An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte...

59
An introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures, Université Claude Bernard Lyon 1

Transcript of An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte...

Page 1: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

An introduction toQuantum Monte Carlo

Jose Guilherme VilhenaLaboratoire de Physique de la Matière Condensée et Nanostructures,

Université Claude Bernard Lyon 1

Page 2: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

1) Quantum many body problem;

2) Metropolis Algorithm;

3) Statistical foundations of Monte Carlo methods;

4) Quantum Monte Carlo methods ; 4.1) Overview; 4.2) Variational Quantum Monte Carlo; 4.3) Diffusion Quantum Monte Carlo; 4.4) Typical QMC calculation;

Outline

Page 3: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

1) Quantum many body problem;

2) Metropolis Algorithm;

3) Statistical foundations of Monte Carlo methods;

4) Quantum Monte Carlo methods ; 4.1) Overview; 4.2) Variational Quantum Monte Carlo; 4.3) Diffusion Quantum Monte Carlo; 4.4) Typical QMC calculation;

Outline

Page 4: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

Consider of N electrons. Since me<<M

N , to a good

approximation, the electronic dynamics is governed by :

which is the Born Oppenheimer Hamiltonian.

We want to find the eigenvalues and eigenvectos of this hamiltonian, i.e. :

QMC allow us to solve numerically this, thus providing E0

and Ψ0 .

1 - Quantum many body problem

H=−12∑i

∇ i2−∑

i∑

Z∣r i−d∣

12∑i∑j≠i

Z∣ri−r j∣

Hr1,r 2,. .. ,rN =Er 1,r2,. .. , rN

Page 5: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

Consider of N electrons. Since me<<M

N , to a good

approximation, the elotonic dynamics is governed by :

which is the Born Oppenheimer Hamiltonian.

We want to find the eigenvalues and eigenvectos of this hamiltonian, i.e. :

QMC allow us to solve numerically this, thus providing E0

and Ψ0 .

1 - Quantum many body problem

H=−12∑i

∇ i2−∑

i∑

Z∣r i−d∣

12∑i∑j≠i

Z∣ri−r j∣

Hr1,r 2,. .. ,rN =Er 1,r2,. .. , rN

Page 6: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

Varionational principleFor any normalized wfn Ψ:

Zero Varience Property The variance of the “local energy” must vanish for Ψ

T=Ψ

0,

i.e.

1 - Quantum many body problem

⟨T R∣ H∣T R⟩E0

E L

2=∫

∣T∣2

∫ dR∣T∣2EL−⟨EL⟩

2=0 ;where EL=

H T R

T R

Example :

Harmonic Oscilator

EL x =HT x

T xthen ...∂ xEL x =0 ;if T=0

≠0 ; if T≠ 0

σEL

(x)

Page 7: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

Varionational principleFor any normalized wfn Ψ:

Zero Varience Property The variance of the “local energy” must vanish for Ψ

T=Ψ

0,

i.e.

1 - Quantum many body problem

⟨T R∣ H∣T R⟩E0

E L

2=∫

∣T∣2

∫ dR∣T∣2EL−⟨EL⟩

2=0 ;where EL=

H T R

T R

Example :

Harmonic Oscilator

EL x =HT x

T xthen ...∂ xEL x =0 ;if T=0

≠0 ; if T≠ 0

σEL

(x)

Page 8: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

Varionational principleFor any normalized wfn Ψ:

Zero Varience Property The variance of the “local energy” must vanish for Ψ

T=Ψ

0,

i.e.

1 - Quantum many body problem

⟨T R∣ H∣T R⟩E0

E L

2=∫

∣T∣2

∫ dR∣T∣2EL−⟨EL⟩

2=0 ;where EL=

H T R

T R

Example :

Harmonic Oscilator

EL x =HT x

T xthen ...∂ xEL x =0 ;if T=0

≠0 ; if T≠ 0

σEL

(x)

Page 9: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

1) Quantum many body problem;

2) Metropolis Algorithm;

3) Statistical foundations of Monte Carlo methods;

4) Quantum Monte Carlo methods ; 4.1) Overview; 4.2) Variational Quantum Monte Carlo; 4.3) Diffusion Quantum Monte Carlo; 4.4) Typical QMC calculation

Outline

Page 10: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

Markov Chain stocastic process (no memory).

Metropolis-Hastings algorith (Markov chain) randomly samples a “problematic” probability distribuition function;

Some definitions ...

> P(R): normalized probability distribuition function> R=(r

1,..., r

N) : configuration or walker (can be vector with

the positions of all electrons)> T(R'←R): Proposal density (can be 1, a gaussian, ...)> q=rand(0,1): random number in [0,1]

2 - Metropolis Algorithm

Page 11: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

We seek a set {R1, R

2, ..., R

M} of sample points of P(R).

How can we get them ?!? Metropolis Algorithm:

1) Start in a point Rt ;2) Propose a point R', with a probability of T(R'←R) ;3) Calculate the “acceptance rate” : 4) if A > 1 then : Rt+1=R' else if A > q then : Rt+1=R' else : Rt+1=Rt

5) Repeat all from setp 2;6) stop at k>M , and take away the first k-M points.

The sampled points match P(R). The mixing is controled by T(R'←R).

2 - Metropolis Algorithm

A R 'R=T R 'RPRT RR ' PR '

Page 12: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

We seek a set {R1, R

2, ..., R

M} of sample points of P(R).

How can we get them ?!? Metropolis Algorithm:

1) Start in a point Rt ;2) Propose a point R', with a probability of T(R'←R) ;3) Calculate the “acceptance rate” : 4) if A > 1 then : Rt+1=R' else if A > q then : Rt+1=R' else : Rt+1=Rt

5) Repeat all from setp 2;6) stop at k>M , and take away the first k-M points.

The sampled points match P(R). The mixing is controled by T(R'←R).

2 - Metropolis Algorithm

A R 'R=T R 'RPRT RR ' PR '

Page 13: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

We seek a set {R1, R

2, ..., R

M} of sample points of P(R).

How can we get them ?!? Metropolis Algorithm:

1) Start in a point Rt ;2) Propose a point R', with a probability of T(R'←R) ;3) Calculate the “acceptance rate” : 4) if A > 1 then : Rt+1=R' else if A > q then : Rt+1=R' else : Rt+1=Rt

5) Repeat all from setp 2;6) stop at k>M , and take away the first k-M points.

The sampled points match P(R). The mixing is controled by T(R'←R).

2 - Metropolis Algorithm

A R 'R=T R 'RPRT RR ' PR '

Page 14: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

We seek a set {R1, R

2, ..., R

M} of sample points of P(R).

How can we get them ?!? Metropolis Algorithm:

1) Start in a point Rt ;2) Propose a point R', with a probability of T(R'←R) ;3) Calculate the “acceptance rate” : 4) if A > 1 then : Rt+1=R' else if A > q then : Rt+1=R' else : Rt+1=Rt

5) Repeat all from setp 2;6) stop at k>M , and take away the first k-M points.

The sampled points match P(R). The mixing is controled by T(R'←R).

2 - Metropolis Algorithm

A R 'R=T R 'RPRT RR ' PR '

Page 15: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

We seek a set {R1, R

2, ..., R

M} of sample points of P(R).

How can we get them ?!? Metropolis Algorithm:

1) Start in a point Rt ;2) Propose a point R', with a probability of T(R'←R) ;3) Calculate the “acceptance rate” : 4) if A > 1 then : Rt+1=R' else if A > q then : Rt+1=R' else : Rt+1=Rt

5) Repeat all from setp 2;6) stop at k>M , and take away the first k-M points.

The sampled points match P(R). The mixing is controled by T(R'←R).

2 - Metropolis Algorithm

A R 'R=T R 'RPRT RR ' PR '

Page 16: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

We seek a set {R1, R

2, ..., R

M} of sample points of P(R).

How can we get them ?!? Metropolis Algorithm:

1) Start in a point Rt ;2) Propose a point R', with a probability of T(R'←R) ;3) Calculate the “acceptance rate” : 4) if A > 1 then : Rt+1=R' else if A > q then : Rt+1=R' else : Rt+1=Rt

5) Repeat all from setp 2;6) stop at k>M , and take away the first k-M points.

The sampled points match P(R). The mixing is controled by T(R'←R).

2 - Metropolis Algorithm

A R 'R=T R 'RPRT RR ' PR '

Page 17: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

We seek a set {R1, R

2, ..., R

M} of sample points of P(R).

How can we get them ?!? Metropolis Algorithm:

1) Start in a point Rt ;2) Propose a point R', with a probability of T(R'←R) ;3) Calculate the “acceptance rate” : 4) if A > 1 then : Rt+1=R' else if A > q then : Rt+1=R' else : Rt+1=Rt

5) Repeat all from setp 2;6) stop at k>M , and take away the first k-M points.

The sampled points match P(R). The mixing is controled by T(R'←R).

2 - Metropolis Algorithm

A R 'R=T R 'RPRT RR ' PR '

Page 18: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

1) Quantum many body problem;

2) Metropolis Algorithm;

3) Statistical foundations of Monte Carlo methods;

4) Quantum Monte Carlo methods ; 4.1) Overview; 4.2) Variational Quantum Monte Carlo; 4.3) Diffusion Quantum Monte Carlo; 4.4) Typical QMC calculation

Outline

Page 19: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

Monte Carlo methods: solve problems using random numbers.

Evaluate integrals:- expectation value of a random variable is just the integral over its probability distribution - generate a bunch of random numbers and average to get the integral;

Simulate random processes with random walkers.

Number of dimensions doesn’t matter.- Simpsons rule (error ~ O (M-4/d))- Monte Carlo method (error ~ O (M-1/2))

3 – Statistical foundations of MC methods

Page 20: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

Monte Carlo methods: solve problems using random numbers.

Evaluate integrals:- expectation value of a random variable is just the integral over its probability distribution - generate a bunch of random numbers and average to get the integral;

Simulate random processes with random walkers.

Number of dimensions doesn’t matter.- Simpsons rule (error ~ O (M-4/d))- Monte Carlo method (error ~ O (M-1/2))

3 – Statistical foundations of MC methods

Page 21: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

Monte Carlo methods: solve problems using random numbers.

Evaluate integrals:- expectation value of a random variable is just the integral over its probability distribution - generate a bunch of random numbers and average to get the integral;

Simulate random processes with random walkers.

Number of dimensions doesn’t matter.- Simpsons rule (error ~ O (M-4/d))- Monte Carlo method (error ~ O (M-1/2))

3 – Statistical foundations of MC methods

Page 22: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

Monte Carlo methods: solve problems using random numbers.

Evaluate integrals:- expectation value of a random variable is just the integral over its probability distribution - generate a bunch of random numbers and average to get the integral;

Simulate random processes with random walkers.

Number of dimensions doesn’t matter.- Simpsons rule (error ~ O (M-4/d))- Monte Carlo method (error ~ O (M-1/2))

3 – Statistical foundations of MC methods

Page 23: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

Condider a well behaved f(R) such that:

where P(R) is any normed probability density function.

Central limit theorem:

For any p.d.f. , and a large enough ramdom sample {R

1,R

2,...R

M} of it :

i.e., F(R) is normally distributed with F=μf and σ

F=σ

fM-1/2

3 – Statistical foundations of MC methods

F R=1M∑k=0

M

f Rk ≈f ; limM∞

F R=∫ d R f RP R

F2M =⟨F R ;M −f

2⟩= f

2

M

f=∫d R f R PR ; f=∫ d R [ f R−f ]2PR

Page 24: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

Condider a well behaved f(R) such that:

where P(R) is any normed probability density function.

Central limit theorem:

For any p.d.f. , and a large enough ramdom sample {R

1,R

2,...R

M} of it :

i.e., F(R) is normally distributed with F=μf and σ

F=σ

fM-1/2

3 – Statistical foundations of MC methods

F R=1M∑k=0

M

f Rk ≈f ; limM∞

F R=∫ d R f RP R

F2M =⟨F R ;M −f

2⟩= f

2

M

f=∫d R f R PR ; f=∫ d R [ f R−f ]2PR

Page 25: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

Consider the integral:

P(R) is a normed p.d.f. and f(R)=g(R)/P(R)

i) Metropolis algorithm samples P(R) to get {R1,R

2,...R

M} ;

ii) Monte Carlo estimative of I is

with a statistical error of σIMC

=σfM-1/2

iii) We can estimate σIMC

using MC again, i.e. :

3 – Statistical foundations of MC methods

I=∫ g Rd R=∫P R f RdR

IMC=1M∑k=1

M

f Rk ≈I

f=1M∑i=1

M

[ f Ri−1M∑j=1

M

f R j]2

Page 26: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

Consider the integral:

P(R) is any normed p.d.f. and f(R)=g(R)/P(R)

i) Metropolis algorithm samples P(R) to get {R1,R

2,...R

M} ;

ii) Monte Carlo estimative of I is

with a statistical error of σIMC

=σfM-1/2

iii) The σf can be estimated using MC again, i.e. :

3 – Statistical foundations of MC methods

I=∫ g Rd R=∫P R f RdR

IMC=1M∑k=1

M

f R k ≈I

f=1M∑i=1

M

[ f Ri−1M∑j=1

M

f R j]2

Page 27: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

Consider the integral:

P(R) is any normed p.d.f. and f(R)=g(R)/P(R)

i) Metropolis algorithm samples P(R) to get {R1,R

2,...R

M} ;

ii) Monte Carlo estimative of I is

with a statistical error of σIMC

=σfM-1/2

iii) The σf can be estimated using MC again, i.e. :

3 – Statistical foundations of MC methods

I=∫ g Rd R=∫P R f RdR

IMC=1M∑k=1

M

f R k ≈I

f=1M∑i=1

M

[ f Ri−1M∑j=1

M

f R j]2

Page 28: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

Consider the integral:

P(R) is any normed p.d.f. and f(R)=g(R)/P(R)

i) Metropolis algorithm samples P(R) to get {R1,R

2,...R

M} ;

ii) Monte Carlo estimative of I is

with a statistical error of σIMC

=σfM-1/2

iii) The σf can be estimated using MC again, i.e. :

3 – Statistical foundations of MC methods

I=∫ g Rd R=∫P R f RdR

IMC=1M∑k=1

M

f R k ≈I

f=1M∑i=1

M

[ f Ri−1M∑j=1

M

f R j]2

Page 29: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

1) Quantum many body problem;

2) Metropolis Algorithm;

3) Statistical foundations of Monte Carlo methods;

4) Quantum Monte Carlo methods ; 4.1) Overview; 4.2) Variational Quantum Monte Carlo; 4.3) Diffusion Quantum Monte Carlo; 4.4) Typical QMC calculation

Outline

Page 30: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

Quantum Monte Carlo simulate the quantum MB problem;(Variational MC; Difusion MC; Path integral MC; Auxiliary field MC; Reptation MC ; Gaussian quantum MC; etc ...)

MC handles directly the many dimention electronic wave function ( R=[r

1,r

2,…,r

N] )

We’ll cover two main flavors: Variational Monte Carlo (integration over (3N)D space); Diffusion Monte Carlo (projector approach)

4 – Quantum Monte Carlo methods 4.1 - Overview

Page 31: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

On 55 molecules, mean absolute deviation of atomization energy is 2.9 kcal/mol (MPPT and CI ~ 2kcal/mol ;O(N4-N6) )

Same accuraccy and better scaling than post Hartree-Fock methods (~ N3). (Non Fixed node DMC scales as eN)

Successfully applied to organic molecules, transition metal oxides, solid state silicon, systems up to ~1000 electrons

Can calculate accurate atomization energies, phase energy differences, excitation energies, one particle densities, correlation functions, etc..

No free lunch!! Statistical error ~ (Computational time)-1/2

4 – Quantum Monte Carlo methods 4.1 - Overview

Page 32: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

1) Quantum many body problem;

2) Metropolis Algorithm;

3) Statistical foundations of Monte Carlo methods;

4) Quantum Monte Carlo methods ; 4.1) Overview; 4.2) Variational Quantum Monte Carlo; 4.3) Diffusion Quantum Monte Carlo; 4.4) Typical QMC calculation

Outline

Page 33: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

Consider: R=(r1, r

2, ...r

N); r

i position of the ith e- ; and a trial wfn Ψ

T(R)

such that:i) Ψ

T(R) and Ψ∇

T(R) exist and are continous in all* R;

ii) and exist;

The <H> with respect to ΨT(R) is:

where EL={HΨ

T Ψ

T} and P(R)=|Ψ

T|2 |Ψ

T|2dR

Using metropolis MC method we sample P(R) ( {R1,..., R

M} ) and

average the EL to get:

Optimizing T to get acceptance ~ 50% we improve the mixing of the

sample;

4 – Quantum Monte Carlo methods 4.2 – Variational Quantum Monte Carlo

EV= ⟨T∣ H∣T ⟩=∫∣T∣

2

∫d R∣T∣2 EL Rd R

EV= ⟨ H ⟩= 1M∑k=1

M

EL Rk

∫∣T∣2d R ∫T

∗ HT d R

Page 34: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

Consider: R=(r1, r

2, ...r

N); r

i position of the ith e- ; and a trial wfn Ψ

T(R)

such that:i) Ψ

T(R) and Ψ∇

T(R) exist and are continous in all* R;

ii) and exist;

The <H> with respect to ΨT(R) is:

where EL={HΨ

T Ψ

T} and P(R)=|Ψ

T|2 |Ψ

T|2dR

Using metropolis MC method we sample P(R) ( {R1,..., R

M} ) and

average the EL to get:

Optimizing T to get acceptance ~ 50% we improve the mixing of the

sample;

4 – Quantum Monte Carlo methods 4.2 – Variational Quantum Monte Carlo

EV= ⟨T∣ H∣T ⟩=∫∣T∣

2

∫d R∣T∣2 EL Rd R

EV= ⟨ H ⟩= 1M∑k=1

M

EL Rk

∫∣T∣2d R ∫T

∗ HT d R

Page 35: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

Consider: R=(r1, r

2, ...r

N); r

i position of the ith e- ; and a trial wfn Ψ

T(R)

such that:i) Ψ

T(R) and Ψ∇

T(R) exist and are continous in all* R;

ii) and exist;

The <H> with respect to ΨT(R) is:

where EL={HΨ

T Ψ

T} and P(R)=|Ψ

T|2 |Ψ

T|2dR

Using metropolis MC method we sample P(R) ( {R1,..., R

M} ) and

average the EL to get:

Optimizing T to get acceptance ~ 50% we improve the mixing of the

sample;

4 – Quantum Monte Carlo methods 4.2 – Variational Quantum Monte Carlo

EV= ⟨T∣ H∣T ⟩=∫∣T∣

2

∫d R∣T∣2 EL Rd R

EV= ⟨ H ⟩= 1M∑k=1

M

EL Rk

∫∣T∣2d R ∫T

∗ HT d R

Page 36: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

Consider: R=(r1, r

2, ...r

N); r

i position of the ith e- ; and a trial wfn Ψ

T(R)

such that:i) Ψ

T(R) and Ψ∇

T(R) exist and are continous in all* R;

ii) and exist;

The <H> with respect to ΨT(R) is:

where EL={HΨ

T Ψ

T} and P(R)=|Ψ

T|2 |Ψ

T|2dR

Using metropolis MC method we sample P(R) ( {R1,..., R

M} ) and

average the EL to get:

Optimizing T to get acceptance ~ 50% we improve the mixing of the

sample;

4 – Quantum Monte Carlo methods 4.2 – Variational Quantum Monte Carlo

EV= ⟨T∣ H∣T ⟩=∫∣T∣

2

∫d R∣T∣2 EL Rd R

EV= ⟨ H ⟩= 1M∑k=1

M

EL Rk

∫∣T∣2d R ∫T

∗ HT d R

Page 37: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

4 – Quantum Monte Carlo methods 4.2 – Variational Quantum Monte Carlo

Evaluate Probability ratio

Propose a move

Initial Setup

Update electrons positions

Metropolis accept/reject

Calculate local energy

Output the result

acceptreject

Page 38: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

" How many graduate students lives have been lost optimizing wavefuctions ... " D. Ceperley

Good news !!! T can have any functional form !!!

Most commonly used T is a Slater-Jastrow wavefunction:

4 – Quantum Monte Carlo methods 4.2 – Variational Quantum Monte Carlo

X =eJ X ; 1,. ..,i {∑j=1

jD jX }> X=x1, ... ,X N , with x i= {ri ,i }> j i , coefficients to be optimized ;

> DnX =∣ 1x1 ⋯ 1xN ⋮ ⋱ ⋮

N x1 ⋯ N xN ∣ hxg are single particle Slater orbs.

> eJ X ;1,. ..,i , is the Jastrow correlation function;> J=F d ,r i , r ij , the Jastrow factor: usually sums of Chebyshev polynomials

Page 39: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

How do we acctually perform the optimization of the wfn ? (minimize

E() or E

v or a mixing of both )

The most used is the minimization of E() , because:

i) We know it's exact value for the g.s.ii) Better numerical stability;

The variance of the energy is given by:

where: parameters to optimize ; Ev variational energy, E

L

local energy.

4 – Quantum Monte Carlo methods 4.2 – Variational Quantum Monte Carlo

E2 =∫

∣∣2

∫∣∣2d R

[EL −EV ]2d R

Page 40: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

Correlated sampling method1) Start form a guessed set of paramters {

} ;

2) Sample the P(R,) using MMC method;

3) With this sampling minimize E() like this :

Calculate EL ; E

V and

E() , for a different set of parameters {

}

(choosen in a way to minimize E()), like this:

4) Once E reaches a minimum, set {

}={

}

5) Repeat all the steps 2-5 until E()~0

4 – Quantum Monte Carlo methods 4.2 – Variational Quantum Monte Carlo

EL Ri ,N =HRi ,N Ri ,N

; N =N

T

EV=∫∣T ∣

2N

∫∣T ∣2N d R

E LN d R≈1

∑k=1

M

Rk ,N ∑i=1

M

Ri ,N EL Ri ,N

E2N =∫

∣T ∣2N

∫∣T ∣2N d R

[EL N −EV N ]2d R≈

1

∑k=1

M

R k ,N ∑i=1

M

Ri ,N [EL Ri ,N −EV ]2

PR= ∣R,T ∣2

∫∣ R,T ∣2d R

Page 41: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

Correlated sampling method1) Start form a guessed set of paramters {

} ;

2) Sample the P(R,) using MMC method;

3) With this sampling minimize E() like this :

Calculate EL ; E

V and

E() , for a different set of parameters {

}

(choosen in a way to minimize E()), like this:

4) Once E reaches a minimum, set {

}={

}

5) Repeat all the steps 2-5 until E()~0

4 – Quantum Monte Carlo methods 4.2 – Variational Quantum Monte Carlo

EL Ri ,N =HRi ,N Ri ,N

; N =N

T

EV=∫∣T ∣

2N

∫∣T ∣2N d R

E LN d R≈1

∑k=1

M

Rk ,N ∑i=1

M

Ri ,N EL Ri ,N

E2N =∫

∣T ∣2N

∫∣T ∣2N d R

[EL N −EV N ]2d R≈

1

∑k=1

M

R k ,N ∑i=1

M

Ri ,N [EL Ri ,N −EV ]2

PR= ∣R,T ∣2

∫∣ R,T ∣2d R

Page 42: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

Correlated sampling method1) Start form a guessed set of paramters {

} ;

2) Sample the P(R,) using MMC method;

3) With this sampling minimize E() like this :

Calculate EL ; E

V and

E() , for a different set of parameters {

}

(choosen in a way to minimize E()), like this:

4) Once E reaches a minimum, set {

}={

}

5) Repeat all the steps 2-5 until E()~0

4 – Quantum Monte Carlo methods 4.2 – Variational Quantum Monte Carlo

EL Ri ,N =HRi ,N Ri ,N

; N =N

T

EV=∫∣T ∣

2N

∫∣T ∣2N d R

E LN d R≈1

∑k=1

M

Rk ,N ∑i=1

M

Ri ,N EL Ri ,N

E2N =∫

∣T ∣2N

∫∣T ∣2N d R

[EL N −EV N ]2d R≈

1

∑k=1

M

R k ,N ∑i=1

M

Ri ,N [EL Ri ,N −EV ]2

PR= ∣R,T ∣2

∫∣ R,T ∣2d R

Page 43: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

Correlated sampling method1) Start form a guessed set of paramters {

} ;

2) Sample the P(R,) using MMC method;

3) With this sampling minimize E() like this :

Calculate EL ; E

V and

E() , for a different set of parameters {

}

(choosen in a way to minimize E()), like this:

4) Once E reaches a minimum, set {

}={

}

5) Repeat all the steps 2-5 until E()~0

4 – Quantum Monte Carlo methods 4.2 – Variational Quantum Monte Carlo

EL Ri ,N =HRi ,N Ri ,N

; N =N

T

EV=∫∣T ∣

2N

∫∣T ∣2N d R

E LN d R≈1

∑k=1

M

Rk ,N ∑i=1

M

Ri ,N EL Ri ,N

E2N =∫

∣T ∣2N

∫∣T ∣2N d R

[EL N −EV N ]2d R≈

1

∑k=1

M

R k ,N ∑i=1

M

Ri ,N [EL Ri ,N −EV ]2

PR= ∣R,T ∣2

∫∣ R,T ∣2d R

Page 44: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

Correlated sampling method1) Start form a guessed set of paramters {

} ;

2) Sample the P(R,) using MMC method;

3) With this sampling minimize E() like this :

Calculate EL ; E

V and

E() , for a different set of parameters {

}

(choosen in a way to minimize E()), like this:

4) Once E reaches a minimum, set {

}={

}

5) Repeat all the steps 2-5 until E()~0

4 – Quantum Monte Carlo methods 4.2 – Variational Quantum Monte Carlo

EL Ri ,N =HRi ,N Ri ,N

; N =N

T

EV=∫∣T ∣

2N

∫∣T ∣2N d R

E LN d R≈1

∑k=1

M

Rk ,N ∑i=1

M

Ri ,N EL Ri ,N

E2N =∫

∣T ∣2N

∫∣T ∣2N d R

[EL N −EV N ]2d R≈

1

∑k=1

M

R k ,N ∑i=1

M

Ri ,N [EL Ri ,N −EV ]2

PR= ∣R,T ∣2

∫∣ R,T ∣2d R

Page 45: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

Correlated sampling method1) Start form a guessed set of paramters {

} ;

2) Sample the P(R,) using MMC method;

3) With this sampling minimize E() like this :

Calculate EL ; E

V and

E() , for a different set of parameters {

}

(choosen in a way to minimize E()), like this:

4) Once E reaches a minimum, set {

}={

}

5) Repeat all the steps 2-5 until E()~0

4 – Quantum Monte Carlo methods 4.2 – Variational Quantum Monte Carlo

EL Ri ,N =HRi ,N Ri ,N

; N =N

T

EV=∫∣T ∣

2N

∫∣T ∣2N d R

E LN d R≈1

∑k=1

M

Rk ,N ∑i=1

M

Ri ,N EL Ri ,N

E2N =∫

∣T ∣2N

∫∣T ∣2N d R

[EL N −EV N ]2d R≈

1

∑k=1

M

R k ,N ∑i=1

M

Ri ,N [EL Ri ,N −EV ]2

PR= ∣R,T ∣2

∫∣ R,T ∣2d R

Page 46: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

1) Quantum many body problem;

2) Metropolis Algorithm;

3) Statistical foundations of Monte Carlo methods;

4) Quantum Monte Carlo methods ; 4.1) Overview; 4.2) Variational Quantum Monte Carlo; 4.3) Diffusion Quantum Monte Carlo; 4.4) Typical QMC calculation;

Outline

Page 47: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

4 – Quantum Monte Carlo methods 4.3 – Diffusion Quantum Monte Carlo

General strategy: stochastically simulate a differential equation that converges to the eigenstate

Equation:

Must propagate an entire function forward in time <=> distribution of walkers

−dR , t d t

= H−E R , t

Page 48: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

4 – Quantum Monte Carlo methods 4.3 – Diffusion Quantum Monte Carlo

We want to find a wave function so

Our differential equation

Suppose that

decreases

Kinetic energy (curvature)decreases, potential energystays the same

Time derivative is zero when

t=0

t=infinity

Ψ

−12∇ 2V R E

H=E

H=E

−dR , t d t

= H−E R , t

Page 49: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

Generate walkers with a guess distribution Each time step:

Take a random step (diffuse)

A walker can either die, give birth, or just keep going

Keep following rules, and we find the ground state!

Works in an arbitrary number of dimensions

4 – Quantum Monte Carlo methods 4.3 – Diffusion Quantum Monte Carlo

−dR , t d t

=−12∇

2R V R−E R , t

Diffusion Birth/death

Final

Initial

Page 50: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

Generate walkers with a guess distribution Each time step:

Take a random step (diffuse)

A walker can either die, give birth, or just keep going

Keep following rules, and we find the ground state!

Works in an arbitrary number of dimensions

4 – Quantum Monte Carlo methods 4.3 – Diffusion Quantum Monte Carlo

−dR , t d t

=−12∇

2R V R−E R , t

Diffusion Birth/death

Final

Initial

Page 51: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

Generate walkers with a guess distribution Each time step:

Take a random step (diffuse)

A walker can either die, give birth, or just keep going

Keep following rules, and we find the ground state!

Works in an arbitrary number of dimensions

4 – Quantum Monte Carlo methods 4.3 – Diffusion Quantum Monte Carlo

−dR , t d t

=−12∇

2R V R−E R , t

Diffusion Birth/death

Final

Initial

Page 52: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

Generate walkers with a guess distribution Each time step:

Take a random step (diffuse)

A walker can either die, give birth, or just keep going

Keep following rules, and we find the ground state!

Works in an arbitrary number of dimensions

4 – Quantum Monte Carlo methods 4.3 – Diffusion Quantum Monte Carlo

−dR , t d t

=−12∇

2R V R−E R , t

Diffusion Birth/death

Initial

Final

Page 53: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

Generate walkers with a guess distribution Each time step:

Take a random step (diffuse)

A walker can either die, give birth, or just keep going

Keep following rules, and we find the ground state!

Works in an arbitrary number of dimensions

4 – Quantum Monte Carlo methods 4.3 – Diffusion Quantum Monte Carlo

Diffusion Birth/deathInitial

Final

t

−dR , t d t

=−12∇

2R V R−E R , t

Page 54: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

Importance sampling: multiply the differential equation by a trial wave function Converges to instead of The better the trial function, the faster DMC is-- feed it a

wave function from VMC

Fixed node approximation: for fermions, ground state has negative and positive parts Not a pdf--can’t sample it Approximation:

4 – Quantum Monte Carlo methods 4.3 – Diffusion Quantum Monte Carlo

T0 0

T00

Page 55: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

Importance sampling: multiply the differential equation by a trial wave function Converges to instead of The better the trial function, the faster DMC is-- feed it a

wave function from VMC

Fixed node approximation: for fermions, ground state has negative and positive parts Not a pdf--can’t sample it Approximation:

4 – Quantum Monte Carlo methods 4.3 – Diffusion Quantum Monte Carlo

T0

T00

0

Page 56: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

1) Quantum many body problem;

2) Metropolis Algorithm;

3) Statistical foundations of Monte Carlo methods;

4) Quantum Monte Carlo methods ; 4.1) Overview; 4.2) Variational Quantum Monte Carlo; 4.3) Diffusion Quantum Monte Carlo; 4.4) Typical QMC calculation;

Outline

Page 57: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

Choose system and get one-particle orbitals

Optimize wave function using VMC, evaluate energy and properties of wave function

Use optimized wave function in DMC for most accurate, lowest energy calculations

4 – Quantum Monte Carlo methods 4.4 – Typical QMC calculation

Page 58: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

Choose system and get one-particle orbitals

Optimize wave function using VMC, evaluate energy and properties of wave function

Use optimized wave function in DMC for most accurate, lowest energy calculations

4 – Quantum Monte Carlo methods 4.4 – Typical QMC calculation

Page 59: An introduction to Quantum Monte Carlo - TDDFT. · PDF fileAn introduction to Quantum Monte Carlo Jose Guilherme Vilhena Laboratoire de Physique de la Matière Condensée et Nanostructures,

Choose system and get one-particle orbitals

Optimize wave function using VMC, evaluate energy and properties of wave function

Use optimized wave function in DMC for most accurate, lowest energy calculations

4 – Quantum Monte Carlo methods 4.4 – Typical QMC calculation