Analysis of Power Delivery network of Multiple Stacked ...€¦ · Analysis of Power Delivery...

1
Reduced area Increased performance signal transmission pathways Heterogeneous die assembly: functionalities (memory, processor, power management,…) technologies (ideally the best techno for each module) Analysis of Power Delivery network of Multiple Stacked ASICs using TSV and Micro-bumps Lise Doyen 1 , Jasmina Antonijevic 1 , Damien Riquet 1 ,Nicolas Vialle 2 , Aveek Sarkar 2 1 ST Microelectronics, Crolles, France. 2 Apache Design Solutions, San Jose CA. Package Ball Bump backside TSV Pillar bump top Stack via TSV M1 land Pillar bump bottom RDL backside TOP DIE flipped BOTTOM DIE upward Schematic of 3D TSV Stack with face-to-face die Introduction: 3D Integration Missing full-design database of one or more die Support dies of different technologies Early analysis to optimize TSV density and placement 3D Power Integrity Solution 3D Power Integrity Results Two Simulation approaches Concurrent Simulation Flow: Full design database available for both dies Model Based Simulation Flow: a Chip Power Model (CPM) replaces the design database of the missing die # Import data import bot_die import top_die setup design # Calculate power # PG grid extraction # Static IR analysis Design Data Libraries Package User Conf File Techfile Design Data Libraries User Conf File Techfile Bottom die Top die Reports Voltage drop and other maps Challenges: TSV placement optimization - Package TOP DIE flipped 4 1 2 3 5 - Package TOP DIE flipped 1 2 3 5 4 3D integration new challenges in Power Delivery Network (PDN): Thermal Integrity Signal Integrity Bottom die switching and package distance noise impact on top die Power Integrity need 3D Design Solutions Why ? What ? How ? Power Integrity flow TSV Optimization flow Static and Dynamic results Early: User defined region & power consumption TSV location Floor planning: User define power consumption TSV location Signoff: Full Layout Static IR-Drop analysis to optimize current distribution of the top die Flow overview 2 die stack Different technology support Voltage Source Location files: bot_die.ploc: define bottom die location and metal layer where the package is plugged (for both top and bottom die power/ground nets) Top_die.tsv: define top die position and connexion to the bottom die Top_die.tsv bot_die.ploc Schamatic and Result comparison of concurrent and model based simulation of a two-die stacked design Dynamic drop results from bottom die and top die PG mesh (VDD and GND) Dynamic drop results from bottom die and top die PG mesh (VDD and GND) Bottom die IR map with top die included Top Die IR map with bottom die included Schematic of face-to-face connexion from package to top die 3D Design description: logic/logic face-to-face stack 32 nm top die 65 nm bottom die package Voltage source at the die periphery Bump/TSV matrix added at the die center Optimization of Bump/TSV matrix Bottom die upward (vdd_io / gnd_io) Top die flipped (vdd / gnd) 32 nm 32 nm 32 nm 32 nm 32 nm 32 nm 32 nm 32 nm 65 nm 65 nm 65 nm 65 nm 65 nm 65 nm 65 nm 65 nm Package bump TSV Stacked vias ball Back bump Conclusion Dynamic and Static IR Drop analysis Two stacked dies + package Heterogeneous technology system Two simulation approaches TSV placement optimization Extend the number of stacked die analysis Heterogeneous functionality : memory/ASIC New topics to investigate: Signal Integrity, Reliability, Thermo-Mechanical effects,… ASIC 32 nm ASIC 65 nm Package MEMORY ASIC Package ASIC ASIC Package MEMORY TODAY … ... TOMORROW Scanning Electron Microscope (SEM) image of TSV and pillar bumps Concurrent Approach Package Die 1 Die 2 Model Based Approach Package Die 1 Die 2 Bump_MB MB TSV M1 Stacked via AP Bump_AP (bot) From package Bump_AP (top) AP Copper pillar M1 Worst DvD (Bottom Die) Worst DvD (top die) GND nets VDD nets VDD pad locations GND pad locations

Transcript of Analysis of Power Delivery network of Multiple Stacked ...€¦ · Analysis of Power Delivery...

� Reduced area� Increased performance� � signal transmission pathways� Heterogeneous die assembly:

� functionalities (memory, processor, power management,…)

� technologies (ideally the best techno for each module)

Analysis of Power Delivery network of Multiple Stac ked ASICs using TSV and Micro-bumps

Lise Doyen1, Jasmina Antonijevic1, Damien Riquet1,Nicolas Vialle2, Aveek Sarkar2

1ST Microelectronics, Crolles, France. 2Apache Design Solutions, San Jose CA.

Package

Ball Bump backside

TSV

Pillar bump top Stack via

TSV M1 land

Pillar bump bottom

RDL backside

TOP DIE flipped

BOTTOM DIEupward

Schematic of 3D TSV Stack with face-to-face die

Introduction: 3D Integration

• Missing full-design database of one or more die

• Support dies of different technologies

• Early analysis to optimize TSV density and placement

3D Power Integrity Solution 3D Power Integrity Results

Two Simulation approachesConcurrent Simulation Flow: Full design database available for both dies

Model Based Simulation Flow: a Chip Power Model (CPM) replaces the design database of the missing die

# Import data

import bot_dieimport top_diesetup design

# Calculate power

# PG grid extraction

# Static IR analysis

Design Data

Libraries

Package

User Conf File

Techfile

Design Data

Libraries

User Conf File

Techfile

Bottom die Top die

Reports Voltage drop and other maps

Challenges:

TSV placement optimization -

Package

TOP DIE flipped

4

1 2

3

5

-

Package

TOP DIE flipped

1 2

3

54

3D integration � new challenges in PowerDelivery Network (PDN):� Thermal Integrity� Signal Integrity

� Bottom die switching and package distance � noise impact on top die

� Power Integrity� …� need 3D Design Solutions

Why ?

What ? How ?

Power Integrity flow

TSV Optimization flow

Static and Dynamic results

Early:User defined region & power consumption

TSV location

Floor planning:User define power consumption

TSV location

Signoff:Full Layout

Static IR-Drop analysis to optimize current distribution of the top dieFlow overview� 2 die stack

� Different technology support

� Voltage Source Location files:

� bot_die.ploc: define bottom die location and metal layer where the package is plugged (for both top and bottom die power/ground nets)

� Top_die.tsv: define top die position and connexion to the bottom die

Top_die.tsv

bot_die.ploc

Schamatic and Result comparison of concurrent and model based simulation of a two-die stacked design

Dynamic drop results from bottom die and top die PG mesh (VDD and GND)

Dynamic drop results from bottom die and top die PG mesh (VDD and GND)

Bottom die IR map with top die included

Top Die IR map with bottom die included

Schematic of face-to-face connexion from package to top die

3D Design description:� logic/logic face-to-face stack

� 32 nm top die

� 65 nm bottom die

� package

Voltage source at the die periphery

Bump/TSV matrix added at the die center

Optimization of Bump/TSV matrix

Bottom die upward (vdd_io / gnd_io )

Top die flipped (vdd / gnd )32 nm32 nm32 nm32 nm32 nm32 nm32 nm32 nm

65 nm65 nm65 nm65 nm65 nm65 nm65 nm65 nm

Package

bump

TSV

Stacked vias

ball

Back bump

Conclusion� Dynamic and Static IR Drop analysis

� Two stacked dies + package

� Heterogeneous technology system

� Two simulation approaches

� TSV placement optimization

� Extend the number of stacked die analysis

� Heterogeneous functionality : memory/ASIC

� New topics to investigate: Signal Integrity, Reliability, Thermo-Mechanical effects,…

ASIC 32 nmASIC 65 nm

Package

MEMORYASIC

PackageASICASIC

Package

MEMORY

TODAY … ... TOMORROW

Scanning Electron Microscope (SEM) image of

TSV and pillar bumps

Con

curr

ent A

ppro

ach

Package

Die 1

Die 2

Mod

el B

ased

App

roac

h

Package

Die 1

Die 2

Bump_MB

MBTSV

M1Stacked via

APBump_AP (bot)

From package

Bump_AP (top)

AP

Copper pillar

M1

Worst DvD (Bottom Die) Worst DvD (top die)

GND netsVDD nets

VDD pad locations

GND pad locations