Analysis of a Double-Strand DNA Break in living S. cerevisiae Cells Leana M. Topper Kerry S. Bloom...

11
alysis of a Double-Strand DNA Brea in living S. cerevisiae Cells Leana M. Topper Kerry S. Bloom t of Biology, University of North Carolina at Chape
  • date post

    18-Dec-2015
  • Category

    Documents

  • view

    220
  • download

    4

Transcript of Analysis of a Double-Strand DNA Break in living S. cerevisiae Cells Leana M. Topper Kerry S. Bloom...

Page 1: Analysis of a Double-Strand DNA Break in living S. cerevisiae Cells Leana M. Topper Kerry S. Bloom Department of Biology, University of North Carolina.

Analysis of a Double-Strand DNA Break in living S. cerevisiae Cells

Leana M. Topper Kerry S. Bloom

Department of Biology, University of North Carolina at Chapel Hill;

Page 2: Analysis of a Double-Strand DNA Break in living S. cerevisiae Cells Leana M. Topper Kerry S. Bloom Department of Biology, University of North Carolina.

Chromosome III

CEN MAT

~85 kb

LacO array

~500 bp

Page 3: Analysis of a Double-Strand DNA Break in living S. cerevisiae Cells Leana M. Topper Kerry S. Bloom Department of Biology, University of North Carolina.

8 kb KpnI fragment

HO cut fragment

KpnI KpnILacO MATprobe

2.5 kb

No pGalHOT W/ pGalHOT

0 0.5 1 2 3 4 0 0.5 1 2 3 4 h post gal

Page 4: Analysis of a Double-Strand DNA Break in living S. cerevisiae Cells Leana M. Topper Kerry S. Bloom Department of Biology, University of North Carolina.

Live cell after HO induction

2:00 6:00 7:00

15:008:00 10:00 13:00

Page 5: Analysis of a Double-Strand DNA Break in living S. cerevisiae Cells Leana M. Topper Kerry S. Bloom Department of Biology, University of North Carolina.

Movement of Spindle Pole Bodies and lacO in live cells following HO expression

Average film time: 13 min

No bud: 13

Small-budded cells: 8

Large-budded cells: 29Average spindle length = 1.69 ±0.32

mRange = 1.05-2.44 m

Page 6: Analysis of a Double-Strand DNA Break in living S. cerevisiae Cells Leana M. Topper Kerry S. Bloom Department of Biology, University of North Carolina.

Time post gal addition No bud Small bud Large bud

0 min 8 9 12

30 min 3 3 10

1 h 2 8 9

2 h 3 9 8

3 h 8 5 6

4 h 10 6 14

Total 26 31 47

Population analysis of lacO and SPBs after induction of HO

Page 7: Analysis of a Double-Strand DNA Break in living S. cerevisiae Cells Leana M. Topper Kerry S. Bloom Department of Biology, University of North Carolina.

Deletion of Rad52 does not affect LacO movement

0:00 2:00 6:00

9:00 15:00 20:00 21:00

Page 8: Analysis of a Double-Strand DNA Break in living S. cerevisiae Cells Leana M. Topper Kerry S. Bloom Department of Biology, University of North Carolina.

Formation of Rad52 foci following DNA damage

Page 9: Analysis of a Double-Strand DNA Break in living S. cerevisiae Cells Leana M. Topper Kerry S. Bloom Department of Biology, University of North Carolina.

Time post gal

No bud

fociSmall bud

fociLarge bud

fociDivided nucleus

0 h 36 0 133

(23%)12

1

(8.3%)9

1-2 h 84 0 23 0 454

(8.8%)21

2-3 h 75 0 222

(9.0%)46

9

(19.6%)13

3-4 h 1042

(1.9%)18 4 42

8

(19.0%)21

Formation of Rad52-GFP foci after induction of HO

Page 10: Analysis of a Double-Strand DNA Break in living S. cerevisiae Cells Leana M. Topper Kerry S. Bloom Department of Biology, University of North Carolina.

Rad52-GFP foci and Spindle Pole Bodies Move Independently

1:00 5:00

8:00 12:00 17:00 18:00

7:00

Page 11: Analysis of a Double-Strand DNA Break in living S. cerevisiae Cells Leana M. Topper Kerry S. Bloom Department of Biology, University of North Carolina.

Rad52-CFP and LacO spots do not colocalize

3:00 8:006:00

9:00 11:00 14:00 16:00