus Classification

    Each bus in the system has four variables: voltage magnitude, voltage angle, real power and reactive power. During the operation of the power system, each bus has two known variables and two unknowns. Generally, the bus must be classified as one of the following bus types:

    1. Swing Bus

    This bus is considered as the reference bus. It must be connected to a generator of high rating relative to the other generators. During the operation, the voltage of this bus is always specified and remains constant in magnitude and angle. In addition to the generation assigned to it according to economic operation, this bus is responsible for supplying the losses of the system.

    2. Voltage Controlled Bus

    During the operation the voltage magnitude at this the bus is kept constant. Also, the active power supplied is kept constant at the value that satisfies the economic operation of the system. Most probably, this bus is connected to a generator where the voltage is controlled using the excitation and the power is controlled using the prime mover control (as you have studied in the last experiment). Sometimes, this bus is connected to a VAR device where the voltage can be controlled by varying the value of the injected VAR to the bus.

    3. Load Bus

    This bus is not connected to a generator so that neither its voltage nor its real power

    can be controlled. On the other hand, the load connected to this bus will change the

    active and reactive power at the bus in a random manner. To solve the load flow

    problem we have to assume the complex power value (real and reactive) at this bus.

  • Page 5

    1.4 ETAP Power Station

    ETAP Load Flow software performs power flow analysis and voltage drop calculations

    with accurate and reliable results. Built-in features like automatic equipment

    evaluation, alerts and warnings summary, load flow result analyzer, and intelligent

    graphics make it the most efficient electrical power flow analysis tool available

    today.

    ETAP load flow calculation program calculates bus voltages, branch power factors,

    currents, and power flows throughout the electrical system. ETAP allows for swing,

    voltage regulated, and unregulated power sources with unlimited power grids and

    generator connections.

    Fig. 1.2

    http://etap.com/load-analyzer/load-analyzer.htm

  • Page 6

    1.5 SCADA System

    SCADA (supervisory control and data acquisition) generally refers to industrial control systems (ICS): computer systems that monitor and control industrial, infrastructure, or facility-based processes, Industrial processes include those of manufacturing, production, power generation, fabrication, and refining, and may run in continuous, batch, repetitive, or discrete modes.

    1.5.1 SCADA hardware. A SCADA system consists of a number of remote terminal units (RTUs) collecting field data and sending that data back to a master station, via a communication system. The master station displays the acquired data and allows the operator to perform remote control tasks. The accurate and timely data allows for optimization of the plant operation and process. Other benefits include more efficient, reliable and most importantly, safer operations. These results in a lower cost of operation compared to earlier non-automated systems. On a more complex SCADA system there are essentially five levels or hierarchies:

    Field level instrumentation and control devices.

    Marshalling terminals and RTUs.

    Communications system.

    The master station(s).

    The commercial data processing department computer system. The RTU provides an interface to the field analog and digital sensors situated at each remote site. The communications system provides the pathway for communication between the master station and the remote sites. This communication system can be wire, fiber optic, radio, telephone line, microwave and possibly even satellite. Specific protocols and error detection philosophies are used for efficient and optimum transfer of data. The master station (or sub-masters) gather data from the various RTUs and generally provide an operator interface for display of information and control of the remote sites. In large telemetry systems, sub-master sites gather information from remote sites and act as a relay back to the control master station.

    1.5.2 SCADA software SCADA software can be divided into two types, proprietary or open. Companies develop proprietary software to communicate to their hardware. These systems are sold as turnkey solutions. The main problem with this system is the overwhelming reliance on the supplier of the system. Open software systems have gained popularity because of the interoperability they bring to the system. Interoperability is the ability to mix different manufacturers equipment on the same system. Citect and WonderWare are just two of the open software packages available in the market for SCADA systems. Some packages are now including asset management integrated within the SCADA system. The typical components of a SCADA system are indicated in the next diagram.

    http://en.wikipedia.org/wiki/Industrial_control_systemhttp://en.wikipedia.org/wiki/Industrial_control_systemhttp://en.wikipedia.org/wiki/Industrial_processhttp://en.wikipedia.org/wiki/Fabrication_(metal)

  • Page 7

    Fig 1.3 Key features of SCADA software are: User interface Graphics displays Alarms Trends RTU (and PLC) interface Scalability Access to data Database Networking Fault tolerance and redundancy Client/server distributed processing

  • Page 8

    1.6 About Project

    The aim of this project is to do load flow study for the network of Tubas Electrical

    Distribution Company (TEDCO). Then make a simulation for monitoring system for

    the network. In this system the supervision part of monitoring systems will be done.

    The electrical supply of the network is provided by IEC through 33KV overhead

    transmission cables. The main connection point of the network is in Tyaseer with

    capacity of 15MVA. And TEDCO distribute the electricity for the consumers. The

    company is planning to add new connection point in Al Zawya.

    TEDCO already has a small SCADA system. Which monitors the main lines of every

    town, and for the transmission of the data from the RTUs they use SMS through

    JAWWAL network. SMS method for the transmission of data is not reliable because

    the system will not be online monitored they receive data every one hour also it is

    expensive. The company plans to get internet through the power line, when they do

    they will use it to monitor the network online.

  • Page 9

    Chapter two

    Elements of the Network

  • Page 10

    2.1 Distribution Transformers

    The network consists of 141 distribution transformer (33/0.4Y (KV)). The

    transformers range from 50KVA to 630 KVA the following table shows them in

    details:

    Table 2.1

    Number of Transformers Rating (KVA)

    4 50

    15 100

    19 160

    43 250

    33 400

    27 630

    Fig 2.1

  • Page 11

    2.2 Medium Voltage Lines

    2.2.1 Overhead Lines

    The overhead lines used in the network are ACSR cables with different

    diameters as the following table:

    Table 2.2

    Cable Name Cross sectional area

    (mm2)

    R (/Km) X (/Km) Nominal Capacity (A)

    Ostrich 150 0.19 0.28 350

    Cochin 110 0.25 0.29 300

    Lenghorn 70 0.39 0.31 180

    Aprpcot 50 0.81 0.29 130

    Fig 2.2

  • Page 12

    2.2.2 Underground Cables

    The underground cables used in the network are XLPE Cu (95 mm2)

    Table 2.3

    Diameter (mm2) R (/Km) X (/Km)

    95 0.41 0.121

    Fig 2.3

    2.3 The daily load curve The daily load curve of the network is shown in the figure below:

    Fig2.4

    The daily load curve shows the maximum and the minimum demand over the day,

    these values help in the analysis of the network.

  • Page 13

    Chapter three

    Maximum Load Case Analysis

  • Page 14

    3.1 Maximum load case

    Considering the maximum demand in the daily load curve (fig2.4), it is found that the

    maximum load equals two and half of the average load.

    Then analyze the network using ETAP power station.

    Cables lengths and resistances are shown in appendix 1.

    The transformers loading are shown in appendix 2.

    3.2 Problems

    After the analysis of this case the following problems appeared:

    Under voltage buses (Appendix 3).

    Overloaded transformer (Appendix 4).

    Power factor less than 92%

    Table 3.1 summarizes the results of the network analysis in the maximum load case

    (total generation, demand, loading, percentage of losses, and the total power

    factor.)

    Table 3.1

    MW MVAR MVA % PF

    Swing Bus(es): 16.755 7.474 18.346 91.33 lag.

    Generators: 0.00 0.00 0.00 0.00

    Total Demand: 16.755 7.474 18.346 91.33 lag.

    Total Motor Load: 9.368 4.148 10.245

    91.44 lag.

    Total Static Load: 6.760 2.245 7.123 94.9 lag.

    Apparent Losses: 0.627 1.081

    1. The P.F in the network equal 90.75 and this value causes a lot of problem

    specially paying banalities and this value must be (0.92-0.95) the P.F is

    related to the current in the network according that when P.F is poor the

  • Page 15

    current in the network is high this also can cause increasing the loses in the

    network .

    2. The PF improvement will show that the current will decrease, as a result the

    losses will decrease

    3. It is seen that the voltages on the buses are not acceptable. These voltages will be

    less at the consumer side, under the machines rating which will cause a many

    problems for the consumer.

    3.3 The Maximum Load Case Improvement

    There are different methods in order to improve the network to increase the

    voltages and to put the PF within the range. Which will reduce the losses then the

    problems for the consumer will decrease and the cost of KWH will decrease.

    These methods are:

    1. Tab changing in the transformer:

    In this method the ratio of the taps on the transformer is changed in a range

    of -5% to 5%. In this project the taps were changed to 5%. The location of the

    changed taps is shown in Appendix 5

    2. Adding capacitors:

    The capacitors were added to reduce the reactive power which increases the

    PF and the voltages of the buses. First the capacitor is added at the lowest

    voltage bus then the one which have the larger voltage and so on. When

    adding capacitors the PF should be lagging and more than 95%. The location

    of the capacitor banks is shown in Appendix 6.

    As mentioned adding capacitors will improve the PF.

    The low PF cause problems as:

    Higher Apparent Current.

    Higher Losses in the Electrical Distribution network.

    Low Voltage in the network.

    Paying penalties.

    Improving the power factor will avoid these problems.

  • Page 16

    Capacitor banks will increase the PF as the following:

    Where:

    Qc: the reactive power to be compensated by the capacitor. P: the real power of the load. old: the actual power angle. New: the proposed power angle. According to the previous equation the value of capacitor banks needed to be added in the network is:

    PF old = 91.33%

    PF new = 92% at least

    Capacitor banks should be connected in delta connection on the low voltage side of the

    transformer.

  • Page 17

    Table 3.2 shows summary for the results after adding the capacitors:

    Table 3.2

    MW MVAR MVA % PF

    Swing Bus(es): 17.423 6.946 18.757 92.89 lag

    Total Demand: 17.423 6.946 18.757 92.89 lag

    Total Motor Load: 9.368 4.148 10.245 91.44 lag

    Total Static Load: 7.399 1.668 7.585 97.55 lag

    Apparent Losses: 0.656 1.131

    Voltages on the busses after improvement are shown in appendix 7.

    3.4 Overloaded Transformers Problem After the improvement of the network in the maximum case there is the problem of the overloaded transformers. This problem was solved by changing transformers locations where the transformers which are large and the load on them small were changed with small highly loaded transformers. Then another transformers connected in parallel with the left overloaded transformers this will need to buy new transformers. Appendix 8 shows the operation of transformer changing. Table 3.3 shows the transformers which are needed to be bought: Table 3.3

    Number of transformers KVA

    6 630

    1 250

    Table 3.4 shows the extra transformers left after solving the overloaded transformers problem: Table 3.4

    Number of transformers KVA

    1 100

    1 50

  • Page 18

    Table 3.5 summarizes the analysis results after changing transformers

    Table 3.5

    MW MVAR MVA % PF

    Swing Bus(es): 17.388 6.867 18.695 93.01 lag

    Total Demand: 17.388 6.867 18.695 93.01 lag

    Total Motor Load: 9.394 4.163 10.275 91.43 lag

    Total Static Load: 7.374 1.664 7.559 97.55 lag

    Apparent Losses: 0.620 1.039

    The voltages on the buses after changing the transformers are shown in Appendix 9.

    3.5 New connection Point Study for the maximum load case

    Tubas Electrical Distribution Company (TEDCO) is planning to add new connection

    point for the company in Zawya area. This connection point is 5MVA rated.

    Appendix 10 shows the voltages on the busses after adding the new connection

    point. It is seen that the voltages after the new connection point were enhanced and

    the losses decreased. And the power factor increased.

    The following table shows the results summary after the new connection point

    Table 3.6

    MW MVAR MVA % PF

    Swing Bus(es): 17.430 6.622 18.646 93.48 lag

    Total Demand: 17.430 6.622 18.646 93.48 lag

    Total Motor Load: 9.394 4.163 10.275 91.43 lag

    Total Static Load: 7.599 1.712 7.790 97.55 lag

    Apparent Losses: 0.437 0.747

  • Page 19

    3.6 Improving the network with the new connection point

    As before the improvement is done by tap changing and adding capacitor banks.

    The changed taps and the added capacitor banks are shown in Appendix 11

    The operating voltages are shown in the same appendix.

    Now all buses are operating over 100% voltages. This will make the voltages reach to

    the consumer with fewer losses.

    The results of the improving are summarized in the following table

    Table 3.7

    MW MVAR MVA % PF

    Swing Bus(es): 17.454 6.558 18.645 93.61 lag.

    Total Demand: 17.454 6.558 18.645 93.61 lag

    Total Motor Load: 9.394 4.163 10.275 91.43 lag

    Total Static Load: 7.624 1.650 7.801 97.74 lag

    Apparent Losses: 0.435 0.744

  • Page 20

    Chapter Four

    Minimum Load Case Study

  • Page 21

    4.1 Minimum Case Study

    In the minimum load case the load is assumed to be half the maximum load.

    The network analysis in this case shows the results in table 4.1

    Table4.1

    MW MVAR MVA % PF

    Swing Bus(es): 8.381 3.480 9.075 92.36 lag

    Total Demand: 8.381 3.480 9.075 92.36 lag

    Total Motor Load: 4.699 2.082 5.140 91.43 lag

    Total Static Load: 3.529 1.132 3.706 95.22 lag

    Apparent Losses: 0.153 0.265

    Appendix 12 shows the voltages on the buses for this case. It is noticed that these

    voltages better than the voltages on the maximum load case.

    Now taking the taps fixed as in the maximum load case the results shows that all the

    buses have good voltage level and the power factor is in the range so no need to add

    capacitor banks for this case, so the capacitor banks used in the network are all

    regulated.

    The following table shows the analysis summary with the taps changed

    Table4.2

    MW MVAR MVA % PF

    Swing Bus(es): 8.720 3.614 9.439 92.38 lag

    Total Demand: 8.720 3.614 9.439 92.38 lag

    Total Motor Load: 4.699 2.082 5.140 91.43 lag

    Total Static Load: 3.855 1.244 4.051 95.17 lag

    Apparent Losses: 0.166 0.287

    Voltages on buses after changing taps are shown in appendix 13

  • Page 22

    4.2 Minimum Load Study After The Connection Point And Solving

    Overloaded Transformers Problem

    After solving overloaded transformers problem, as seen before some transformers

    were changed and new transformers connected in parallel with some of overloaded

    transformers. Also the new connection point is connected to the network.

    The results for minimum load study in this case are shown in the following table4.3

    Table 4.3

    MW MVAR MVA % PF

    Swing Bus(es): 8.738 3.541 9.428 92.68 lag

    Total Demand: 8.738 3.541 9.428 92.68 lag

    Total Motor Load: 4.699 2.082 5.140 91.43 lag

    Total Static Load: 3.928 1.270 4.128 95.15 lag

    Apparent Losses: 0.111 0.189

    Appendix 14 Shows the voltages on the buses in the minimum case after changing

    the transformers and connecting the new connection point.

    It is noticed that the voltages and the power factor in this case are good, so no need

    to add new capacitor banks to the network in this case, therefore all capacitor banks

    connected are regulated. Also it can be seen that the losses decreased.

  • Page 23

    The final results for the minimum load case are summarized in the following

    table:

    Table 4.4

    MW MVAR MVA % PF

    Swing Bus(es): 8.755 3.548 9.447 92.68 lag

    Total Demand: 8.755 3.548 9.447 92.68 lag

    Total Motor Load: 4.699 2.082 5.140 91.43 lag

    Total Static Load: 3.945 1.276 4.146 95.15 lag

    Apparent Losses: 0.111 0.190

    The final voltages for the maximum case are shown in appendix 15

  • Page 24

    Chapter Five

    Economical Study

  • Page 25

    Economical study

    In this chapter economical study for the network will be done. This study is needed

    to know whether it is reliable to connect the capacitor banks to the network or not.

    Capacitor banks are reliable to be added to the network if their cost is acceptable

    compared with the losses cost and power factor penalties, and their payback period

    less than.

    From this study the company can define its plans for the network.

    In order to calculate the penalties on the low power factor, it is needed to know the

    relation between low power factor and the penalty which is shown in the following

    table

    Table 4.1

    PF Penalties

    Over 92% No penalties

    From 80% to 92% 1% of the total bill for every 1% decrease of PF

    From 70% to 80% 1.25% of the total bill for every 1% decrease of PF

    Less than 70% 1.5% of the total bill for every 1% decrease of PF

    The amount of reactive power added to the network by capacitor banks is

    The following parameters needed for the economical study:

    P max= 16.755 MW

    P min= 8.381 MW

    Losses before improvement = 0.627 MW

    Losses after improvement = 0.435 MW

    PF before improvement = 91.33%

    PF after improvement= 93.61%

    The following calculations need to be applied to do the economical study:

  • Page 26

    NIS

    NIS

    Cost of losses:

    Losses before improvement = 627 0.748 = 468.996 KW

    Energy = 468.996 8760 = 410.8404 104 KWH

    Total cost=410.8404 104 0.45 = 1848782.232 NIS/YEAR

    Losses after improvement = 435000 0.748 = 325.38 KW

    Energy=325.38 8760 = 285.03288 104 KWH

    Cost of losses=285.03288 104 0.45 = 128.2647 104 NIS/YEAR

    = 566134 NIS/YEAR

    Total capacitor = 905 KVAR

    Cost per KVAR with control circuit = 15JD = 90NIS

    Total cost of capacitors=905 90 = 81450 NIS

    Total cost of transformers = 6 * 8200$ + 1 * 4000$

    = 53200$ = 186200 NIS

    Total investment cost = 81450 + 186200 = 267650 NIS

    =3310072 + 566134 = 3876206 NIS

  • Page 27

    Chapter Six

    Monitoring System

  • Page 28

    6.1 Monitoring System

    The second part of the project is to simulate monitoring system for the network. PIC

    microcontroller is used to do the monitoring. Monitoring the network is important to the

    electricity distributers, it make them make a better informed real time decisions and helps

    them for future planning for the grid.

    The monitoring system designed in this project concentrates on the supervision part of

    monitoring systems.

    The monitoring system designed for this project consists of the following parts:

    Measurement devices.

    The remote terminal unit (RTU).

    Computer interface.

    6.2 Current Measurement

    It is important for the network supervisor to know the current in the network, because high

    short circuit currents can cause severe damages in the system if they are not cured. The

    supervisor can do the needed procedures for high currents before they cause the damage,

    that if the protective devices in the network did not work well.

    In this project the following circuit is used to measure the current:

    Fig 6.1

  • Page 29

    The current transformer (C.T) gives 4 volts at 10 amperes flowing in the primary side, then

    the output voltage of the current transformer and according to Ohms law is divided on the

    resistor connected in parallel with the transformer.

    The signal then amplified by the op-amp (op amp amplification ratio is

    ) but this amplifier

    inverse the signal so the buffer is used to get the signal in its actual shape. The buffer also

    do the task of current isolation, to prevent relatively high current to damage the electronic

    components in the next stage.

    After this stage a rectifier circuit is used to take the peak of the voltage signal, to be in the

    range of the microcontroller input. The rectifier circuit shown in the next figure

    Fig 6.2

    The low pass filter is to remove the high frequencies. The diode is to cut the negative half

    wave of the voltage signal. The capacitor is to smooth the output DC signal.

    6.3 Voltage Measurement

    Voltage is another important parameter in the network, low voltages causes high currents. It

    is needed to keep the voltages in a good range to keep the machines on the consumer side

    work effectively and to reduce the losses in the network.

    The way used to measure the voltage in this project is shown in the following circuit

  • Page 30

    Fig 6.3

    Here conventional transformer is used here instead of the potential transformer because it

    is cheaper. The transformer ration is 220v:3.6v, as before the buffer is used for current

    isolation and impedance matching.

    As in the current measurement it is needed to rectify the voltage output signal to match the

    controller output. The circuit is shown in figure

    Fig 6.4

  • Page 31

    6.4 Power Factor Measurement

    The power factor is defined as cosine the angle between current and voltage signals. Here

    the current and voltage signals will be transform to pulses, then they will be injected to PLL

    (CD4046), the output of PLL will be the puls which its width represents the phase shift

    between the signals.

    The circuit to transform the signals from sign waves to a puls is shown below

    Fig 6.5

    Two distinct circuits will be needed to transform current and voltage signals to pulses. The

    input of the circuit used for current signal is from circuit in figure 6.1. and the voltage signal

    is from circuit in figure 6.3.

    Fig 6.6

  • Page 32

    The output of the PLL will be connected to B0 input of the microcontroller. Figure 6.6 shows

    this operation.

    6.1.1 shows the two signals A and B.

    6.1.2 shows signal A pulses.

    6.1.3 shows signal B pulses.

    6.1.4 shows the output of PLL

    Fig 6.7

    A counter in the microcontroller will count the duration of the phase shift signal. The 50Hz

    signal will have a duration of 20ms and 3600 so the angle of the phase shift will be found

    according to the following relation (assume the duration of the phase shift puls is T and the

    angle between the signals is ).

    Then the power factor will be cosine the angle.

  • Page 33

    6.5 Frequency Measurement

    In the frequency measurement the circuit in figure 6.3 in addition to other PLL will be

    used. The output of the circuit will be sent to microcontroller and to the PLL, the

    second input of the PLL will be a fixed signal with 20ms(i.e. 50Hz) from the

    microcontroller will be applied to it.

    The output of the PLL will be the difference between the fixed signal from the

    microcontroller and the voltage pulses, the difference duration will be either added

    or subtracted from the 50Hz. Addition and subtraction will be according to the

    voltage puls duration, if it is more than 20ms it will be subtracted if less it will be

    added. The duration of the voltage puls will be counted in the microcontroller.

    Assume the duration of the PLL output is X and the voltage signal duration is Y

    If Y>20ms then,

    Else if Y

  • Page 34

    6.6 The Remote Terminal Unit (RTU)

    The remote terminal unit control and send the data collected from the network

    process them and send them to the supervision computer. The microcontroller used

    in the RTU is PIC16F877A. PIC microcontroller is used because it is simple, available

    all the time, and cheap.

    The basic circuit for this microcontroller is shown in fig 6.9 below.

    Fig 6.9

    The data from the measurement devices is not the actual values for the network

    parameters, calibration is done for the measurement devices and the values of the

    measurement devices is multiplied by the factors in the microcontroller to return to

    their actual value, then these values will be send to the computer.

    To connect the microcontroller to the computer MAX232 is used to send the data

    serially to the computer through RS232. As in the circuit in figure 6.10.

  • Page 35

    Fig 6.10

    In the computer an application programmed using C# programming language to read

    the data from the serial port and preview them.

    Pictures for the project in appendix A16

  • Page 36

    Appendix 1

    Cables lengths and resistances

    X () R () area (mm2) L (km) NR NS

    0.28 0.19 150 1 2 1

    0.7 0.475 150 2.5 3 2

    0.1204 0.0817 150 0.43 03 3

    0.10304 0.06992 150 0.368 4 03

    0.14 0.095 150 0.5 5 4

    0.084 0.057 150 0.3 6 5

    0.0308 0.0209 150 0.11 7 6

    0.0145 0.0125 110 0.05 8 7

    0.029 0.025 110 0.1 9 8

    0.0775 0.0975 70 0.25 10 9

    0.1705 0.2145 70 0.55 11 10

    0.093 0.117 70 0.3 12 11

    0.062 0.078 70 0.2 13 12

    0.093 0.117 70 0.3 14 12

    0.43834 0.55146 70 1.414 15 14

    0.124 0.156 70 0.4 16 15

    0.217 0.273 70 0.7 17 16

    0.124 0.156 70 0.4 18 17

    0.124 0.156 70 0.4 19 18

    0.093 0.117 70 0.3 20 19

    0.0465 0.0585 70 0.15 21 20

    0.1395 0.1755 70 0.45 021 21

    0.0496 0.0624 70 0.16 22 021

    0.062 0.078 70 0.2 23 22

    0.124 0.156 70 0.400 64 021

    0.37944 0.47736 70 1.224 65 64

    0.217 0.273 70 0.700 66 64

    0.31 0.39 70 1.000 67 66

    0.18414 0.23166 70 0.594 71 66

    0.0155 0.0195 70 0.050 72 66

    0.372 0.468 70 1.200 68 67

    0.36301 0.45669 70 1.171 70 68

    0.09424 0.11856 70 0.304 69 68

    0.2232 0.2808 70 0.720 73 72

    0.155 0.195 70 0.500 74 73

    0.37107 0.46683 70 1.197 75 72

    0.31 0.39 70 1.000 76 75

    0.372 0.468 70 1.200 77 76

    0.3875 0.4875 70 1.250 78 77

  • Page 37

    0.372 0.468 70 1.200 80 78

    0.031 0.039 70 0.100 79 78

    0.124 0.156 70 0.4 24 23

    0.031 0.039 70 0.1 25 24

    0.062 0.078 70 0.2 26 25

    0.062 0.078 70 0.2 27 24

    0.0775 0.0975 70 0.25 28 22

    0.031 0.039 70 0.1 29 28

    0.0465 0.0585 70 0.15 30 28

    0.031 0.039 70 0.1 31 22

    0.155 0.195 70 0.5 32 20

    0.0775 0.0975 70 0.25 33 32

    0.0465 0.0585 70 0.15 34 19

    0.031 0.039 70 0.1 35 34

    0.248 0.312 70 0.8 36 35

    0.372 0.468 70 1.2 37 36

    0.0527 0.0663 70 0.17 38 36

    0.465 0.585 70 1.5 39 34

    0.093 0.117 70 0.3 40 39

    0.1085 0.1365 70 0.35 41 39

    0.124 0.156 70 0.4 42 17

    0.124 0.156 70 0.4 43 16

    0.124 0.156 70 0.4 44 15

    0.465 0.585 70 1.5 45 14

    0.713 0.897 70 2.3 46 45

    0.372 0.468 70 1.2 47 45

    0.83545 1.05105 70 2.695 48 14

    0.31 0.39 70 1 49 48

    0.155 0.195 70 0.5 50 49

    0.24738 0.31122 70 0.798 51 50

    0.155 0.195 70 0.5 52 51

    0.2325 0.2925 70 0.75 53 52

    0.0775 0.0975 70 0.25 54 53

    0.031 0.039 70 0.1 55 53

    0.93 1.17 70 3 56 51

    1.24 1.56 70 4 57 56

    0.093 0.117 70 0.3 58 50

    0.062 0.078 70 0.2 59 50

    0.0532 0.0361 150 0.19 60 5

    0.0968 0.328 UG 95 0.8 61 60

    0.196 0.133 150 0.7 62 61

    0.476 0.323 150 1.7 63 62

    0.058 0.05 110 0.2 180 82

    0.2407 0.2075 110 0.83 181 180

  • Page 38

    0.058 0.05 110 0.2 182 180

    0.1044 0.09 110 0.360 81 7

    0.058 0.05 110 0.200 82 81

    0.1247 0.1075 110 0.430 83 82

    0.145 0.125 110 0.500 85 83

    0.3277 0.2825 110 1.130 86 85

    0.319 0.275 110 1.100 87 85

    0.377 0.325 110 1.300 88 87

    0.058 0.05 110 0.200 89 87

    0.0348 0.03 110 0.120 90 89

    0.1247 0.1075 110 0.430 92 90

    0.29 0.25 110 1.000 93 92

    0.58 0.5 110 2.000 94 93

    0.1363 0.1175 110 0.470 95 93

    0.6815 0.5875 110 2.350 96 95

    0.0435 0.0375 110 0.150 97 96

    0.203 0.175 110 0.700 98 97

    0.3393 0.2925 110 1.170 99 98

    0.145 0.125 110 0.500 100 99

    0.058 0.05 110 0.200 101 100

    0.07859 0.06775 110 0.271 102 101

    0.087 0.075 110 0.300 103 101

    0.1131 0.0975 110 0.390 104 103

    0.0558 0.0702 70 0.180 106 103

    0.7285 0.9165 70 2.350 107 106

    0.2325 0.2925 70 0.750 108 107

    0.124 0.156 70 0.400 109 108

    0.2077 0.2613 70 0.670 110 109

    0.434 0.546 70 1.400 111 110

    0.031 0.039 70 0.100 112 109

    0.992 1.248 70 3.200 113 112

    0.155 0.195 70 0.500 114 113

    0.1085 0.1365 70 0.350 115 113

    0.558 0.702 70 1.800 116 115

    0.0775 0.0975 70 0.250 117 116

    0.1178 0.1482 70 0.380 118 116

    0.62 0.78 70 2.000 119 118

    0.124 0.156 70 0.400 120 119

    0.1612 0.2028 70 0.520 121 119

    0.093 0.117 70 0.300 122 121

    0.0775 0.0975 70 0.250 123 118

    0.5084 0.6396 70 1.640 124 123

    0.62 0.78 70 2.000 125 123

  • Page 39

    0.124 0.156 70 0.400 126 125

    0.2542 0.3198 70 0.820 127 125

    0.155 0.195 70 0.500 128 123

    0.372 0.468 70 1.200 129 128

    0.248 0.312 70 0.800 130 128

    0.217 0.273 70 0.700 131 130

    0.5332 0.6708 70 1.720 132 131

    0.372 0.468 70 1.200 133 132

    0.0775 0.0975 70 0.250 151 100

    0.031 0.039 70 0.100 152 151

    0.775 0.975 70 2.500 153 152

    0.0372 0.0468 70 0.120 154 153

    0.0992 0.1248 70 0.320 155 153

    0.062 0.078 70 0.200 156 155

    0.031 0.039 70 0.100 157 156

    0.434 0.546 70 1.400 158 156

    0.0992 0.1248 70 0.320 159 155

    0.031 0.039 70 0.100 160 159

    0.527 0.663 70 1.700 161 159

    0.1953 0.2457 70 0.630 162 161

    0.2635 0.3315 70 0.850 163 162

    0.62 0.78 70 2.000 164 163

    0.31 0.39 70 1.000 165 163

    0.31 0.39 70 1.000 166 165

    0.465 0.585 70 1.500 167 166

    0.093 0.117 70 0.300 168 167

    0.775 0.975 70 2.500 169 168

    0.1705 0.2145 70 0.550 170 151

    0.837 1.053 70 2.700 171 170

    0.0465 0.0585 70 0.150 172 171

    0.527 0.663 70 1.700 173 172

    0.248 0.312 70 0.800 174 172

    0.372 0.468 70 1.200 175 174

    0.093 0.117 70 0.300 176 175

    0.2015 0.2535 70 0.650 177 175

    0.372 0.468 70 1.200 134 96

    0.186 0.234 70 0.600 0.0134 134

    0.372 0.468 70 1.200 135 134

    0.093 0.117 70 0.300 136 135

    0.093 0.117 70 0.300 137 136

    0.93 1.17 70 3.000 138 136

    0.124 0.156 70 0.400 139 138

    0.0465 0.0585 70 0.150 140 139

  • Page 40

    0.155 0.195 70 0.500 141 140

    0.093 0.057 150 0.300 142 140

    0.186 0.114 150 0.600 143 140

    0.062 0.038 150 0.200 144 143

    0.155 0.095 150 0.500 145 144

    0.713 0.437 150 2.300 146 138

    0.124 0.076 150 0.400 147 146

    0.0775 0.0475 150 0.250 148 146

    0.155 0.095 150 0.500 149 148

    0.02077 0.01273 150 0.067 150 148

    0.1302 0.0798 UG 95 0.420 84 83

    0.155 0.095 UG 95 0.500 91 90

    0.0682 0.0418 UG 95 0.220 105 104

  • Page 41

    Appendix 2

    Transformers Loading

    Transformer PF S

    rated S average S max LF max S min LF min

    Tubas-Housing 0.999 250 104.7899 209.5798 0.838319 104.7899 0.41916

    Tubas- Abu Omar 0.934 400 199.8465 399.693 0.999233 199.8465 0.499616

    Tubas-Almaslamani

    0.944 630 186.4631 372.9262 0.591946 186.4631 0.295973

    Tubas-Allan 0.914 250 112.6163 225.2326 0.90093 112.6163 0.450465

    Tubas-Almasaeed 0.937 250 183.8042 367.6084 1.470434 183.8042 0.735217

    Tubas-Alhawooz 0.955 400 190.5618 381.1236 0.952809 190.5618 0.476405

    Tubas-Station 0.947 630 187.8887 375.7774 0.596472 187.8887 0.298236

    Tubas- Aldaqanyia 0.944 250 81.0795 162.159 0.648636 81.0795 0.324318

    Tubas-Alenabosi 0.968 250 47.02444 94.04888 0.376196 47.02444 0.188098

    Tubas-Althoghra 0.933 160 56.73022 113.4604 0.709128 56.73022 0.354564

    Tubas-Sameeh 0.94 250 14.06143 28.12286 0.112491 14.06143 0.056246

    Tubas-Alaqaba 0.681 400 53.82302 107.646 0.269115 53.82302 0.134558

    Tubas- Brick Factory

    0.946 400 70.51845 141.0369 0.352592 70.51845 0.176296

    Tubas- Aldayr 0.934 250 25.70299 51.40598 0.205624 25.70299 0.102812

    Tubas- Almasriya 0.938 250 32.43101 64.86202 0.259448 32.43101 0.129724

    Tubas-Spanish 0.949 100 10.68236 21.36472 0.213647 10.68236 0.106824

  • Page 42

    Tubas- Khalet Alloz

    0.836 160 1.30705 2.6141 0.016338 1.30705 0.008169

    Tubas-Alsafeh Northern

    0.979 160 7.770959 15.54192 0.097137 7.770959 0.048568

    Tubas-Transformers

    Factory 0.897 400 7.405304 14.81061 0.037027 7.405304 0.018513

    Tubas-Concrete Factory

    0.983 250 14.55556 29.11112 0.116444 14.55556 0.058222

    Tubas- Salhab(Alkaraj)

    0.999 100 2.134035 4.26807 0.042681 2.134035 0.02134

    Tubas- Well 0.951 630 7.554617 15.10923 0.023983 7.554617 0.011991

    Aqaba- Eastern 0.9419 400 175.7835 351.567 0.878918 175.7835 0.439459

    Aqaba- Western 0.888 400 194.3629 388.7258 0.971815 194.3629 0.485907

    Aqaba- Gas Station

    0.8 630 6.616667 13.23333 0.021005 6.616667 0.010503

    Alfara Camp- Old Station

    0.936 630 341.9371 683.8742 1.085515 341.9371 0.542757

    Alfara Camp- Western

    0.952 400 136.6954 273.3908 0.683477 136.6954 0.341739

    Alfara Camp- Aleen

    1 630 31.52777 63.05554 0.100088 31.52777 0.050044

    Alfara Camp- School

    0.921 250 59.96289 119.9258 0.479703 59.96289 0.239852

    Alfara Camp- Water Well

    0.979 400 68.63228 137.2646 0.343161 68.63228 0.171581

  • Page 43

    Alfara Camp- Alhawooz

    0.953 400 1.187308 2.374616 0.005937 1.187308 0.002968

    Wadi Alfara- Refat

    0.888 400 116.4501 232.9002 0.582251 116.4501 0.291125

    Wadi Alfara- Alhafreya

    0.931 250 92.28379 184.5676 0.73827 92.28379 0.369135

    Wadi Alfara- Alkazya

    0.952 400 163.7862 327.5724 0.818931 163.7862 0.409466

    Wadi Alfara- Aleen

    1 630 42.88888 85.77776 0.136155 42.88888 0.068078

    Wadi Alfara - Albasaten

    0.972 630 136.1433 272.2866 0.432201 136.1433 0.2161

    Wadi Alfara - Alsafeena

    0.946 400 73.03442 146.0688 0.365172 73.03442 0.182586

    Wadi Alfara - Sameet Tareq

    0.917 250 14.71249 29.42498 0.1177 14.71249 0.05885

    Wadi Alfara - Sameet Khader

    0.911 250 70.99563 141.9913 0.567965 70.99563 0.283983

    Wadi Alfara Sameer

    0.931 250 60.32318 120.6464 0.482585 60.32318 0.241293

    Wadi Alfara - Yaseedi Eastern

    0.96 160 7.173338 14.34668 0.089667 7.173338 0.044833

    Wadi Alfara-Yaseedi Western

    0.968 250 13.53976 27.07952 0.108318 13.53976 0.054159

    Wadi Alfara School

    0.914 400 2.519051 5.038102 0.012595 2.519051 0.006298

  • Page 44

    Wadi Alfara -Abu Asad Crushers

    0.661 250 11.19427 22.38854 0.089554 11.19427 0.044777

    Ras Alfara- Alshareef

    0.288 400 113.1005 226.201 0.565503 113.1005 0.282751

    Ras Alfara- Alhaj Hakeem

    0.912 630 193.1465 386.293 0.613163 193.1465 0.306582

    Ras Alfara- Tubas Well

    0.999 400 14.61996 29.23992 0.0731 14.61996 0.03655

    Ras Alfara- Almalhame

    0.923 630 57.32193 114.6439 0.181974 57.32193 0.090987

    Ras Alfara- Khalet Alqaser2

    0.971 630 33.57208 67.14416 0.106578 33.57208 0.053289

    Ras Alfara- Khalet Alqaser 1

    0.904 400 27.94077 55.88154 0.139704 27.94077 0.069852

    Ras Alfara- Alkharaz Well

    0.983 160 23.99241 47.98482 0.299905 23.99241 0.149953

    Ras Alfara- Mwafaq Alfakhri

    0.929 630 158.7152 317.4304 0.503858 158.7152 0.251929

    RasAlfara-AgriculturalProject

    0.956 630 199.1391 398.2782 0.632188 199.1391 0.316094

    Ras Alfara- Alkhizran

    1 160 42.7625 85.525 0.534531 42.7625 0.267266

  • Page 45

    Ras Alfara- Abu Hamed Well

    0.921 630 87.50424 175.0085 0.277791 87.50424 0.138896

    Ras Alfara- Samara Crushers

    0.896 400 5.820702 11.6414 0.029104 5.820702 0.014552

    RasAlfara-AhmadThyab Well

    0.929 630 110.9732 221.9464 0.352296 110.9732 0.176148

    Ras Alfara-Alashqar Crushers

    0.86 630 101.1073 202.2146 0.320976 101.1073 0.160488

    Tamoon- Albatma 0.934 160 67.6927 135.3854 0.846159 67.6927 0.423079

    Tamoon- Almeshmas

    0.903 250 169.2749 338.5498 1.354199 169.2749 0.6771

    Tamoon- Borhan 0.92862 250 74.72974 149.4595 0.597838 74.72974 0.298919

    Tamoon- Alrafeed 0.95251 250 126.4783 252.9566 1.011826 126.4783 0.505913

    Tamoon- Jalamet Albatma

    0.95713 100 50.04802 100.096 1.00096 50.04802 0.50048

    Tamoon- First of Town

    0.95841 250 94.17447 188.3489 0.753396 94.17447 0.376698

    Tamoon- Municipality Well

    0.49507 630 204.9979 409.9958 0.650787 204.9979 0.325393

    Tamoon- National Security

    0.93711 160 60.46897 120.9379 0.755862 60.46897 0.377931

    Tamoon- Alashareen

    0.92176 160 22.33335 44.6667 0.279167 22.33335 0.139583

  • Page 46

    Aatoof- Aatoof 0.89731 160 7.076683 14.15337 0.088459 7.076683 0.044229

    Aatoof- Aljalhoom 0.88555 160 5.393672 10.78734 0.067421 5.393672 0.03371

    Serees- Western 0.95158 250 96.49447 192.9889 0.771956 96.49447 0.385978

    Serees- Centre 0.92174 250 56.5201 113.0402 0.452161 56.5201 0.22608

    Serees- Southern 0.94938 250 49.00664 98.01328 0.392053 49.00664 0.196027

    Serees- Almoghor 0.91503 630 46.16687 92.33374 0.146561 46.16687 0.073281

    Serees- Wells 0.96733 100 32.7316 65.4632 0.654632 32.7316 0.327316

    Serees- Cultural Centre

    0.83605 100 3.344082 6.688164 0.066882 3.344082 0.033441

    Zababdeh- Eastern 0.98073 630 98.07689 196.1538 0.311355 98.07689 0.155678

    Zababdeh- Centre 0.9381 400 137.935 275.87 0.689675 137.935 0.344838

    Zababdeh- Western

    0.86738 400 111.349 222.698 0.556745 111.349 0.278373

    Zababdeh-Agricultural

    College 0.9318 400 97.86287 195.7257 0.489314 97.86287 0.244657

    Zababdeh- School 0.92228 250 10.03997 20.07994 0.08032 10.03997 0.04016

    Zababdeh- Safyria 0.93286 250 82.46704 164.9341 0.659736 82.46704 0.329868

    Zababdeh- Almanasheer

    0.92228 250 10.03997 20.07994 0.08032 10.03997 0.04016

    Aljdeedeh- Ras Albalad

    0.98718 250 63.84898 127.698 0.510792 63.84898 0.255396

    Aljdeedeh- Centre 0.91083 250 67.42555 134.8511 0.539404 67.42555 0.269702

  • Page 47

    Aljdeedeh- Almatrooha

    0.96184 250 87.01625 174.0325 0.69613 87.01625 0.348065

    Aljdeedeh- Wells 0.91084 630 115.5646 231.1292 0.366872 115.5646 0.183436

    Aljdeedeh- Western

    0.99833 250 26.05163 52.10326 0.208413 26.05163 0.104207

    Aljdeedeh- Eastern(Qalalweh)

    0.96094 250 47.6396 95.2792 0.381117 47.6396 0.190558

    Aljdeedeh- Alsahel 0.94787 250 53.96268 107.9254 0.431701 53.96268 0.215851

    AAUJ 1 0.95715 400 161.0022 322.0044 0.805011 161.0022 0.402506

    AAUJ 2 0.94212 400 61.60397 123.2079 0.30802 61.60397 0.15401

    Jalqamous- Western

    0.96358 160 44.09477 88.18954 0.551185 44.09477 0.275592

    Jalqamous- Centre 0.941 400 58.87012 117.7402 0.294351 58.87012 0.147175

    Jalqamous- Eastern

    0.92497 160 29.06232 58.12464 0.363279 29.06232 0.18164

    Raba- Centre 0.90998 250 52.62782 105.2556 0.421023 52.62782 0.210511

    Raba- Eastern 0.92431 250 54.65786 109.3157 0.437263 54.65786 0.218631

    Raba- Western 0.96214 100 29.93456 59.86912 0.598691 29.93456 0.299346

    Raba- Almanasheer

    0.78694 630 83.56368 167.1274 0.265282 83.56368 0.132641

    Raba- Chiclen Farm

    0.95062 160 38.05698 76.11396 0.475712 38.05698 0.237856

    Mesleyah- Eastern 0.98762 400 63.17331 126.3466 0.315867 63.17331 0.157933

    Mesleyah- Western

    0.90988 400 72.74752 145.495 0.363738 72.74752 0.181869

  • Page 48

    Mesleyah- Almanasheer

    0.89566 630 66.668 133.336 0.211644 66.668 0.105822

    Mesleyah- Wells 0.89678 630 199.1022 398.2044 0.63207 199.1022 0.316035

    Mesleyah- Centre 0.9095 100 19.00451 38.00902 0.38009 19.00451 0.190045

    Almghayer- Eastern

    0.99998 250 51.37515 102.7503 0.411001 51.37515 0.205501

    Almghayer- Western

    0.99998 250 29.12249 58.24498 0.23298 29.12249 0.11649

    Almghayer- Marah Alkaras

    0.99999 100 45.71063 91.42126 0.914213 45.71063 0.457106

    Tyaseer- Main 0.91242 250 122.2624 244.5248 0.978099 122.2624 0.48905

    Seer- Main 0.91185 400 77.07256 154.1451 0.385363 77.07256 0.192681

    Seer- Chicken 1 0.88296 250 12.83718 25.67436 0.102697 12.83718 0.051349

    Seer- Alheesh 0.92852 100 14.5108 29.0216 0.290216 14.5108 0.145108

    Seer- Chicken 2 0.79625 160 21.73708 43.47416 0.271714 21.73708 0.135857

    Em Altoot- Main 0.88765 400 75.44835 150.8967 0.377242 75.44835 0.188621

    Aljarba- Main 0.93201 400 84.13808 168.2762 0.42069 84.13808 0.210345

    Aljarba- Eastern 0.8697 160 69.94693 139.8939 0.874337 69.94693 0.437168

    Aljarba- Blastic Factory

    0.85901 250 51.44506 102.8901 0.41156 51.44506 0.20578

    Qashda- 154 0.93589 50 11.57537 23.15074 0.463015 11.57537 0.231507

    Qashda- Prickles Factory

    0.90864 400 30.02487 60.04974 0.150124 30.02487 0.075062

  • Page 49

    Qashda- Fakhree 1 400 137.5166 275.0332 0.687583 137.5166 0.343792

    Talfeet- Centre 0.88318 100 5.241429 10.48286 0.104829 5.241429 0.052414

    Talfeet- Kherbat Aysha

    0.99994 50 1.777884 3.555768 0.071115 1.777884 0.035558

    Al-Aqaba- Tyaseer 0.81638 160 11.65701 23.31402 0.145713 11.65701 0.072856

    Dream Land 0.92987 250 19.16776 38.33552 0.153342 19.16776 0.076671

    Dream Land- Mosque

    0.9262 250 9.25373 18.50746 0.07403 9.25373 0.037015

    Tanin- Main 0.92684 160 6.488566 12.97713 0.081107 6.488566 0.040554

    Merkeh- Pump 0.93009 100 11.4116 22.8232 0.228232 11.4116 0.114116

    Merkeh- School 0.98518 400 66.05493 132.1099 0.330275 66.05493 0.165137

    Merkeh- Abu Omar

    0.93579 50 25.82467 51.64934 1.032987 25.82467 0.516493

    Merkeh- Wadi Afsheh

    0.99751 50 5.991284 11.98257 0.239651 5.991284 0.119826

    Merkeh- Almesrara

    0.99295 100 15.38622 30.77244 0.307724 15.38622 0.153862

    Alzawya- Centre 0.99999 250 20.24722 40.49444 0.161978 20.24722 0.080989

    Alzawya- Alwad 0.84018 100 14.91575 29.8315 0.298315 14.91575 0.149158

    Alzawya-Faqaset AlKarmel

    0.80103 160 14.94418 29.88836 0.186802 14.94418 0.093401

    Wadi Daooq 0.92175 100 8.653469 17.30694 0.173069 8.653469 0.086535

    Alhafeere- Centre 0.91052 100 20.22634 40.45268 0.404527 20.22634 0.202263

    Beer AlBasha- Centre

    0.92299 400 60.03824 120.0765 0.300191 60.03824 0.150096

  • Page 50

    Beer AlBasha- Eastern

    0.95899 250 37.63051 75.26102 0.301044 37.63051 0.150522

    Zakarneh Crushers 0.8351 630 20.1105 40.221 0.063843 20.1105 0.031921

    Qabatiya Well 0.91874 630 216.6569 433.3138 0.6878 216.6569 0.3439

    DiamondStone- Crusher

    0.84582 630 68.2419 136.4838 0.216641 68.2419 0.10832

    Diamond Stone- Factory

    0.96871 630 27.78023 55.56046 0.088191 27.78023 0.044096

  • Page 51

    Appendix 3

    Under voltage buses at maximum case

    Bus # rated(kv) operating(kv) operating %

    Bus179 0.400 0.367 91.8

    Bus180 0.400 0.375 93.7

    Bus186 0.400 0.374 93.5

    Bus187 0.400 0.377 94.2

    Bus189 0.400 0.379 94.6

    Bus190 0.400 0.378 94.6

    Bus191 0.400 0.377 94.2

    Bus196 0.400 0.376 94.0

    Bus197 0.400 0.371 92.8

    Bus198 0.400 0.376 94.0

    Bus199 0.400 0.374 93.5

    Bus200 0.400 0.371 92.8

    Bus201 0.400 0.364 90.9

    Bus202 0.400 0.373 93.1

    Bus207 0.400 0.377 94.2

    Bus208 0.400 0.379 94.8

    Bus209 0.400 0.379 94.7

    Bus210 0.400 0.375 93.6

    Bus212 0.400 0.377 94.2

    Bus213 0.400 0.377 94.3

    Bus214 0.400 0.375 93.8

    Bus215 0.400 0.379 94.9

    Bus216 0.400 0.380 94.9

    Bus217 0.400 0.378 94.5

    Bus218 0.400 0.373 93.3

    Bus219 0.400 0.378 94.6

    Bus220 0.400 0.379 94.7

    Bus221 0.400 0.379 94.9

    Bus222 0.400 0.369 92.2

    Bus223 0.400 0.369 92.2

    Bus224 0.400 0.361 90.2

    Bus225 0.400 0.377 94.3

    Bus226 0.400 0.379 94.7

    Bus227 0.400 0.374 93.6

    Bus229 0.400 0.371 92.9

    Bus230 0.400 0.372 93.0

    Bus231 0.400 0.376 94.1

    Bus232 0.400 0.380 95.0

    Bus233 0.400 0.379 94.9

    Bus234 0.400 0.379 94.8

  • Page 52

    Bus235 0.400 0.371 92.6

    Bus237 0.400 0.376 94.0

    Bus238 0.400 0.372 93.1

    Bus239 0.400 0.380 94.9

    Bus240 0.400 0.376 94.0

    Bus241 0.400 0.380 94.9

    Bus243 0.400 0.367 91.7

    Bus244 0.400 0.371 92.7

    Bus245 0.400 0.376 93.9

    Bus246 0.400 0.375 93.7

    Bus247 0.400 0.378 94.4

    Bus248 0.400 0.368 92.0

    Bus249 0.400 0.375 93.7

    Bus250 0.400 0.374 93.4

    Bus251 0.400 0.367 91.8

    Bus252 0.400 0.369 92.3

    Bus253 0.400 0.367 91.7

    Bus254 0.400 0.372 93.0

    Bus255 0.400 0.373 93.2

    Bus256 0.400 0.369 92.3

    Bus257 0.400 0.368 92.1

    Bus258 0.400 0.365 91.3

    Bus259 0.400 0.369 92.1

    Bus260 0.400 0.364 90.9

    Bus261 0.400 0.365 91.2

    Bus262 0.400 0.371 92.8

    Bus263 0.400 0.358 89.4

    Bus264 0.400 0.370 92.6

    Bus265 0.400 0.370 92.4

    Bus266 0.400 0.370 92.4

    Bus267 0.400 0.370 92.4

    Bus268 0.400 0.372 93.0

    Bus269 0.400 0.368 92.0

    Bus270 0.400 0.370 92.4

    Bus271 0.400 0.373 93.2

    Bus272 0.400 0.370 92.4

    Bus273 0.400 0.369 92.2

    Bus274 0.400 0.375 93.7

    Bus277 0.400 0.374 93.4

    Bus278 0.400 0.374 93.6

    Bus279 0.400 0.365 91.3

    Bus280 0.400 0.371 92.8

    Bus281 0.400 0.374 93.6

    Bus282 0.400 0.373 93.3

    Bus283 0.400 0.374 93.6

  • Page 53

    Bus284 0.400 0.371 92.8

    Bus286 0.400 0.370 92.5

    Bus287 0.400 0.367 91.8

    Bus288 0.400 0.373 93.3

    Bus289 0.400 0.372 93.0

    Bus295 0.400 0.369 92.2

    Bus296 0.400 0.370 92.4

    Bus297 0.400 0.369 92.4

    Bus298 0.400 0.369 92.4

    Bus299 0.400 0.371 92.8

    Bus300 0.400 0.374 93.4

    Bus301 0.400 0.372 93.0

    Bus302 0.400 0.376 94.1

    Bus303 0.400 0.373 93.3

    Bus304 0.400 0.372 92.9

    Bus305 0.400 0.372 93.0

    Bus306 0.400 0.371 92.7

    Bus307 0.400 0.375 93.6

    Bus308 0.400 0.371 92.8

    Bus309 0.400 0.368 92.1

    Bus310 0.400 0.368 91.9

    Bus311 0.400 0.372 92.9

    Bus312 0.400 0.374 93.6

    Bus313 0.400 0.366 91.6

    Bus314 0.400 0.370 92.5

    Bus315 0.400 0.375 93.7

    Bus316 0.400 0.368 91.9

    Bus317 0.400 0.370 92.5

    Bus318 0.400 0.369 92.3

    Bus321 0.400 0.376 94.1

    Bus327 0.400 0.367 91.7

    Bus328 0.400 0.368 92.0

  • Page 54

    Appendix 4

    Overloaded transformers

    transformer Srated old LF old

    AAUJ1 400 1.00625

    Serees Western 250 1.049945

    Tamoon Albatmah 160 1.057695

    Tamoon

    Almeshmas

    250 1.69275

    Tamoon Alrafeed 250 1.264785

    Tamoon jalamet

    Albatmah

    100 1.2512

    Tamoon first of the

    town

    250 1.056745

    Tamoon National

    Security

    160 1.007328

    Aqaba Eastern 400 1.098647

    Aqaba Western 400 1.214769

    Faraa Camp Old

    Station

    630 1.356893

    wadi alfaraa

    alhafreia

    250 1.01784

    Wadi alfaraa gas

    station

    400 1.023663

    Housing 250 1.0479

    Abu Omar 400 1.249041

    Allan Alsood 250 1.126165

    Almasaeed 250 1.83804

  • Page 55

    Alhawooz 400 1.191013

    Althoghra 160 1.019219

    Almghier Marah

    Alkaras

    100 1.142766

    Tayaseer Main 250 1.222625

    Aljarba Eastern 160 1.092922

    Merkeh Abu Omar 50 1.291233

  • Page 56

    Appendix 5

    Tap changing at maximum case

    Bus # Rated (KV)

    Operating (KV)

    Operating %

    Tab %

    Bus179 0.400 0.367 91.8 5

    Bus180 0.400 0.375 93.7 5

    Bus186 0.400 0.374 93.5 5

    Bus187 0.400 0.377 94.2 5

    Bus189 0.400 0.379 94.6 5

    Bus190 0.400 0.378 94.6 5

    Bus191 0.400 0.377 94.2 5

    Bus196 0.400 0.376 94.0 5

    Bus197 0.400 0.371 92.8 5

    Bus198 0.400 0.376 94.0 5

    Bus199 0.400 0.374 93.5 5

    Bus200 0.400 0.371 92.8 5

    Bus201 0.400 0.364 90.9 5

    Bus202 0.400 0.373 93.1 5

    Bus207 0.400 0.377 94.2 5

    Bus208 0.400 0.379 94.8 5

    Bus209 0.400 0.379 94.7 5

    Bus210 0.400 0.375 93.6 5

    Bus212 0.400 0.377 94.2 5

    Bus213 0.400 0.377 94.3 5

    Bus214 0.400 0.375 93.8 5

    Bus215 0.400 0.379 94.9 5

    Bus216 0.400 0.380 94.9 5

    Bus217 0.400 0.378 94.5 5

    Bus218 0.400 0.373 93.3 5

    Bus219 0.400 0.378 94.6 5

    Bus220 0.400 0.379 94.7 5

    Bus221 0.400 0.379 94.9 5

    Bus222 0.400 0.369 92.2 5

    Bus223 0.400 0.369 92.2 5

    Bus224 0.400 0.361 90.2 5

    Bus225 0.400 0.377 94.3 5

    Bus226 0.400 0.379 94.7 5

    Bus227 0.400 0.374 93.6 5

    Bus229 0.400 0.371 92.9 5

    Bus230 0.400 0.372 93.0 5

    Bus231 0.400 0.376 94.1 5

    Bus232 0.400 0.380 95.0 5

  • Page 57

    Bus233 0.400 0.379 94.9 5

    Bus234 0.400 0.379 94.8 5

    Bus235 0.400 0.371 92.6 5

    Bus237 0.400 0.376 94.0 5

    Bus238 0.400 0.372 93.1 5

    Bus239 0.400 0.380 94.9 5

    Bus240 0.400 0.376 94.0 5

    Bus241 0.400 0.380 94.9 5

    Bus243 0.400 0.367 91.7 5

    Bus244 0.400 0.371 92.7 5

    Bus245 0.400 0.376 93.9 5

    Bus246 0.400 0.375 93.7 5

    Bus247 0.400 0.378 94.4 5

    Bus248 0.400 0.368 92.0 5

    Bus249 0.400 0.375 93.7 5

    Bus250 0.400 0.374 93.4 5

    Bus251 0.400 0.367 91.8 5

    Bus252 0.400 0.369 92.3 5

    Bus253 0.400 0.367 91.7 5

    Bus254 0.400 0.372 93.0 5

    Bus255 0.400 0.373 93.2 5

    Bus256 0.400 0.369 92.3 5

    Bus257 0.400 0.368 92.1 5

    Bus258 0.400 0.365 91.3 5

    Bus259 0.400 0.369 92.1 5

    Bus260 0.400 0.364 90.9 5

    Bus261 0.400 0.365 91.2 5

    Bus262 0.400 0.371 92.8 5

    Bus263 0.400 0.358 89.4 5

    Bus264 0.400 0.370 92.6 5

    Bus265 0.400 0.370 92.4 5

    Bus266 0.400 0.370 92.4 5

    Bus267 0.400 0.370 92.4 5

    Bus268 0.400 0.372 93.0 5

    Bus269 0.400 0.368 92.0 5

    Bus270 0.400 0.370 92.4 5

    Bus271 0.400 0.373 93.2 5

    Bus272 0.400 0.370 92.4 5

    Bus273 0.400 0.369 92.2 5

    Bus274 0.400 0.375 93.7 5

    Bus277 0.400 0.374 93.4 5

    Bus278 0.400 0.374 93.6 5

    Bus279 0.400 0.365 91.3 5

    Bus280 0.400 0.371 92.8 5

    Bus281 0.400 0.374 93.6 5

  • Page 58

    Bus282 0.400 0.373 93.3 5

    Bus283 0.400 0.374 93.6 5

    Bus284 0.400 0.371 92.8 5

    Bus286 0.400 0.370 92.5 5

    Bus287 0.400 0.367 91.8 5

    Bus288 0.400 0.373 93.3 5

    Bus289 0.400 0.372 93.0 5

    Bus295 0.400 0.369 92.2 5

    Bus296 0.400 0.370 92.4 5

    Bus297 0.400 0.369 92.4 5

    Bus298 0.400 0.369 92.4 5

    Bus299 0.400 0.371 92.8 5

    Bus300 0.400 0.374 93.4 5

    Bus301 0.400 0.372 93.0 5

    Bus302 0.400 0.376 94.1 5

    Bus303 0.400 0.373 93.3 5

    Bus304 0.400 0.372 92.9 5

    Bus305 0.400 0.372 93.0 5

    Bus306 0.400 0.371 92.7 5

    Bus307 0.400 0.375 93.6 5

    Bus308 0.400 0.371 92.8 5

    Bus309 0.400 0.368 92.1 5

    Bus310 0.400 0.368 91.9 5

    Bus311 0.400 0.372 92.9 5

    Bus312 0.400 0.374 93.6 5

    Bus313 0.400 0.366 91.6 5

    Bus314 0.400 0.370 92.5 5

    Bus315 0.400 0.375 93.7 5

    Bus316 0.400 0.368 91.9 5

    Bus317 0.400 0.370 92.5 5

    Bus318 0.400 0.369 92.3 5

    Bus321 0.400 0.376 94.1 5

    Bus327 0.400 0.367 91.7 5

    Bus328 0.400 0.368 92.0 5

  • Page 59

    Appendix 6

    Maximum case before and after adding capacitors

    After Taps After Capacitors

    Bus Rated (KV)

    Operating (KV)

    Operating %

    Cap (KVAR)

    Operating (KV)

    Operating %

    Bus179 0.400 0.3848 96.2 50 0.3888 97.2

    Bus180 0.400 0.392 98

    0.3924 98.1

    Bus184 0.400 0.3828 95.7 10 0.3836 95.9

    Bus186 0.400 0.3924 98.1

    0.3984 99.6

    Bus187 0.400 0.3952 98.8

    0.3956 98.9

    Bus188 0.400 0.382 95.5 20 0.3852 96.3

    Bus189 0.400 0.3964 99.1

    0.3968 99.2

    Bus190 0.400 0.3968 99.2

    0.3972 99.3

    Bus191 0.400 0.394 98.5

    0.3944 98.6

    Bus196 0.400 0.3936 98.4

    0.394 98.5

    Bus197 0.400 0.3892 97.3

    0.3896 97.4

    Bus198 0.400 0.3944 98.6

    0.3948 98.7

    Bus199 0.400 0.392 98

    0.3928 98.2

    Bus200 0.400 0.3892 97.3

    0.3896 97.4

    Bus201 0.400 0.3808 95.2 100 0.388 97

    Bus202 0.400 0.3904 97.6

    0.3912 97.8

    Bus203 0.400 0.3812 95.3 10 0.3828 95.7

    Bus204 0.400 0.3828 95.7 5 0.3836 95.9

    Bus205 0.400 0.3824 95.6 5 0.3832 95.8

    Bus206 0.400 0.3812 95.3 25 0.3828 95.7

    Bus207 0.400 0.3952 98.8

    0.3956 98.9

    Bus208 0.400 0.3972 99.3

    0.3976 99.4

    Bus209 0.400 0.3972 99.3

    0.3976 99.4

    Bus210 0.400 0.3928 98.2

    0.3932 98.3

    Bus212 0.400 0.3952 98.8

    0.3956 98.9

    Bus213 0.400 0.3956 98.9

    0.396 99

    Bus214 0.400 0.3936 98.4

    0.394 98.5

    Bus215 0.400 0.398 99.5

    0.3984 99.6

    Bus216 0.400 0.398 99.5

    0.3988 99.7

    Bus217 0.400 0.3964 99.1

    0.3968 99.2

    Bus218 0.400 0.3912 97.8

    0.392 98

    Bus219 0.400 0.3968 99.2

    0.3972 99.3

    Bus220 0.400 0.3972 99.3

    0.3976 99.4

    Bus221 0.400 0.398 99.5

    0.3984 99.6

    Bus222 0.400 0.3868 96.7

    0.3872 96.8

    Bus223 0.400 0.3856 96.4

    0.386 96.5

    Bus224 0.400 0.39 97.5

    0.3904 97.6

    Bus225 0.400 0.3956 98.9

    0.396 99

  • Page 60

    Bus226 0.400 0.3972 99.3

    0.398 99.5

    Bus227 0.400 0.3924 98.1

    0.3932 98.3

    Bus229 0.400 0.3888 97.2

    0.3892 97.3

    Bus230 0.400 0.39 97.5

    0.3908 97.7

    Bus231 0.400 0.3944 98.6

    0.3952 98.8

    Bus232 0.400 0.398 99.5

    0.3984 99.6

    Bus233 0.400 0.398 99.5

    0.3984 99.6

    Bus234 0.400 0.398 99.5

    0.3984 99.6

    Bus235 0.400 0.3884 97.1

    0.3892 97.3

    Bus237 0.400 0.3944 98.6

    0.3948 98.7

    Bus238 0.400 0.3904 97.6

    0.3908 97.7

    Bus239 0.400 0.3984 99.6

    0.3988 99.7

    Bus240 0.400 0.3944 98.6

    0.3952 98.8

    Bus241 0.400 0.398 99.5

    0.3984 99.6

    Bus242 0.400 0.3812 95.3 5 0.3824 95.6

    Bus243 0.400 0.384 96 100 0.3888 97.2

    Bus244 0.400 0.3876 96.9

    0.3884 97.1

    Bus245 0.400 0.3936 98.4

    0.3944 98.6

    Bus246 0.400 0.3928 98.2

    0.3936 98.4

    Bus247 0.400 0.3956 98.9

    0.3964 99.1

    Bus248 0.400 0.3848 96.2

    0.3856 96.4

    Bus249 0.400 0.3928 98.2

    0.394 98.5

    Bus250 0.400 0.3916 97.9 50 0.3924 98.1

    Bus251 0.400 0.3844 96.1

    0.3876 96.9

    Bus252 0.400 0.3868 96.7

    0.3876 96.9

    Bus253 0.400 0.3844 96.1 20 0.0264 6.6

    Bus254 0.400 0.3896 97.4

    0.3904 97.6

    Bus255 0.400 0.3908 97.7

    0.3916 97.9

    Bus256 0.400 0.3864 96.6

    0.3876 96.9

    Bus257 0.400 0.386 96.5

    0.3868 96.7

    Bus258 0.400 0.3824 95.6 50 0.3848 96.2

    Bus259 0.400 0.3856 96.4

    0.3864 96.6

    Bus260 0.400 0.3808 95.2 40 0.3856 96.4

    Bus261 0.400 0.382 95.5 60 0.3868 96.7

    Bus262 0.400 0.3884 97.1

    0.3896 97.4

    Bus263 0.400 0.374 93.5 15 0.38 95

    Bus264 0.400 0.388 97

    0.3888 97.2

    Bus265 0.400 0.3872 96.8

    0.388 97

    Bus266 0.400 0.3872 96.8

    0.388 97

    Bus267 0.400 0.3872 96.8

    0.3884 97.1

    Bus268 0.400 0.3896 97.4

    0.3908 97.7

    Bus269 0.400 0.3852 96.3

    0.3864 96.6

    Bus270 0.400 0.3872 96.8

    0.3884 97.1

    Bus271 0.400 0.3904 97.6

    0.3916 97.9

    Bus272 0.400 0.3868 96.7

    0.388 97

  • Page 61

    Bus273 0.400 0.386 96.5

    0.3876 96.9

    Bus274 0.400 0.3928 98.2

    0.3936 98.4

    Bus277 0.400 0.3916 97.9

    0.3924 98.1

    Bus278 0.400 0.3924 98.1

    0.3932 98.3

    Bus279 0.400 0.3824 95.6 50 0.3936 98.4

    Bus280 0.400 0.3892 97.3

    0.39 97.5

    Bus281 0.400 0.392 98

    0.3932 98.3

    Bus282 0.400 0.3912 97.8

    0.392 98

    Bus283 0.400 0.392 98

    0.3932 98.3

    Bus284 0.400 0.3888 97.2

    0.3896 97.4

    Bus286 0.400 0.3872 96.8

    0.3884 97.1

    Bus287 0.400 0.3844 96.1

    0.3852 96.3

    Bus288 0.400 0.3912 97.8

    0.392 98

    Bus289 0.400 0.3896 97.4

    0.3912 97.8

    Bus295 0.400 0.3856 96.4

    0.3864 96.6

    Bus296 0.400 0.3872 96.8

    0.388 97

    Bus297 0.400 0.3868 96.7

    0.388 97

    Bus298 0.400 0.3868 96.7

    0.388 97

    Bus299 0.400 0.3888 97.2

    0.3896 97.4

    Bus300 0.400 0.3912 97.8

    0.392 98

    Bus301 0.400 0.3896 97.4

    0.3904 97.6

    Bus302 0.400 0.3956 98.9

    0.3988 99.7

    Bus303 0.400 0.3908 97.7

    0.3916 97.9

    Bus304 0.400 0.3892 97.3

    0.3896 97.4

    Bus305 0.400 0.3896 97.4

    0.3904 97.6

    Bus306 0.400 0.3884 97.1

    0.3892 97.3

    Bus307 0.400 0.3924 98.1

    0.3932 98.3

    Bus308 0.400 0.3892 97.3

    0.39 97.5

    Bus309 0.400 0.386 96.5

    0.3868 96.7

    Bus310 0.400 0.3852 96.3

    0.386 96.5

    Bus311 0.400 0.3892 97.3

    0.39 97.5

    Bus312 0.400 0.392 98

    0.3928 98.2

    Bus313 0.400 0.3836 95.9 20 0.3856 96.4

    Bus314 0.400 0.3876 96.9

    0.3884 97.1

    Bus315 0.400 0.3928 98.2

    0.3936 98.4

    Bus316 0.400 0.3852 96.3

    0.386 96.5

    Bus317 0.400 0.3868 96.7

    0.388 97

    Bus318 0.400 0.3864 96.6

    0.3872 96.8

    Bus320 0.400 0.3824 95.6 20 0.3828 95.7

    Bus321 0.400 0.3944 98.6

    0.3952 98.8

    Bus324 0.400 0.39 97.5 50 0.3904 97.6

    Bus327 0.400 0.3844 96.1 50 0.3864 96.6

    Bus328 0.400 0.3848 96.2

    0.386 96.5

    Bus65 0.400 0.3844 96.1 50 0.3876 96.9

    Bus69 0.400 0.382 95.5 40 0.386 96.5

  • Page 62

    Appendix 7

    Maximum case voltages after taps and capacitors

    Bus number V rated (KV) Operating %

    Bus65 0.4 97.646 Bus68 0.4 99.519

    Bus69 0.4 97.426

    Bus70 0.4 97.275

    Bus73 0.4 97.309 Bus179 0.4 99.029

    Bus180 0.4 99.483

    Bus181 0.4 100.755

  • Page 63

    Bus182 0.4 97.209

    Bus183 0.4 97.114

    Bus184 0.4 96.815 Bus185 0.4 97.207

    Bus186 0.4 99.632

    Bus187 0.4 100.218

    Bus188 0.4 97.264 Bus189 0.4 100.444

    Bus190 0.4 100.526

    Bus191 0.4 99.557

    Bus192 0.4 97.197 Bus193 0.4 97.617

    Bus195 0.4 94.478

    Bus196 0.4 99.841

    Bus197 0.4 99.029 Bus198 0.4 100.029

    Bus199 0.4 99.619

    Bus200 0.4 99.01

    Bus201 0.4 99.11

    Bus202 0.400 99.299 Bus203 0.4 96.639

    Bus204 0.400 96.793

    Bus205 0.4 96.718

    Bus206 0.400 96.653 Bus207 0.4 100.191

    Bus208 0.4 100.601

    Bus209 0.4 100.579

    Bus210 0.4 99.762 Bus211 0.4 96.316

    Bus212 0.4 100.199

    Bus213 0.4 100.296

    Bus214 0.4 99.876 Bus215 0.4 100.782

    Bus216 0.4 100.815

    Bus217 0.4 101.112

    Bus218 0.4 99.482 Bus219 0.4 100.538

  • Page 64

    Bus220 0.4 100.467

    Bus221 0.4 100.792

    Bus222 0.4 98.578 Bus223 0.4 98.254

    Bus224 0.4 99.171

    Bus225 0.4 100.313

    Bus226 0.4 100.649 Bus227 0.4 99.7

    Bus228 0.4 96.582

    Bus229 0.4 98.889

    Bus230 0.4 99.296 Bus231 0.4 100.102

    Bus232 0.4 100.883

    Bus233 0.4 100.795

    Bus234 0.4 100.766 Bus235 0.4 98.914

    Bus236 0.4 100.977

    Bus237 0.4 100.091

    Bus238 0.4 99.263

    Bus239 0.4 100.8 Bus240 0.4 100.09

    Bus241 0.4 100.795

    Bus242 0.4 96.525

    Bus243 0.4 99.13 Bus244 0.4 98.712

    Bus245 0.4 99.937

    Bus246 0.4 99.815

    Bus247 0.4 100.386 Bus248 0.4 98.206

    Bus249 0.4 99.85

    Bus250 0.4 99.588

    Bus251 0.4 98.717 Bus252 0.4 98.643

    Bus253 0.4 98.492

    Bus254 0.4 99.202

    Bus255 0.4 99.404 Bus256 0.4 98.612

  • Page 65

    Bus257 0.4 98.472

    Bus258 0.4 98.163

    Bus259 0.4 98.385 Bus260 0.4 98.502

    Bus261 0.4 98.718

    Bus262 0.4 99.003

    Bus263 0.4 97.418 Bus264 0.4 98.897

    Bus265 0.4 98.744

    Bus266 0.4 98.734

    Bus267 0.4 98.76 Bus268 0.4 99.223

    Bus269 0.4 98.354

    Bus270 0.4 98.766

    Bus271 0.4 99.416 Bus272 0.4 98.653

    Bus273 0.4 98.522

    Bus274 0.4 99.837

    Bus277 0.4 99.584

    Bus278 0.4 99.738 Bus279 0.4 98.34

    Bus280 0.4 99.08

    Bus281 0.4 99.688

    Bus282 0.4 99.479 Bus283 0.4 99.701

    Bus284 0.4 99.01

    Bus286 0.4 98.75

    Bus287 0.4 98.194 Bus288 0.4 99.461

    Bus289 0.4 99.207

    Bus291 0.4 94.681

    Bus295 0.4 98.364 Bus296 0.4 98.735

    Bus297 0.4 98.674

    Bus298 0.4 98.67

    Bus299 0.4 99.006 Bus300 0.4 99.454

  • Page 66

    Bus301 0.4 99.164

    Bus302 0.4 100.108

    Bus303 0.4 99.446 Bus304 0.4 99.031

    Bus305 0.4 99.136

    Bus306 0.4 98.938

    Bus307 0.4 99.742 Bus308 0.4 99.061

    Bus309 0.4 98.44

    Bus310 0.4 98.31

    Bus311 0.4 99.039 Bus312 0.4 99.672

    Bus313 0.4 98.343

    Bus314 0.4 98.745

    Bus315 0.4 99.825 Bus316 0.4 98.295

    Bus317 0.4 98.628

    Bus318 0.4 98.506

    Bus319 0.4 96.317

    Bus320 0.4 96.592 Bus321 0.4 100.114

    Bus322 0.4 96.532

    Bus323 0.4 97.181

    Bus324 0.4 97.022 Bus325 0.4 97.196

    Bus327 0.4 98.482

    Bus328 0.4 98.269

    Appendix 8

  • Page 67

    Transformers changing

    transformer Srated old Savg LF old Srated new LF new

    AAUJ1 400 402.5 1.00625 250+250 0.644

    Serees Western

    250 262.48625 1.049945 400 0.4824

    Tamoon Albatmah

    160 169.23125 1.057695 250 0.5415

    Tamoon Almeshmas

    250 423.1875 1.69275 250+250 0.6771

    Tamoon Alrafeed

    250 316.19625 1.264785 400 0.6323

    Tamoon jalamet Albatmah

    100 125.12 1.2512 160 0.6256

    Tamoon first of the town

    250 264.18625 1.056745 160+160 0.5885

    Tamoon National Security

    160 161.1725 1.007328 250 0.4837

    Aqaba Eastern 400 439.45875 1.098647 630 0.558 Aqaba Western 400 485.9075 1.214769 630 0.617

    Faraa Camp Old Station

    630 854.8425 1.356893 630+400 0.6639

    wadi alfaraa alhafreia

    250 254.46 1.01784 400 0.4614

    Wadi alfaraa gas station

    400 409.465 1.023663 630 0.5199

    Housing 250 261.975 1.0479 400 0.5239 Abu Omar 400 499.61625 1.249041 630 0.6344

    Allan Alsood 250 281.54125 1.126165 250+250 0.4504 Almasaeed 250 459.51 1.83804 630 0.5835 Alhawooz 400 476.405 1.191013 630 0.6049 Althoghra 160 163.075 1.019219 250 0.4538

    Almghier Marah Alkaras

    100 114.276625 1.142766 160 0.5713

    Tayaseer Main 250 305.65625 1.222625 400 0.6113 Aljarba Eastern 160 174.8675 1.092922 250 0.5595

    Merkeh Abu Omar

    50 64.561625 1.291233 100 0.5164

  • Page 68

    Appendix 9

    The voltages on the buses after changing the transformers

    Bus number Vrated Operating (%)

    Bus65 0.4 98.353

    Bus68 0.4 99.519

    Bus69 0.4 97.774 Bus70 0.4 97.286

    Bus73 0.4 97.322

    Bus179 0.4 101.288

    Bus180 0.4 100.658 Bus181 0.4 100.769

    Bus182 0.4 97.223

    Bus183 0.4 97.128

    Bus184 0.4 96.829 Bus185 0.4 97.221

    Bus186 0.4 100.719

    Bus187 0.4 100.234

    Bus188 0.4 97.279 Bus189 0.4 100.924

  • Page 69

    Bus190 0.4 100.543

    Bus191 0.4 101.273

    Bus192 0.4 97.209 Bus193 0.4 97.63

    Bus195 0.4 95.529

    Bus196 0.4 100.276

    Bus197 0.4 99.045 Bus198 0.4 100.046

    Bus199 0.4 100.403

    Bus200 0.4 100.06

    Bus201 0.4 100.469 Bus202 0.4 100.191

    Bus203 0.4 96.653

    Bus204 0.4 96.809

    Bus205 0.4 96.735 Bus206 0.4 96.667

    Bus207 0.4 100.206

    Bus208 0.4 100.615

    Bus209 0.4 100.593

    Bus210 0.4 99.776 Bus211 0.4 96.33

    Bus212 0.4 100.213

    Bus213 0.4 100.31

    Bus214 0.4 99.89 Bus215 0.4 100.796

    Bus216 0.4 100.829

    Bus217 0.4 101.126

    Bus218 0.4 99.496 Bus219 0.4 100.552

    Bus220 0.4 100.481

    Bus221 0.4 100.806

    Bus222 0.4 98.592 Bus223 0.4 99.332

    Bus224 0.4 99.92

    Bus225 0.4 100.327

    Bus226 0.4 100.663 Bus227 0.4 99.714

  • Page 70

    Bus228 0.4 96.596

    Bus229 0.4 99.798

    Bus230 0.4 99.31 Bus231 0.4 100.116

    Bus232 0.4 100.897

    Bus233 0.4 100.809

    Bus234 0.4 100.78 Bus235 0.4 99.733

    Bus236 0.4 100.991

    Bus237 0.4 100.105

    Bus238 0.4 99.277 Bus239 0.4 100.814

    Bus240 0.4 100.104

    Bus241 0.4 100.809

    Bus242 0.4 96.542 Bus243 0.4 100.076

    Bus244 0.4 99.721

    Bus245 0.4 99.958

    Bus246 0.4 99.836

    Bus247 0.4 100.407 Bus248 0.4 98.228

    Bus249 0.4 99.872

    Bus250 0.4 99.609

    Bus251 0.4 98.74 Bus252 0.4 98.665

    Bus253 0.4 98.514

    Bus254 0.4 99.227

    Bus255 0.4 99.43 Bus256 0.4 98.638

    Bus257 0.4 98.498

    Bus258 0.4 98.189

    Bus259 0.4 98.414 Bus260 0.4 98.376

    Bus261 0.4 98.748

    Bus262 0.4 99.038

    Bus263 0.4 98.502 Bus264 0.4 98.934

  • Page 71

    Bus265 0.4 98.782

    Bus266 0.4 98.771

    Bus267 0.4 98.797 Bus268 0.4 99.259

    Bus269 0.4 98.391

    Bus270 0.4 98.802

    Bus271 0.4 99.453 Bus272 0.4 98.69

    Bus273 0.4 98.56

    Bus274 0.4 99.859

    Bus277 0.4 99.607 Bus278 0.4 99.761

    Bus279 0.4 98.69

    Bus280 0.4 99.103

    Bus281 0.4 99.711 Bus282 0.4 99.502

    Bus283 0.4 99.723

    Bus284 0.4 99.033

    Bus286 0.4 98.772

    Bus287 0.4 99.006 Bus288 0.4 99.483

    Bus289 0.4 99.23

    Bus291 0.4 94.703

    Bus294 33 97.385 Bus295 0.4 98.385

    Bus296 0.4 98.757

    Bus297 0.4 98.696

    Bus298 0.4 98.692 Bus299 0.4 99.028

    Bus300 0.4 99.475

    Bus301 0.4 99.185

    Bus302 0.4 100.128 Bus303 0.4 99.467

    Bus304 0.4 99.051

    Bus305 0.4 99.156

    Bus306 0.4 98.959 Bus307 0.4 99.762

  • Page 72

    Bus308 0.4 99.082

    Bus309 0.4 98.461

    Bus310 0.4 98.331 Bus311 0.4 99.06

    Bus312 0.4 99.693

    Bus313 0.4 99.028

    Bus314 0.4 98.767 Bus315 0.4 99.846

    Bus316 0.4 98.316

    Bus317 0.4 98.65

    Bus318 0.4 98.528 Bus319 0.4 96.335

    Bus320 0.4 96.606

    Bus321 0.4 100.131

    Bus322 0.4 96.548 Bus323 0.4 97.195

    Bus324 0.4 97.036

    Bus325 0.4 97.21

    Bus327 0.4 98.504

    Bus328 0.4 98.628

  • Page 73

    Appendix 10

    Voltages on buses after the new connection point

    Bus Vrated Operating (%)

    Bus65 0.4 98.484 Bus68 0.4 99.519

    Bus69 0.4 98.241

    Bus70 0.4 97.853

  • Page 74

    Bus73 0.4 97.991

    Bus179 0.4 102.013

    Bus180 0.4 101.362 Bus181 0.4 101.475

    Bus182 0.4 97.905

    Bus183 0.4 97.81

    Bus184 0.4 97.515 Bus185 0.4 97.962

    Bus186 0.4 101.609

    Bus187 0.4 101.211

    Bus188 0.4 98.211 Bus189 0.4 102.067

    Bus190 0.4 101.736

    Bus191 0.4 101.924

    Bus192 0.4 97.84 Bus193 0.4 98.259

    Bus195 0.4 100.861

    Bus196 0.4 100.981

    Bus197 0.4 99.773

    Bus198 0.4 100.769 Bus199 0.4 101.124

    Bus200 0.4 100.783

    Bus201 0.4 101.199

    Bus202 0.4 100.913 Bus203 0.4 97.34

    Bus204 0.4 97.49

    Bus205 0.4 97.418

    Bus206 0.4 97.352 Bus207 0.4 100.928

    Bus208 0.4 101.325

    Bus209 0.4 101.305

    Bus210 0.4 100.499 Bus211 0.4 97.012

    Bus212 0.4 100.934

    Bus213 0.4 101.031

    Bus214 0.4 100.613 Bus215 0.4 101.515

  • Page 75

    Bus216 0.4 101.548

    Bus217 0.4 101.843

    Bus218 0.4 100.221 Bus219 0.4 101.272

    Bus220 0.4 101.193

    Bus221 0.4 101.524

    Bus222 0.4 99.32 Bus223 0.4 100.036

    Bus224 0.4 100.628

    Bus225 0.4 101.047

    Bus226 0.4 101.381 Bus227 0.4 100.437

    Bus228 0.4 97.278

    Bus229 0.4 100.507

    Bus230 0.4 100.035 Bus231 0.4 100.837

    Bus232 0.4 101.615

    Bus233 0.4 101.526

    Bus234 0.4 101.498

    Bus235 0.4 100.455 Bus236 0.4 101.708

    Bus237 0.4 100.826

    Bus238 0.4 100.002

    Bus239 0.4 101.532 Bus240 0.4 100.824

    Bus241 0.4 101.525

    Bus242 0.4 97.761

    Bus243 0.4 101.547 Bus244 0.4 101.224

    Bus245 0.4 101.888

    Bus246 0.4 101.901

    Bus247 0.4 102.465 Bus248 0.4 100.553

    Bus249 0.4 102.245

    Bus250 0.4 101.871

    Bus251 0.4 101.2 Bus252 0.4 101.149

  • Page 76

    Bus253 0.4 100.97

    Bus254 0.4 102.266

    Bus255 0.4 102.627 Bus256 0.4 101.99

    Bus257 0.4 101.828

    Bus258 0.4 101.545

    Bus259 0.4 102.465 Bus260 0.4 102.549

    Bus261 0.4 103.021

    Bus262 0.4 103.633

    Bus263 0.4 103.285 Bus264 0.4 103.657

    Bus265 0.4 103.509

    Bus266 0.4 103.499

    Bus267 0.4 103.524 Bus268 0.4 104.562

    Bus269 0.4 103.812

    Bus270 0.4 104.012

    Bus271 0.4 104.162

    Bus272 0.4 103.363 Bus273 0.4 103.292

    Bus274 0.4 102.199

    Bus277 0.4 101.948

    Bus278 0.4 102.099 Bus279 0.4 101.062

    Bus280 0.4 101.452

    Bus281 0.4 102.043

    Bus282 0.4 101.845 Bus283 0.4 102.063

    Bus284 0.4 101.381

    Bus286 0.4 101.124

    Bus287 0.4 101.356 Bus288 0.4 101.813

    Bus289 0.4 101.575

    Bus291 0.4 96.934

    Bus295 0.4 100.685 Bus296 0.4 101.112

  • Page 77

    Bus297 0.4 101.052

    Bus298 0.4 101.048

    Bus299 0.4 101.379 Bus300 0.4 101.375

    Bus301 0.4 101.116

    Bus302 0.4 102.049

    Bus303 0.4 101.395 Bus304 0.4 100.949

    Bus305 0.4 101.056

    Bus306 0.4 100.891

    Bus307 0.4 101.685 Bus308 0.4 101.013

    Bus309 0.4 100.399

    Bus310 0.4 100.271

    Bus311 0.4 100.959 Bus312 0.4 101.603

    Bus313 0.4 100.965

    Bus314 0.4 100.7

    Bus315 0.4 101.767

    Bus316 0.4 100.256 Bus317 0.4 100.959

    Bus318 0.4 100.834

    Bus319 0.4 97.712

    Bus320 0.4 97.451 Bus321 0.4 101.347

    Bus322 0.4 97.698

    Bus323 0.4 97.967

    Bus324 0.4 97.814 Bus325 0.4 97.982

    Bus327 0.4 100.961

    Bus328 0.4 103.296

  • Page 78

  • Page 79

    Appendix 11

    Maximum new capacitors and taps after the connection point

    Bus number New capacitor (KVAR) New tap (%)

    182 2.5 183 2.5

  • Page 80

    184 2.5

    185 2.5 188 2.5

    192 2.5 193 2.5

    195 5

    203 5 204 5

    205 5

    206 5

    211 5

    222 60 - 228 5

    242 2.5 291 5

    319 2.5 320 5

    322 2.5

    323 2.5 324 2.5

    325 2.5 65 2.5

    68 2.5

    69 2.5 70 2.5

    73 2.5

  • Page 81

    Appendix 12

    Minimum case original voltages

    Bus number Vrated Operating (%)

    Bus65 0.400 98.454

    Bus68 0.400 99.760

    Bus69 0.400 98.284

    Bus70 0.400 98.666

    Bus73 0.400 98.682

    Bus179 0.400 96.900

    Bus180 0.400 97.504

    Bus181 0.400 98.063

    Bus182 0.400 98.635

    Bus183 0.400 98.589

    Bus184 0.400 98.367

    Bus185 0.400 98.631

    Bus186 0.400 97.630

    Bus187 0.400 97.785

    Bus188 0.400 98.303

    Bus189 0.400 97.916

    Bus190 0.400 97.917

    Bus191 0.400 97.700

    Bus192 0.400 98.626

    Bus193 0.400 98.834

    Bus195 0.400 97.247

    Bus196 0.400 97.174

    Bus197 0.400 97.239

    Bus198 0.400 97.697

    Bus199 0.400 97.512

    Bus200 0.400 97.237

    Bus201 0.400 96.532

    Bus202 0.400 97.366

    Bus203 0.400 98.241

    Bus204 0.400 98.368

    Bus205 0.400 98.333

    Bus206 0.400 98.254

    Bus207 0.400 97.774

    Bus208 0.400 97.989

    Bus209 0.400 97.974

    Bus210 0.400 97.586

    Bus211 0.400 98.207

    Bus212 0.400 97.781

    Bus213 0.400 97.826

    Bus214 0.400 97.635

    Bus215 0.400 98.048

  • Page 82

    Bus216 0.400 98.063

    Bus217 0.400 98.200

    Bus218 0.400 97.457

    Bus219 0.400 97.937

    Bus220 0.400 97.916

    Bus221 0.400 98.053

    Bus222 0.400 97.041

    Bus223 0.400 97.410

    Bus224 0.400 97.413

    Bus225 0.400 97.835

    Bus226 0.400 97.988

    Bus227 0.400 97.555

    Bus228 0.400 98.336

    Bus229 0.400 97.216

    Bus230 0.400 97.367

    Bus231 0.400 97.738

    Bus232 0.400 98.095

    Bus233 0.400 98.055

    Bus234 0.400 98.042

    Bus235 0.400 97.201

    Bus236 0.400 98.139

    Bus237 0.400 97.735

    Bus238 0.400 97.357

    Bus239 0.400 98.058

    Bus240 0.400 97.732

    Bus241 0.400 98.059

    Bus242 0.400 98.257

    Bus243 0.400 96.806

    Bus244 0.400 97.117

    Bus245 0.400 97.643

    Bus246 0.400 97.575

    Bus247 0.400 97.838

    Bus248 0.400 96.891

    Bus249 0.400 97.586

    Bus250 0.400 97.470

    Bus251 0.400 96.832

    Bus252 0.400 97.036

    Bus253 0.400 96.818

    Bus254 0.400 97.285

    Bus255 0.400 97.382

    Bus256 0.400 97.015

    Bus257 0.400 96.950

    Bus258 0.400 96.660

    Bus259 0.400 96.922

    Bus260 0.400 96.107

    Bus261 0.400 96.606

  • Page 83

    Bus262 0.400 97.199

    Bus263 0.400 95.939

    Bus264 0.400 97.145

    Bus265 0.400 97.076

    Bus266 0.400 97.070

    Bus267 0.400 97.083

    Bus268 0.400 97.296

    Bus269 0.400 96.896

    Bus270 0.400 97.085

    Bus271 0.400 97.382

    Bus272 0.400 97.043

    Bus273 0.400 96.974

    Bus274 0.400 97.580

    Bus277 0.400 97.462

    Bus278 0.400 97.533

    Bus279 0.400 96.670

    Bus280 0.400 97.234

    Bus281 0.400 97.515

    Bus282 0.400 97.416

    Bus283 0.400 97.517

    Bus284 0.400 97.203

    Bus286 0.400 97.084

    Bus287 0.400 96.971

    Bus288 0.400 97.414

    Bus289 0.400 97.295

    Bus291 0.400 97.383

    Bus294 33.000 98.713

    Bus295 0.400 96.929

    Bus296 0.400 97.080

    Bus297 0.400 97.051

    Bus298 0.400 97.049

    Bus299 0.400 97.201

    Bus300 0.400 97.427

    Bus301 0.400 97.282

    Bus302 0.400 97.712

    Bus303 0.400 97.409

    Bus304 0.400 97.238

    Bus305 0.400 97.283

    Bus306 0.400 97.180

    Bus307 0.400 97.546

    Bus308 0.400 97.234

    Bus309 0.400 96.954

    Bus310 0.400 96.899

    Bus311 0.400 97.239

    Bus312 0.400 97.519

    Bus313 0.400 96.764

  • Page 84

    Bus314 0.400 97.092

    Bus315 0.400 97.585

    Bus316 0.400 96.890

    Bus317 0.400 97.042

    Bus318 0.400 96.991

    Bus319 0.400 98.190

    Bus320 0.400 98.328

    Bus321 0.400 97.732

    Bus322 0.400 98.297

    Bus323 0.400 98.618

    Bus324 0.400 98.392

    Bus325 0.400 98.625

    Bus327 0.400 96.814

    Bus328 0.400 97.015

  • Page 85

    Appendix 13

    Minimum after changing taps

    Bus number Vrated Operating (%)

    Bus65 0.400 98.445

    Bus68 0.400 99.760

    Bus69 0.400 98.251

    Bus70 0.400 98.626

    Bus73 0.400 101.099

    Bus179 0.400 101.654

    Bus180 0.400 102.194

    Bus181 0.400 102.842

    Bus182 0.400 98.582

    Bus183 0.400 98.534

    Bus184 0.400 98.318

    Bus185 0.400 98.581

    Bus186 0.400 102.434

    Bus187 0.400 102.598

    Bus188 0.400 98.247

    Bus189 0.400 102.690

    Bus190 0.400 102.736

    Bus191 0.400 102.412

    Bus192 0.400 98.582

    Bus193 0.400 98.790

    Bus195 0.400 97.188

    Bus196 0.400 101.830

    Bus197 0.400 102.012

    Bus198 0.400 102.503

    Bus199 0.400 102.304

    Bus200 0.400 102.010

    Bus201 0.400 101.254

    Bus202 0.400 102.148

    Bus203 0.400 98.185

    Bus204 0.400 98.308

    Bus205 0.400 98.273

    Bus206 0.400 98.191

    Bus207 0.400 102.581

    Bus208 0.400 102.775

    Bus209 0.400 102.764

    Bus210 0.400 102.376

    Bus211 0.400 98.136

    Bus212 0.400 102.585

    Bus213 0.400 102.633

    Bus214 0.400 102.429

    Bus215 0.400 102.871

  • Page 86

    Bus216 0.400 102.888

    Bus217 0.400 103.033

    Bus218 0.400 102.237

    Bus219 0.400 102.752

    Bus220 0.400 102.704

    Bus221 0.400 102.875

    Bus222 0.400 101.790

    Bus223 0.400 102.118

    Bus224 0.400 102.122

    Bus225 0.400 102.640

    Bus226 0.400 102.804

    Bus227 0.400 102.341

    Bus228 0.400 98.269

    Bus229 0.400 101.896

    Bus230 0.400 102.140

    Bus231 0.400 102.537

    Bus232 0.400 102.919

    Bus233 0.400 102.876

    Bus234 0.400 102.862

    Bus235 0.400 101.961

    Bus236 0.400 102.966

    Bus237 0.400 102.533

    Bus238 0.400 102.128

    Bus239 0.400 102.879

    Bus240 0.400 102.530

    Bus241 0.400 102.874

    Bus242 0.400 98.191

    Bus243 0.400 101.543

    Bus244 0.400 101.784

    Bus245 0.400 102.412

    Bus246 0.400 102.359

    Bus247 0.400 102.641

    Bus248 0.400 101.555

    Bus249 0.400 102.368

    Bus250 0.400 102.244

    Bus251 0.400 101.560

    Bus252 0.400 101.778

    Bus253 0.400 101.545

    Bus254 0.400 102.043

    Bus255 0.400 102.133

    Bus256 0.400 101.753

    Bus257 0.400 101.683

    Bus258 0.400 101.373

    Bus259 0.400 101.607

    Bus260 0.400 100.778

    Bus261 0.400 101.312

  • Page 87

    Bus262 0.400 101.929

    Bus263 0.400 100.597

    Bus264 0.400 101.889

    Bus265 0.400 101.815

    Bus266 0.400 101.808

    Bus267 0.400 101.822

    Bus268 0.400 102.043

    Bus269 0.400 101.622

    Bus270 0.400 101.824

    Bus271 0.400 102.142

    Bus272 0.400 101.750

    Bus273 0.400 101.705

    Bus274 0.400 102.362

    Bus277 0.400 102.234

    Bus278 0.400 102.309

    Bus279 0.400 101.385

    Bus280 0.400 101.989

    Bus281 0.400 102.282

    Bus282 0.400 102.185

    Bus283 0.400 102.292

    Bus284 0.400 101.954

    Bus286 0.400 101.827

    Bus287 0.400 101.706

    Bus288 0.400 102.168

    Bus289 0.400 102.053

    Bus291 0.400 97.287

    Bus294 33.000 98.661

    Bus295 0.400 101.603

    Bus296 0.400 101.826

    Bus297 0.400 101.795

    Bus298 0.400 101.792

    Bus299 0.400 101.955

    Bus300 0.400 102.166

    Bus301 0.400 102.044

    Bus302 0.400 102.506

    Bus303 0.400 102.182

    Bus304 0.400 101.956

    Bus305 0.400 102.007

    Bus306 0.400 101.933

    Bus307 0.400 102.325

    Bus308 0.400 101.990

    Bus309 0.400 101.690

    Bus310 0.400 101.631

    Bus311 0.400 101.957

    Bus312 0.400 102.281

    Bus313 0.400 101.487

  • Page 88

    Bus314 0.400 101.838

    Bus315 0.400 102.366

    Bus316 0.400 101.622

    Bus317 0.400 101.737

    Bus318 0.400 101.677

    Bus319 0.400 98.120

    Bus320 0.400 98.274

    Bus321 0.400 102.538

    Bus322 0.400 98.233

    Bus323 0.400 98.567

    Bus324 0.400 98.340

    Bus325 0.400 98.574

    Bus327 0.400 101.541

    Bus328 0.400 101.717

  • Page 89

    Appendix14

    Minimum after transformer change and connection point

    Bus Vrated Operating (%) Bus65 0.400 99.003

    Bus68 0.400 99.760

    Bus69 0.400 98.819

    Bus70 0.400 98.920

    Bus73 0.400 101.456

    Bus179 0.400 103.328

    Bus180 0.400 103.158

    Bus181 0.400 103.214

    Bus182 0.400 98.938

    Bus183 0.400 98.890

    Bus184 0.400 98.675

    Bus185 0.400 98.967

    Bus186 0.400 103