An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

52
An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005
  • date post

    20-Dec-2015
  • Category

    Documents

  • view

    275
  • download

    9

Transcript of An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

Page 1: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

An example of gravimetric geoid computation:

The Iberian Gravimetric Geoid of 2005

Page 2: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

The figure of Earth in first approximation:the revolution ellipsoid

normal

Page 3: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

Relationship between orthometric (H) and ellipsoidal (h) height:the undulation of the geoid (N)

H = h N

Page 4: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

The figure of Earth in second approximation: the geoid undulation (N) measured over the ellipsoid

Page 5: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

Ellipsoid

Geoid

Earthsurface

H

hNA

A

B

C

HA = hA NA

HB = hB NB

HBA = hBA NBA

NB

NBA = B – NA 0 HBA hBA

The leveling with GPS computing height differencesrequires the use of a geoid to calculate N

Page 6: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

Calculating N for two paths of 100 km, it can be observed that the values of h H are related to the topography

Page 7: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

N calculated in plane zone: path AB

Page 8: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

N calculated in mountainous zone: path CD

Page 9: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

• As conclusion, a geoid model is required to use GPS heights (h) for leveling.

• The geoid models available in the study area, have not enough precision to be used in the major part of the engineering problems.

• For this reason, it is necessary the computation of a new geoid for the Iberian area, which has the major precision possible.

Page 10: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

Problem: the computation of an Iberian geoid

Page 11: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

NECCESARY DATA

• Gravity data available from several international centers (usually, from internet links).

• Digital terrain models (DTM) that can be combined (and interpolated, if it is necessary) to get a high-resolution Iberian DTM.

• Validation data (GPS/leveling data) that can be supplied by several European centers.

Page 12: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

Land and Marine Gravity Data

http://www.ngdc.noaa.gov/seg/

Page 13: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

Land and Marine Gravity Data

http://bgi.cnes.fr:8110/bgi_debut_a.html

Page 14: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

Land and Marine Gravity Data

http://www.usgs.gov/

Page 15: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

The gravity data needed for the computation canbe obtained from the above-mentioned centers

Page 16: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

http://www2.jpl.nasa.gov/srtm/

Page 17: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

http://www.ngdc.noaa.gov/mgg/gdas/gd_designagrid.html

Page 18: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

The elevation data needed for the computation canbe obtained from the above-mentioned centers

Page 19: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

The short and long wavelength effects are removed from the gravity data by means of :

Thus, the interpolation of the gravity data randomly distributed over the study area to a regular grid, is facilitated (Corchete et al., 2005)

Page 20: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

The term href corresponds to the elevations filtered with a long wavelength filter of 60 arc-minutes

Page 21: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

n

0m

nmnmnm

n

2n

n

2GM msenKmcosJ)(cosP)1n(r

a

r

GMg

máx

EIGEN-CG01C Gravity Anomalies (nmax = 360)

The term gGM is calculated using a geopotential model

Page 22: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

The short-wavelength contribution must be recovered after the interpolation by means of:

For it, the digital terrain model previously computed will be used (Corchete et al., 2005)

Obtained by interpolation

Page 23: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

Obtained by interpolation

Page 24: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.
Page 25: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.
Page 26: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.
Page 27: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

Determination of a geoid model (N)

N = NGM + Nb + NI

NGM : contribution of the geopotential model

Nb : contribution of the residual gravity

NI : indirect effect

Page 28: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

n

0m

nmnmnm

n

2n

n

GM msenKmcosJ)(cosPr

a

r

GMN

máx

EIGEN-CG01C Geoid (nmax = 360)

NGM : contribution of the geopotential model

http://www.gfz-potsdam.de/pb1/op/grace/results/index_RESULTS.html

Page 29: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

Nb : contribution of the residual gravity

g = gfree + c + g ,, g = 0.3086 NI

where:

d)(S g4

RN ),(b

Page 30: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

f(x,y) and g are:

c: terrain correction(only considering the masses over the geoid)

]dxdy

)zh()yy()xx(

dz)hz([Kc

h

h23

2p

2p

2p

p

Ap

gh)hf(h2fh2

Kc 22

2/322 )yx(

1)y,x(f

A

dxdy)y,x(fg

Page 31: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.
Page 32: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

Nb : contribution of the residual gravity(obtained after integration with the FFT 1D)

F1 = FFT 1D F1-1 = FFT 1D backward

where:

PQ222

2

1sins ,, s + s )ln6s - (3 - 10s + s 6 - 4-

s

1=)sS(

coscos)(2

1sin)(

2

1sin

2

1sin 22

PQ2

n

1

)S( cos)g(G4

R),(N 11

11 FFF

Page 33: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

f(x,y) and g are:

NI : indirect effect

dxdy)yy()xx(

)y,x(h)y,x(h

6

K)y,x(h

KN

A2/3 2

p2

p

pp33

pp2

I

2/322 )yx(

1)y,x(f

A

dxdy)y,x(fg

332I gh

6

Khf

6

Kh

KN

Page 34: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.
Page 35: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.
Page 36: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.
Page 37: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.
Page 38: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

MODEL VALIDATION

• The model validation is performed comparing its values with high-precision data.

• These data are the geoid undulations (N0) obtained by means of GPS/leveling.

• These data can be supplied by European centers for our study area: the Iberian Peninsula.

Page 39: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

GPS/leveling process: calculation of the observed geoid undulations (N0)

N0 = hGPS - Hlev GPS satellite receiver

Leveling instrument

Page 40: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

          

European Vertical Reference System

(EVRS)

         

http://crs.bkg.bund.de/evrs/

Organisms that can supply validation data

Page 41: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

http://crs.bkg.bund.de/evrs/tabelle_neu.html

-10 -8 -6 -4 -2 0 2 4

36

38

40

42

44

Data of the European Vertical Network (EVRS) on Iberia

Page 42: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.
Page 43: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

COMPARISON WITH OTHERS MODELS

• The official geoid used in Spain (Sevilla, 1997): the IBERian GEOid of 1995 (IBERGEO95).

• The European Geoid (Denker and Torge, 1998): the European Gravimetric Geoid 1997 (EGG97).

• The worldwide geoids EGM96 y EIGEN-CG01C.

Page 44: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

IBERian GEOid 1995 (IBERGEO95)

Page 45: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

European Gravimetric Geoid 1997 (EGG97)

Page 46: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

EGM96 geoidEIGEN-CG01C Geoid

Worldwide geoid models

http://cddis.gsfc.nasa.gov/926/egm96/egm96.html

Page 47: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.
Page 48: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.
Page 49: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.
Page 50: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

CONCLUSIONS

• The IGG2005 geoid model improves all previous geoid, being much more precise.

• The IGG2005 is a first step towards a centimetric precision geoid for the Iberian area.

• The centimetric precision in the geoid computation will be achieved, if more and more precise gravity data are available for the Iberian area.

Page 51: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

REFERENCES

Corchete V., Chourak M. and Khattach D., 2005. The high-resolution gravimetric geoid of Iberia: IGG2005. Geophys. J. Int., 162, 676–684.

Denker, H., and W. Torge. The European Gravimetric Quasigeoid EGG97. International Association of Geodesy Syposia, Vol. 119, Geodesy on the Move. Springer-Verlag, Berlin-Heidelberg-New York, S. 249-254, 1998.

Sevilla, M. J. A new gravimetric geoid in the Iberian Peninsula. BGI Bull. D’Inf. Nº 77 (Toulouse) and IGeS Bull. Nº 4 (Milano), 163-180, 1995.

Page 52: An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.

CONTACT

Prof. Dr. Víctor CorcheteDepartment of Applied Physics

Higher Polytechnic School - CITE II(A)UNIVERSITY OF ALMERIA

04120-ALMERIA. SPAINFAX: + 34 950 015477

e-mail: [email protected]