Analysis of the magnetic coupling influence between ... · Analysis of the magnetic coupling...

14
Analysis of the magnetic coupling influence between different feeders on unbalanced distribution networks Code: 12.004 Nélio Alves do Amaral Filho, Mariana Simões Noel da Silva, Leandro Ramos de Araujo, Débora Rosana Ribeiro Penido Araujo Electrical Engineering, Federal University of Juiz de Fora, Minas Gerais - Brazil 12/11/2017 1

Transcript of Analysis of the magnetic coupling influence between ... · Analysis of the magnetic coupling...

Analysis of the magnetic coupling influence

between different feeders on unbalanced

distribution networks

Code: 12.004

Nélio Alves do Amaral Filho, Mariana Simões Noel da Silva,

Leandro Ramos de Araujo, Débora Rosana Ribeiro Penido

Araujo

Electrical Engineering, Federal University of Juiz de Fora,

Minas Gerais - Brazil

12/11/2017 1

• Electrical distribution systems (DS) have attracted the attention of a

growing number of researchers

✓ Electric power quality

▪ Unbalances

✓ Increased demand for electricity

▪ Operation under harsher conditions

✓ Greater need to represent all DS-related characteristics and effects

✓ An efficient representation of the system components

✓ Tools able to evaluate and analyze the DS more accurately

Introduction

12/11/2017 2

• Several possible analyses can be performed in distribution systems

studies

✓ Electromagnetic coupling (mutual coupling) that occurs between

two or more feeders when physically arranged in parallel

✓ Practice done by the utilities

✓ Feeders can be found traveling along▪ the same path and sharing a common pole;

▪ the same power corridor on separate poles.

✓ The existing mutual coupling can significantly affect the system

✓ This coupling is usually neglected in most studies

Introduction

12/11/2017 3

• Analysis of the electromagnetic coupling influence between different

feeders

• Backward/Forward Sweep (BFS) Method

• Different constructive characteristics

✓ Length of the distribution feeders sections

✓ Separation distance between the conductors

✓ Phase sequences and geometry of the conductors on the poles

Objectives

12/11/2017 4

Model of the distribution feeders in parallel

12/11/2017 5

  (1)1

0,07537 ln 6,74580ii c d

i

Z r r jRMG

        (2)1

0,07537 ln 6,74580ij d

ij

Z r jD

                       '      '      '

                       '      '      '

                       '       '      '

'     '     '     ' '    ' '    ' '

aa ab ac aa ab ac

ba bb bc ba bb bc

ca cb cc ca cb cc

phase

a a a b a c a a a b a c

Z Z Z Z Z Z

Z Z Z Z Z Z

Z Z Z Z Z ZZ

Z Z Z Z Z Z

'     '     '     ' '    ' '    ' '

'     '     '     ' '    ' '    ' '

   (3)

b a b b b c b a b b b c

c a c b c c c a c b c c

Z Z Z Z Z Z

Z Z Z Z Z Z

, 1 1    , 1 2

, 2 1 , 2 2

  (4)  

abc F F abc F F

phase

abc F F abc F F

Z ZZ

Z Z

A B C

B C A

n

Mutual: same feeder

Mu

tual

: di

ffe

ren

t fe

ede

r

FEEDER 1

FEEDER 20,76m

1,37m

0,6m

0,6m

Backward Forward Sweep Algorithm

12/11/2017 6

1

VS=8kV

3

4

6

5

9

7

12

15

11 14

8

F1

F2

2

10

13

16

2 4

1

3 7 5

6

9

813

12

10

11 15

14

16

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

S1

S2

F1 F2

, 1 , 1 1    , 1 2 , 1

, 2 , 2 1 , 2 2 , 2

        (5)  

abc F abc F F abc F F abc F

abc F abc F F abc F F abc F

V Z Z I

V Z Z I

Layer separation

Calculation of

Nodal Currents

Backward

Sweep

E1

Variables

initialization

Forward Sweep

Stop when a coupling

section is found

Mutual coupling:

Forward Sweep

using eq. (5)

Convergence Test

|ΔV| < ε

Y

N

Have all voltages

been updated?

Y

N

E2

E3

E4

E6.1

E6.2

E6.3E7

Identification of

sections that share

the same pole

E5

End

.

12/11/2017 7

Simulated systems

650

651

VS=4,16 kV

632

671

675

6320

67506710

800

VS=24,9 kV

802 806

808

810

812 814 850

890

IEEE 13M IEEE 34M

• To investigate the impact of the mutual coupling, 2 cases were

analyzed✓ Case 1: ignoring the effect of the mutual impedances between different

feeders (without the mutual coupling representation)

✓ Case 2: considering the effect of these mutual impedances (mutual

coupling)

• For comparison and results presentation✓ It was calculated the difference between the absolute values obtained from

each case, for a same variable (voltage, current or electrical losses)

12/11/2017 8

Simulated systems

2 1

 1

  (6)k k

k

C C

kC

V VV

V

Feeders length

Experimental results

12/11/2017 9

IEEE 13M

0

2

4

6

8

10

12

14

16

18

20

0,1 0,5 1 1,5 2

Phase A

Phase B

Phase C

Factor k

Max

imum

vol

tage

dif

fere

nce

(%

)

0

2

4

6

8

10

12

14

16

18

20

0,1 0,5 1 1,5 2 2,5 3 3,5

Factor k

Max

imum

vol

tage

dif

fere

nce

(%

) Phase A

Phase B

Phase C

IEEE 34M

Distance between conductors

Experimental results

12/11/2017 10

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,15 0,3 0,5 0,75 1 1,25 1,5 1,75 2

Phase A

Phase B

Phase C

Distance between the center conductor and the left conductor (m)

Vo

ltag

e d

iffer

ence

in b

us 6

75 (

pu)

IEEE 13MIEEE 34M

0

0,5

1

1,5

2

2,5

0,2 0,3 0,6 1 2 4 10 50

Vertical distance between feeders on pole (m)

Vo

ltag

e d

iffer

ence

in b

us 8

90 (

%) Phase A

Phase B

Phase C

B A C

A B C

n

FEEDER 1

FEEDER 2

Dx

Dy

Different phase sequences or conductor geometry on the pole

Experimental results

12/11/2017 110 1 2 3 4 5 6 7 8 9

Voltage - Phase A

Voltage - Phase B

Voltage - Phase C

Current - Phase A

Current - Phase B

Current - Phase C

Losses

Eq. Triangle

ABC - C'B'A'

ABC - A'B'C'

BAC - C'A'B'

BAC - B'A'C'

Maximum difference (%)

0 0,25 0,5 0,75 1 1,25 1,5 1,75 2

Voltage - Phase A

Voltage - Phase B

Voltage - Phase C

Current - Phase A

Current - Phase B

Current - Phase C

LossesEq. Triangle

ABC - C'B'A'

ABC - A'B'C'

BAC - C'A'B'

BAC - B'A'C'

Maximum difference (%)

IEEE 34MIEEE 13M

A B C

B C A

n

FEEDER 1

FEEDER 2

C B C

A

n

FEEDER 1 FEEDER 2A

B

0,6m

2,13m

• The effect of the mutual coupling may become significant in certain

conditions

✓ System configuration;

✓ Long length of feeders sections that are in parallel;

✓ Small distances between the phase conductors, both vertically and

horizontally;

✓ Specific phase sequences.

• The mutual coupling influence can be considerable not only in the

voltage, but also in both current and electrical losses

• The mutual coupling representation in the power flow analysis

algorithms for distribution systems should not be neglected

Conclusions

12/11/2017 12

The authors thank the Pos-Graduate Program in Electrical Engineering

(PPEE) of the Federal University of Juiz de Fora, CNPq, FAPEMIG, and

CAPES for the incentive and support.

Acknowledgments

12/11/2017 13

[1] W. H. Kersting, “The modeling and analysis of parallel distribution lines,” in Rural Electric Power Conference,

2005, 2005, p. A3/1-A3/7.

[2] L. R. de Araujo, “Representation of Magnetic Coupling in Distribution System Feeders Using BW/FW,” IEEE

Trans. Power Syst., vol. 32, no. 2, pp. 1580–1581, Mar. 2017.

[3] R. Yan and T. K. Saha, “Analysis of unbalanced distribution lines with mutual coupling across different voltage

levels and the corresponding impact on network voltage,” Transm. Distrib. IET Gener., vol. 9, no. 13, pp. 1727–1737, 2015.

[4] L. M. Popovic, “A practical method for evaluation of ground fault current distribution on double circuit parallel

lines,” IEEE Trans. Power Deliv., vol. 15, no. 1, pp. 108–113, Jan. 2000.

[5] S. A. Wheeler, “Influence of mutual coupling between parallel circuits on the setting of distance protection,”

Proc. Inst. Electr. Eng., vol. 117, no. 2, pp. 439–445, Feb. 1970.

[6] D. A. Tziouvaras, H. J. Altuve, and F. Calero, “Protecting mutually coupled transmission lines: Challenges and

solutions,” in 2014 67th Annual Conference for Protective Relay Engineers, 2014, pp. 30–49.

[7] C. Pritchard, T. Hensler, J. Coronel, and D. Gachuz, “Test and analysis of protection behavior on parallel lines

with mutual coupling,” in 2016 IEEE PES Transmission Distribution Conference and Exposition-Latin America (PES T D-LA),

2016, pp. 1–5.

[8] W. H. Kersting, Distribution System Modeling and Analysis, Second Edition, 2 edition. CRC Press, 2006.

[9] C. S. Cheng and D. Shirmohammadi, “A three-phase power flow method for real-time distribution system

analysis,” IEEE Trans. Power Syst., vol. 10, no. 2, pp. 671–679, May 1995.

[10] M. H. Haque, “A general load flow method for distribution systems,” Electr. Power Syst. Res., vol. 54, no. 1, pp.

47–54, Apr. 2000.

[11] U. Eminoglu and M. H. Hocaoglu, “Distribution Systems Forward/Backward Sweep-based Power Flow

Algorithms: A Review and Comparison Study,” Electr. Power Compon. Syst., vol. 37, no. 1, pp. 91–110, Dec. 2008.

[12] “Distribution Test Feeders - Distribution Test Feeder Working Group - IEEE PES Distribution System Analysis

Subcommittee.” [Online]. Available: https://ewh.ieee.org/soc/pes/dsacom/testfeeders/. [Accessed: 23-May-2017].

References

12/11/2017 14