An Environmental Input–Output Model for Ireland...input-output model – as well as historical...

34
The Economic and Social Review, Vol. 38, No. 2, Summer/Autumn, 2007, pp. 157–190 An Environmental Input–Output Model for Ireland JOE O’DOHERTY The Economic and Social Research Institute, Dublin RICHARD S. J. TOL* The Economic and Social Research Institute, Dublin Institute for Environmental Studies, Vrije Universiteit, Amsterdam, Carnegie Mellon University, Pittsburgh, PA Abstract: This paper is presented in two parts. The first part demonstrates an environmental input-output model for Ireland for the year 2000. Selected emissions are given a monetary value on the basis of benefit-transfer. This modelling procedure reveals that certain sectors pollute more than others – even when normalised by the sectoral value added. Mining, agriculture, metal production and construction stand out as the dirtiest industries. On average, however, each sector adds more value than it does environmental damage. The second part uses the results of this input-output model – as well as historical data – to forecast emissions, waste and water use out to 2020. The growth in emissions of fluorinated gases and carbon monoxide and the growth of hazardous industrial waste exceed economic growth. Other emissions grow more slowly than the economy. Emissions of acid rain gases (SO 2 , NO x and NH 3 ) will decrease, even if the economy grows rapidly. 157 *John Fitz Gerald, Sean Lyons, Sue Scott and an anonymous referee had valuable comments on earlier versions of this paper. Adele Bergin, Yvonne McCarthy and Sue Scott pointed us to crucial data. The Environmental Protection Agency provided welcome financial support. Corresponding author: ESRI, Whitaker Square, Sir John Rogerson’s Quay, Dublin 2, Ireland, [email protected]

Transcript of An Environmental Input–Output Model for Ireland...input-output model – as well as historical...

Page 1: An Environmental Input–Output Model for Ireland...input-output model – as well as historical data – to forecast emissions, waste and water use out to 2020. The growth in emissions

The Economic and Social Review, Vol. 38, No. 2, Summer/Autumn, 2007, pp. 157–190

An Environmental Input–Output

Model for Ireland

JOE O’DOHERTY

The Economic and Social Research Institute, Dublin

RICHARD S. J. TOL*

The Economic and Social Research Institute, Dublin

Institute for Environmental Studies, Vrije Universiteit, Amsterdam,

Carnegie Mellon University, Pittsburgh, PA

Abstract: This paper is presented in two parts. The first part demonstrates an environmental

input-output model for Ireland for the year 2000. Selected emissions are given a monetary value

on the basis of benefit-transfer. This modelling procedure reveals that certain sectors pollute more

than others – even when normalised by the sectoral value added. Mining, agriculture, metal

production and construction stand out as the dirtiest industries. On average, however, each sector

adds more value than it does environmental damage. The second part uses the results of this

input-output model – as well as historical data – to forecast emissions, waste and water use out

to 2020. The growth in emissions of fluorinated gases and carbon monoxide and the growth of

hazardous industrial waste exceed economic growth. Other emissions grow more slowly than the

economy. Emissions of acid rain gases (SO2, NOx and NH3) will decrease, even if the economy

grows rapidly.

157

*John Fitz Gerald, Sean Lyons, Sue Scott and an anonymous referee had valuable comments on

earlier versions of this paper. Adele Bergin, Yvonne McCarthy and Sue Scott pointed us to crucial

data. The Environmental Protection Agency provided welcome financial support.

Corresponding author: ESRI, Whitaker Square, Sir John Rogerson’s Quay, Dublin 2, Ireland,

[email protected]

01 Doherty article 13/09/2007 11:13 Page 157

Page 2: An Environmental Input–Output Model for Ireland...input-output model – as well as historical data – to forecast emissions, waste and water use out to 2020. The growth in emissions

I INTRODUCTION

With rapid economic growth comes rapidly growing pressure on the

environment, while concern about pollution and resource use waxes too.

Ireland is no exception. Although it has leapt forward to become one of the

richest countries on the planet, its environmental care is more typical of a

middle-income country. As improving the quality of life depends less on

increasing economic wealth, the people of Ireland will reprioritise and seek a

new balance between the economy and the environment.

Efforts elsewhere to develop a balance between economic and

environmental objectives have required complex modelling of national,

regional, or even world economies and their interaction with the environment

(see Duchin and Lange, 1994; Dellink et al., 1999). In an Irish context, the

imperatives implied by the Kyoto Protocol and the Water Framework

Directive1 will require the construction of similar models so as to develop a

thorough understanding of environment-economy linkages and the effect of

policy.

Like environmental care, research in environmental economics is

underdeveloped in Ireland. This paper makes a modest step forward by

introducing a preliminary environmental input-output model (EIO). EIOs are

a suitable tool for estimating the short-term response of emissions and

resource use to changes in consumption and production, be it induced by

economic growth or by changes in (environmental) policy. Like input-output

models, EIOs are static and linear. The data needed for constructing an EIO

are a subset of the data needed for a more dynamic environment-economy

model for the medium term. An EIO is, therefore, a useful first step – and,

with proper caveats, can yield policy insights too.

According to its founder, Wassily Leontief,

… input-output analysis describes and explains the level of input of each

sector of a given national economy in terms of its relationships to the

corresponding levels of activities in all the other sectors (1970, pp. 262).

Essentially, this involves a matrix representation of the economy in order

to predict the effect of changes in one industry on others, while at the same

time modelling the effect of this interaction on consumers, the government

and foreign suppliers.

158 THE ECONOMIC AND SOCIAL REVIEW

1 Directive 2000/60/EC of the European Parliament and of the Council of 23 October, 2000

establishing a framework for Community action in the field of water policy.

01 Doherty article 13/09/2007 11:13 Page 158

Page 3: An Environmental Input–Output Model for Ireland...input-output model – as well as historical data – to forecast emissions, waste and water use out to 2020. The growth in emissions

The first effort to model the effect of these interactions on the environment

was undertaken by Leontief himself, when in 1970 he sought to account for

pollution and a new industry aggregation – the anti-pollution industry –

within a hypothesised two-sector, two-good economy.

However, Van den Bergh and Hofkes (1999, p. 1114) note that “… the most

important recent study [in environmental input-output modelling] is by

Duchin and Lange (1994)”. Their ambitious model involves a detailed input-

output model of the world economy, covering the dynamics of trade in sixteen

regions and fifty sectors. This study sought to test the Brundtland

Commission’s statement that growth and sustainable development could go

hand in hand, and concluded that this is not the case.2

A common issue in relation to input-output models is that these models

“… are structurally fixed in the sense that sectoral classification and

disaggregation, and assumed technologies, cannot change endogenously” (van

den Bergh and Hofkes, 1999, p. 1115).

One effort to overcome these problems is the Regional and Welsh

Appraisal of Resource Productivity and Development (REWARD) project in

the UK (see Ravetz, et al., 2003). The project distinguishes different regions of

the UK and thus further subdivides the standard input-output modelling

framework to create a Regional Economy-Environment Input-Output (REEIO)

model. Environmental input-output modelling is furthest developed in the

USA. The EIOLCA model (www.eiolca.net; Hendrickson et al., 2006) has

almost 500 economic sectors and a long list of resources and emissions. Such

data are unfortunately not available for Ireland.

The model presented in this paper is ISus 0.0, the prototype for Ireland’s

Sustainable Development Model. ISus 0.0 is an input-output model

comprising 19 sectors, 13 pollutants, five classifications of waste, and water

use. It is constructed such that it models the production side of the Irish

economy. Household demand is included, but household pollution is not,

although its contribution is substantial (see Barrett et al., 2005, p. 83).

Household demand is, of course, included. The model as presented here is able

to address the following questions: Which sectors of the economy produce the

largest quantities of pollutants? Which sectors add the most value –

considering the environmental damage they cause? How is the situation likely

to change in the future?

AN ENVIRONMENTAL INPUT–OUTPUT MODEL FOR IRELAND 159

2 Dellink et al. (1999) extend a computable general equilibrium model to environment-economy

relationships in the Netherlands up to 2030. Their principal conclusion – “… that economic growth

can be reconciled with a reduction in environmental pressure…[if] there is improved

environmental efficiency combined with a significant restructuring of the economy” (ibid, p. 153),

counters that of Duchin and Lange.

01 Doherty article 13/09/2007 11:13 Page 159

Page 4: An Environmental Input–Output Model for Ireland...input-output model – as well as historical data – to forecast emissions, waste and water use out to 2020. The growth in emissions

There is a large body of research on the relationship between economic and

social activity and key environmental media in Ireland,3 though until now

these analyses have employed medium-term econometric models, rather than

input-output models as we do here.

The paper is presented as follows. Section II reviews the structure of

environmental input-output models. Section III discusses the data and the

basic results. Section IV presents environmental efficiencies and compares

them to damage cost estimates from existing research. Section V presents

forecasts of emissions and intensities out to 2020. Section VI concludes.

II INPUT-OUTPUT AND ENVIRONMENTAL INPUT-OUTPUT MODELS

Goods and services are produced either for consumption or for use in

further production. That is,

X1 = X1,1 + X1,2 + … + X1,n + Y1

X2 = X2,1 + X2,2 + … + X2,n + Y2 (1)

Xn = Xn,1 + Xn,2 + … + Xn,n + Yn

where Xi is the production of good i, and Xi,j is the use of good i in the

production of good j; Yi is the consumption of good i, which, for convenience,

includes exports and build-up of inventories. Equation (1) can be rewritten as

X1 = a1,1X1 + a1,2X2 + … +a1,nXn + Y1

X2 = a2,1X1 + a2,2X2 + … +a2,nXn + Y2 (2)

X2 = an,1X1 + an,2X2 + … +an,nXn + Yn

160 THE ECONOMIC AND SOCIAL REVIEW

3 The relationship between greenhouse gas emissions and the economy has been modelled by

Conniffe et al. (1997), Bergin et al. (2003) and Fitz Gerald (2004). Teagasc has modelled the impact

of agriculture on greenhouse gas emissions (Behan and McQuinn, 2002). Work on the impact of

economic activity on the generation of solid waste is described by Barrett and Lawlor (1995). The

state of research on the link between economic activity on water use and emissions to water is

described by Scott (see Scott et al., 2001 and Scott, 2004). Finally, a range of different types of

research on transport has been carried out for Ireland (see Department of Public Enterprise,

2000), and a simplified model of the transport sector is already incorporated into the ESRI’s

HERMES model of the Irish economy.

01 Doherty article 13/09/2007 11:13 Page 160

Page 5: An Environmental Input–Output Model for Ireland...input-output model – as well as historical data – to forecast emissions, waste and water use out to 2020. The growth in emissions

where

Xi,jai,j: = –— (3)Xi

In matrix notation,

X1 = a1,1 a1,2 … a1,n X1 Y1

X2 = a2,1 a2,2 … a2,n X2 Y2

= + (2')

… … … … … … …

Xn = an,1 an,2 … an,n Xn Yn

or

X = AX + Y ⇔ (I – A)X = Y ⇔ X = (I – A)–1Y = LY (2")

Equation (2) specifies how production X would respond to a change in

demand Y, including all intermediate production. L is commonly referred to as

the Leontief inverse.

Emissions M of substance l equal

MI = bi,1X1 + bi,2X2 + … bi,nXn�l (4)

where bl,i are the emission coefficients, that is, emission per unit of production.

In matrix notation,

M = BX = BLY (5)

Equation (5) relates emissions to production (via B) and to final

consumption (via BL).

III DATA

CSO (2006a) has the input-output tables for Ireland for 2000 for 48 sectors

according to NACE.4 CSO (2006b) has the environmental accounts for Ireland

for 1997-2004 for 19 sectors, which are aggregates of NACE sectors. Data are

AN ENVIRONMENTAL INPUT–OUTPUT MODEL FOR IRELAND 161

⎤⎪⎪⎪⎪⎪⎪⎦ ⎤

⎪⎪⎪⎪⎪⎪⎦ ⎤

⎪⎪⎪⎪⎪⎪⎦ ⎤

⎪⎪⎪⎪⎪⎪⎦ ⎤

⎪⎪⎪⎪⎪⎪⎦ ⎤

⎪⎪⎪⎪⎪⎪⎦⎤

⎪⎪⎪⎪⎪⎪⎦ ⎤

⎪⎪⎪⎪⎪⎪⎦

4 NACE is a statistical classification of economic activities. NACE is an acronym for

‘Nomenclature générale des activités économiques dans les communautés européennes’ (General

Industrial Classification of Economic Activities within the European Communities).

01 Doherty article 13/09/2007 11:13 Page 161

Page 6: An Environmental Input–Output Model for Ireland...input-output model – as well as historical data – to forecast emissions, waste and water use out to 2020. The growth in emissions

limited to the main greenhouse and acidifying gases. EPA (2005a) has data on

carbon monoxide, volatile organic compounds, hydrofluorocarbons (‘HFCs’; 13,

of which 8 have zero emissions) and fluorinated gases (‘F-gases’; 8, of which 4

have zero emissions). We aggregated the HFCs and F-gases based on their

100-year global warming potential (Ramaswamy et al., 2001). Scott (1999)

presents data for solid waste and eutrophication, for the same 19 sectors, for

1994. According to Toner et al. (2005), eutrophication has hardly changed

between 1994 and 2000, so we used Scott’s 1994 data for 2000. EPA (2005b)

has sectoral data on waste for 2004. We interpolated between 1994 and 2004

to get ‘data’ for 2000. Camp Dresser and McKee (2004) report abstractive

water use per sector, for 2001 for selected industrial sectors and for an

unknown year for agriculture. We assume that these data hold for 2000.

We aggregated the 48 sector input-output table to the 19 sector input-

output table, computed the Leontief inverse (L), the emission coefficients of

production (B), and the emission coefficients of consumption (BL) for carbon

dioxide (CO2), nitrous oxide (N2O), methane (CH4), sulphur dioxide (SO2),

CFCs and F-gases (CFC+F), carbon monoxide (CO), volatile organic

compounds excluding methane (VOC), nitrogen oxides (NOx), ammonia (NH3),

agricultural waste, industrial waste (hazardous or not, recycled or not),

organic matter (BOD), nitrogen (N), phosphorus (P), and water (H2O).

Table 1 shows the 2000 emissions, waste and water use per sector, and the

sector’s economic output. Tables 2 and 3 show the emission coefficients of

production, measured by total output and by value added, respectively. Table

4 shows the emission coefficients of consumption. These tables contain no

qualitative surprises, at least to those who have studied environmental

pollution, but the numbers are interesting nevertheless. Table 1 shows that

whereas economic activity is concentrated in services, pollution is mostly from

agriculture, industry and transport. Tables 2 and 3 confirm this, with low

emission coefficients for services, but higher ones for the other sectors.

Table 4 is perhaps most surprising. It shows that, for every euro of

agricultural produce bought directly from the farmer, 20 grams of ammonia is

emitted. For every euro of processed food bought, only 7 grams of ammonia is

emitted. The difference is explained by the difference in price per gram of food.

For every euro of food bought from the farmer, 308 grams of carbon dioxide is

emitted, which compares to 404 grams of carbon dioxide per euro of processed

food. Although the price per gram of processed food is much higher, processing,

packaging, and transport also emit considerable amounts of carbon dioxide

(but hardly any ammonia). The largest difference in consumption and

production coefficients is in methane emissions from wood and wood products:

6.29 grams are emitted per euro of wood and wood products consumed, versus

40 millionths of a gram per euro of chemicals produced, a factor of 1.5 million

162 THE ECONOMIC AND SOCIAL REVIEW

01 Doherty article 13/09/2007 11:13 Page 162

Page 7: An Environmental Input–Output Model for Ireland...input-output model – as well as historical data – to forecast emissions, waste and water use out to 2020. The growth in emissions

AN ENVIRONMENTAL INPUT–OUTPUT MODEL FOR IRELAND 163T

able

1:

Em

issi

on

s, W

ast

e a

nd

Con

sum

pti

ve

Wa

ter

Use

, P

er E

con

om

ic S

ecto

r a

nd

Su

pp

ly a

t B

asi

c P

rice

s, I

rela

nd

,

2000

Cli

ma

te C

ha

nge

Aci

dif

ica

tion

Wa

ste

Eu

trop

hic

ati

onW

ate

rE

con

omy

NA

CE

CO

2N

2OC

H4

HF

C+

FC

ON

MV

OC

SO

2N

o xN

H3

AW

HIW

NR

HIW

RN

HIW

NR

NH

IWR

BO

DN

PH

2OS

up

ply

10^

9 g

10^

9 g

10^

9 g

10^

9 g

10^

9 g

10^

9 g

10^

9 g

10^

9 g

10^

9 g

10^

9 g

10^

9 g

10^

9 g

10^

9 g

10^

9 g

10^

9 g

10^

9 g

10^

9 g

10^

6 l

10^

6 €

Agri

cult

ure

, fo

rest

ry,

fish

ing

1-5

1

,23

0.3

2

6.7

5

54

.0

0.0

0

.0

0.0

3

.2

15

.1

12

0.7

5

6,5

16

.2

0.0

0

.0

0.0

0

.0

10

.0

14

8.5

4

.7

15

9,4

05

6,9

45

Coa

l, p

eat,

pet

role

um

,

met

al

ores

, q

ua

rryin

g1

0-1

41

,00

5.8

0.1

0.1

0.0

0.0

0.0

3.5

2.4

0.0

0.0

1.0

0.0

2,5

73

.99

6.8

0.0

0.0

0.0

01

,48

1

Foo

d,

bev

era

ge,

tob

acc

o1

5-1

62

,57

9.6

0.2

0.5

0.0

0.1

0.0

8.7

6.2

0.0

0.0

0.1

0.8

25

1.3

1,6

98

.01

7.3

1.8

1.8

23

,72

11

3,6

96

Tex

tile

s C

loth

ing L

eath

er

& F

ootw

ear

17

-19

24

3.1

0.0

0.1

0.0

0.0

0.0

0.9

0.7

0.0

0.0

0.6

0.4

24

.61

8.5

0.2

0.0

0.0

03

,21

9

Woo

d &

woo

d p

rod

uct

s2

02

69

.70

.00.0

0.0

0.0

0.0

1.4

0.7

0.0

0.0

0.0

1.1

3.1

16

7.7

0.0

0.0

0.0

09

56

Pu

lp,

pa

per

& p

rin

t

pro

du

ctio

n2

1-2

22

51

.10

.00.0

0.0

8.9

0.2

1.3

0.6

0.0

0.0

2.4

2.9

63

.37

6.3

0.0

0.0

0.0

30

,93

07

,73

2

Ch

emic

al

pro

du

ctio

n24

2,5

63.0

2.7

0.8

48.6

0.1

0.0

5.8

3.9

0.0

0.0

72.8

101.7

37.4

52.3

3.7

1.5

0.1

9,0

82

22,2

85

Ru

bb

er &

pla

stic

pro

du

ctio

n2

53

56

.90

.00.0

0.0

0.0

0.0

1.8

0.9

0.0

0.0

0.4

0.5

3.8

4.5

0.0

0.0

0.0

02

,06

9

Non

-met

all

ic m

iner

al

pro

du

ctio

n2

63

,12

2.1

0.1

0.5

0.0

0.0

0.0

2.6

3.2

0.0

0.0

11.0

1.4

67

.68

.70

.00

.00

.00

1,6

33

Met

al

pro

d.

excl

. m

ach

iner

y

& t

ran

spor

t eq

uip

.2

7-2

87

60

.90

.00.0

0.0

1.2

0.0

4.2

1.9

0.0

0.0

17

.40

.37

32

.41

4.1

0.0

0.0

0.0

3,5

20

3,3

31

Agri

cult

ure

& i

nd

ust

ria

l

ma

chin

ery

29

19

0.5

0.0

0.0

14

.00

.10

.00

.80

.50

.00

.00

.20

.27

.37

.10

.00

.00

.01

,27

54

,71

6

Off

ice

an

d d

ata

pro

cess

ma

chin

es3

01

65

.70

.00.0

0.0

0.2

0.0

0.7

0.4

0.0

0.0

1.0

1.0

6.0

5.9

0.0

0.0

0.0

2,2

56

20

,86

1

Ele

ctri

cal

goo

ds

31

-33

71

6.0

0.1

0.0

61

5.0

0.2

0.0

3.6

1.7

0.0

0.0

8.3

11.9

15

.12

1.5

0.0

0.0

0.0

1,5

77

14

,58

9

Tra

nsp

ort

equ

ipm

ent

34

-35

99

.10

.00.0

0.0

0.1

0.0

0.5

0.2

0.0

0.0

1.1

2.3

3.7

7.7

0.0

0.0

0.0

1,1

60

4,7

75

Oth

er m

an

ufa

ctu

rin

g2

3,3

6-3

73

98

.20

.00.1

0.7

0.0

0.0

0.9

0.8

0.0

0.0

0.9

0.3

24

.38

.60

.00

.00

.00

2,5

06

Fu

el,

pow

er,

wa

ter

40

,41

1,3

96

.00.2

2.5

0.0

4.1

0.2

7.1

3.4

0.0

0.0

0.6

1.0

69

.111

8.9

0.0

0.0

0.0

02

,36

5

Con

stru

ctio

n4

54

4.9

0.0

0.0

0.0

0.2

0.0

0.2

0.1

0.0

0.0

3.0

6.6

2,3

04

.85,0

62

.70

.00

.00

.00

15

,51

7

Ser

vic

es,

excl

. tr

an

spor

t5

0-5

5,6

4-9

57

,73

3.5

0.9

73

.00

.02

.90

.62

7.2

13

.30

.00

.00

.00

.00

.00

.03

.68

.51

.80

70

,62

9

Tra

nsp

ort

60

-63

11,0

62

.41.2

2.6

0.0

17

8.2

25

.13

.56

0.9

1.8

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

08

,80

5

Tot

al

34,1

88.8

32.2

634.2

678.2

196.4

26.5

78.2

117.0

122.4

56,5

16.2

120.9

132.4

6,1

87.8

7,3

69.1

34.8

160.3

8.4

232,9

26

208,1

09

Not

es:

Cli

ma

te:

CO

2=

ca

rbon

dio

xid

e; N

2O =

nit

rou

s ox

ide;

CH

4=

met

ha

ne;

HF

C+

F

= h

yd

rofl

uor

oca

rbon

s a

nd

flu

orin

ate

d g

ase

s; C

O =

ca

rbon

mon

oxid

e; N

MV

OC

= n

on-m

eta

llic

vol

ati

le o

rga

nic

com

pou

nd

s, e

xcl

.

met

ha

ne;

Aci

dif

ica

tion

; S

O2

= s

ulp

hu

r d

ioxid

e; N

Ox

= n

itro

gen

oxid

es (

NO

an

d N

O2)

; N

H3

= a

mm

onia

; W

ast

e: A

W =

agri

cult

ura

l w

ast

e; H

IWN

R =

ha

zard

ous

ind

ust

ria

l w

ast

e, n

ot r

ecycl

ed; H

IWR

= h

aza

rdou

s in

du

stri

al

wa

ste,

rec

ycl

ed;

NH

IWN

R =

non

-ha

zard

ous

ind

ust

ria

l w

ast

e, n

ot r

ecycl

ed;

NH

IWR

= n

on-h

aza

rdou

s in

du

stri

al

wa

ste,

rec

ycl

ed;

Eu

trop

hic

ati

on:

BO

D =

org

an

ic m

att

er (

bio

logic

al

oxygen

dem

an

d):

N =

nit

rogen

; P

=

ph

osp

hor

us.

01 Doherty article 13/09/2007 11:13 Page 163

Page 8: An Environmental Input–Output Model for Ireland...input-output model – as well as historical data – to forecast emissions, waste and water use out to 2020. The growth in emissions

164 THE ECONOMIC AND SOCIAL REVIEW

Table

2:

Em

issi

on

Coef

fici

ents

of

Pro

du

ctio

n (

Mea

sure

d b

y T

ota

l O

utp

ut

= T

ota

l In

pu

t),

Irel

an

d,

2000

Cli

ma

te C

ha

nge

Aci

dif

ica

tion

Wa

ste

Eu

trop

hic

ati

on

Wa

ter

NA

CE

CO

2N

2OC

H4

HF

C+

FC

ON

MV

OC

SO

2N

o xN

H3

AW

HIW

NR

HIW

RN

HIW

NR

NH

IWR

BO

DN

PH

2O

g/

€g/

€g/

€g/

€g/

€g/

€g/

€g/

€g/

€g/

€g/

€g/

€g/

€g/

€g/

€g/

€g/

€l/

Agri

cult

ure

, fo

rest

ry,

fish

ing

1-5

177.1

63.8

479.7

70.0

00.0

00.0

00.4

62.1

717.3

78137.9

90.0

00.0

00.0

00.0

01.4

421.3

80.6

822.9

5

Coa

l, p

ea

t, p

etr

ole

um

,

meta

l ore

s, q

uarr

yin

g

10-1

4678.9

10.0

50.0

30.0

00.0

00.0

02.3

91.6

30.0

00.0

00.6

60.0

21737.4

465.3

30.0

00.0

00.0

00.0

0

Food

, bevera

ge,

tobacc

o15-1

6188.3

40.0

10.0

40.0

00.0

10.0

00.6

40.4

50.0

00.0

00.0

10.0

518.3

5123.9

71.2

70.1

30.1

31.7

3

Texti

les

Clo

thin

g L

ea

ther

&

Footw

ear

17-1

975.5

40.0

10.0

20.0

00.0

10.0

00.2

90.2

10.0

00.0

00.1

80.1

37.6

45.7

40.0

60.0

00.0

00.0

0

Wood

& w

ood

pro

du

cts

20

282.2

40.0

30.0

00.0

00.0

10.0

01.4

40.6

90.0

00.0

00.0

21.1

63.2

5175.4

60.0

00.0

00.0

00.0

0

Pu

lp,

pap

er

& p

rin

t p

rod

uct

ion

21-2

232.4

70.0

00.0

00.0

01.1

50.0

30.1

60.0

80.0

00.0

00.3

10.3

78.1

99.8

70.0

00.0

00.0

04.0

0

Ch

em

ical

pro

du

ctio

n24

115.0

10.1

20.0

42.1

80.0

10.0

00.2

60.1

80.0

00.0

03.2

74.5

61.6

82.3

50.1

60.0

70.0

00.4

1

Ru

bber

& p

last

ic p

rod

uct

ion

25

172.5

10.0

20.0

00.0

00.0

10.0

00.8

70.4

20.0

00.0

00.2

00.2

41.8

62.1

90.0

00.0

00.0

00.0

0

Non

-meta

llic

min

era

l

pro

du

ctio

n26

1,9

11.5

90.0

30.3

10.0

00.0

10.0

01.6

01.9

80.0

00.0

06.7

50.8

741.4

25.3

50.0

00.0

00.0

00.0

0

Meta

l p

rod

. excl

. m

ach

inery

&

tran

sport

equ

ip.

27-2

8228.4

60.0

10.0

10.0

00.3

70.0

01.2

80.5

60.0

00.0

05.2

40.1

0219.8

94.2

40.0

00.0

00.0

01.0

6

Agri

cult

ure

& i

nd

ust

ria

l

mach

inery

29

40.4

00.0

00.0

12.9

60.0

10.0

00.1

70.1

10.0

00.0

00.0

40.0

41.5

51.5

10.0

00.0

00.0

00.2

7

Off

ice a

nd

da

ta p

roce

ss

mach

ines

30

7.9

40.0

00.0

00.0

00.0

10.0

00.0

30.0

20.0

00.0

00.0

50.0

50.2

90.2

80.0

00.0

00.0

00.1

1

Ele

ctri

cal

good

s31-3

349.0

80.0

10.0

042.1

60.0

10.0

00.2

50.1

20.0

00.0

00.5

70.8

11.0

41.4

70.0

00.0

00.0

00.1

1

Tra

nsp

ort

equ

ipm

en

t34-3

520.7

50.0

00.0

00.0

00.0

10.0

00.1

10.0

50.0

00.0

00.2

20.4

70.7

71.6

10.0

00.0

00.0

00.2

4

Oth

er

man

ufa

ctu

rin

g23,3

6-3

7158.9

10.0

10.0

50.2

70.0

10.0

00.3

70.3

30.0

00.0

00.3

70.1

39.6

93.4

30.0

00.0

00.0

00.0

0

Fu

el,

pow

er,

wate

r40,4

1590.3

50.0

71.0

60.0

01.7

30.1

03.0

21.4

40.0

00.0

00.2

50.4

329.2

250.2

70.0

00.0

00.0

00.0

0

Con

stru

ctio

n45

2.9

00.0

00.0

00.0

00.0

10.0

00.0

10.0

10.0

00.0

00.1

90.4

3148.5

4326.2

70.0

00.0

00.0

00.0

0

Serv

ices,

excl

. tr

an

sport

50-5

5,6

4-9

5109.4

90.0

11.0

30.0

00.0

40.0

10.3

90.1

90.0

00.0

00.0

00.0

00.0

00.0

00.0

50.1

20.0

30.0

0

Tra

nsp

ort

60-6

31,2

56.3

60.1

40.2

90.0

020.2

42.8

50.3

96.9

20.2

00.0

00.0

00.0

00.0

00.0

00.0

00.0

00.0

00.0

0

Note

s: C

lim

ate

: C

O2

= c

arb

on

dio

xid

e; N

2O

= n

itro

us

oxid

e; C

H4

= m

eth

an

e; H

FC

+F

=

hyd

rofl

uoro

carb

on

s a

nd

flu

ori

na

ted

ga

ses;

CO

= c

arb

on

mon

oxid

e; N

MV

OC

= n

on

-meta

llic

vola

tile

org

an

ic c

om

pou

nd

s,

excl

. m

eth

an

e; A

cid

ific

ati

on

; S

O2

= s

ulp

hu

r d

ioxid

e;

NO

x=

nit

rogen

oxid

es

(NO

an

d N

O2);

NH

3=

am

mon

ia;

Wa

ste: A

W =

agri

cult

ura

l w

ast

e;

HIW

NR

= h

aza

rdou

s in

du

stri

al

wa

ste,

not

recy

cled

; H

IWR

=

ha

za

rdou

s in

du

stri

al

wa

ste,

recy

cled

; N

HIW

NR

= n

on

-ha

za

rdou

s in

du

stri

al

wa

ste,

not

recy

cled

; N

HIW

R =

non

-ha

za

rdou

s in

du

stri

al

wa

ste,

recy

cled

; E

utr

op

hic

ati

on

: B

OD

= o

rga

nic

ma

tter

(bio

logic

al

oxygen

dem

an

d):

N =

nit

rogen

; P

= p

hosp

horu

s.

01 Doherty article 13/09/2007 11:13 Page 164

Page 9: An Environmental Input–Output Model for Ireland...input-output model – as well as historical data – to forecast emissions, waste and water use out to 2020. The growth in emissions

AN ENVIRONMENTAL INPUT–OUTPUT MODEL FOR IRELAND 165T

able

3:

Em

issi

on

Coef

fici

ents

of

Pro

du

ctio

n (

Mea

sure

d b

y V

alu

e A

dd

ed),

Ire

lan

d,

2000

Cli

ma

te C

ha

nge

Aci

dif

ica

tion

Wa

ste

Eu

trop

hic

ati

onW

ate

r

NA

CE

CO

2N

2OC

H4

HF

C+

FC

ON

MV

OC

SO

2N

oxN

H3

AW

HIW

NR

HIW

RN

HIW

NR

NH

IWR

BO

DN

PH

2O

g/

€g/

€g/

€g/

€g/

€g/

€g/

€g/

€g/

€g/

€g/

€g/

€g/

€g/

€g/

€g/

€g/

€l/

Agri

cult

ure

, fo

rest

ry,

fish

ing

1-5

363.4

67.8

8163.6

50.0

00.0

00.0

00.9

44.4

535.6

516696.1

30.0

00.0

00.0

00.0

02.9

543.8

71.4

047.0

9

Coa

l, p

eat,

pet

role

um

,

met

al

ores

, qu

arr

yin

g

10-1

42,8

94.6

00.2

20.1

50.0

00.0

00.0

010.2

06.9

50.0

00.0

02.8

00.1

17,4

07.7

2278.5

30.0

00.0

00.0

00.0

0

Foo

d,

bev

erage,

tob

acc

o15-1

6782.3

00.0

50.1

70.0

00.0

30.0

12.6

41.8

90.0

00.0

00.0

30.2

376.2

0514.9

35.2

60.5

50.5

57.1

9

Tex

tile

s C

loth

ing L

eath

er

& F

ootw

ear

17-1

9580.6

60.0

50.1

40.0

00.0

90.0

22.2

41.6

30.0

00.0

01.3

61.0

258.7

044.1

20.4

30.0

00.0

00.0

0

Woo

d &

woo

d p

rod

uct

s20

1,2

83.5

60.1

50.0

00.0

00.0

50.0

16.5

53.1

30.0

00.0

00.1

05.2

814.7

8797.9

10.0

00.0

00.0

00.0

0

Pu

lp,

pap

er &

pri

nt

pro

du

ctio

n21-2

2172.6

70.0

20.0

00.0

06.1

40.1

60.8

70.4

20.0

00.0

01.6

41.9

843.5

652.4

70.0

00.0

00.0

021.2

7

Ch

emic

al

pro

du

ctio

n24

326.5

90.3

50.1

06.1

90.0

20.0

00.7

40.5

00.0

00.0

09.2

812.9

64.7

76.6

60.4

70.1

90.0

11.1

6

Ru

bber

& p

last

ic p

rod

uct

ion

25

1,0

56.9

40.1

20.0

00.0

00.0

70.0

15.3

62.5

60.0

00.0

01.2

51.4

711

.37

13.3

90.0

00.0

00.0

00.0

0

Non

-met

all

ic m

iner

al

pro

du

ctio

n26

6,6

04.6

30.1

11.0

70.0

00.0

40.0

15.5

36.8

60.0

00.0

023.3

43.0

1143.1

018.4

80.0

00.0

00.0

00.0

0

Met

al

pro

d.

excl

. m

ach

iner

y

& t

ran

spor

t eq

uip

.27-2

81,3

84.2

10.0

90.0

40.0

02.2

20.0

17.7

33.4

10.0

00.0

031.7

30.6

113,3

2.2

725.6

90.0

00.0

00.0

06.4

0

Agri

cult

ure

& i

nd

ust

ria

l

mach

iner

y29

305.6

00.0

30.0

522.3

80.0

80.0

21.3

00.8

20.0

00.0

00.3

10.3

011

.72

11.4

00.0

00.0

00.0

02.0

4

Off

ice

an

d d

ata

pro

cess

mach

ines

30

70.0

30.0

10.0

00.0

00.1

00.0

20.3

00.1

60.0

00.0

00.4

20.4

12.5

52.4

80.0

00.0

00.0

00.9

5

Ele

ctri

cal

goo

ds

31-3

3240.7

70.0

30.0

0206.8

10.0

60.0

11.2

10.5

80.0

00.0

02.8

13.9

95.0

97.2

40.0

00.0

00.0

00.5

3

Tra

nsp

ort

equ

ipm

ent

34-3

5251.3

80.0

30.0

00.0

00.1

40.0

31.2

80.6

10.0

00.0

02.7

15.7

19.2

819.5

30.0

00.0

00.0

02.9

4

Oth

er m

an

ufa

ctu

rin

g23,3

6-3

7843.4

10.0

40.2

71.4

20.0

70.0

21.9

61.7

40.0

00.0

01.9

80.7

051.4

318.2

30.0

00.0

00.0

00.0

0

Fu

el,

pow

er,

wate

r40,4

11,6

51.9

10.1

92.9

70.0

04.8

30.2

98.4

44.0

40.0

00.0

00.6

91.1

981.7

7140.6

50.0

00.0

00.0

00.0

0

Con

stru

ctio

n45

8.2

20.0

00.0

00.0

00.0

30.0

10.0

40.0

20.0

00.0

00.5

51.2

1421.7

4926.3

70.0

00.0

00.0

00.0

0

Ser

vic

es,

excl

. tr

an

spor

t50-5

5,6

4-9

5216.7

80.0

22.0

50.0

00.0

80.0

20.7

60.3

70.0

00.0

00.0

00.0

00.0

00.0

00.1

00.2

40.0

50.0

0

Tra

nsp

ort

60-6

35,0

18.4

50.5

41.1

70.0

080.8

411

.40

1.5

827.6

20.8

10.0

00.0

00.0

00.0

00.0

00.0

00.0

00.0

00.0

0

Note

s:C

lim

ate

: C

O2

= c

arb

on

dio

xid

e; N

2O

= n

itro

us

oxid

e; C

H4

= m

eth

an

e; H

FC

+F

=

hyd

rofl

uoro

carb

on

s a

nd

flu

ori

na

ted

ga

ses;

CO

= c

arb

on

mon

oxid

e; N

MV

OC

= n

on

-meta

llic

vola

tile

org

an

ic c

om

pou

nd

s,

excl

. m

eth

an

e; A

cid

ific

ati

on

; S

O2

= s

ulp

hu

r d

ioxid

e;

NO

x=

nit

rogen

oxid

es

(NO

an

d N

O2);

NH

3=

am

mon

ia;

Wa

ste: A

W =

agri

cult

ura

l w

ast

e;

HIW

NR

= h

aza

rdou

s in

du

stri

al

wa

ste,

not

recy

cled

; H

IWR

=

ha

za

rdou

s in

du

stri

al

wa

ste,

recy

cled

; N

HIW

NR

= n

on

-ha

za

rdou

s in

du

stri

al

wa

ste,

not

recy

cled

; N

HIW

R =

non

-ha

za

rdou

s in

du

stri

al

wa

ste,

recy

cled

; E

utr

op

hic

ati

on

: B

OD

= o

rga

nic

ma

tter

(bio

logic

al

oxygen

dem

an

d):

N =

nit

rogen

; P

= p

hosp

horu

s.

01 Doherty article 13/09/2007 11:13 Page 165

Page 10: An Environmental Input–Output Model for Ireland...input-output model – as well as historical data – to forecast emissions, waste and water use out to 2020. The growth in emissions

166 THE ECONOMIC AND SOCIAL REVIEW

Table

4:

Em

issi

on

Coef

fici

ents

of

Con

sum

pti

on

, Ir

ela

nd

, 2000

Cli

ma

te C

ha

nge

Aci

dif

ica

tion

Wa

ste

Eu

trop

hic

ati

onW

ate

r

NA

CE

CO

2N

2OC

H4

HF

C+

FC

ON

MV

OC

SO

2N

o xN

H3

AW

HIW

NR

HIW

RN

HIW

NR

NH

IWR

BO

DN

PH

2O

g/

€g/

€g/

€g/

€g/

€g/

€g/

€g/

€g/

€g/

€g/

€g/

€g/

€g/

€g/

€g/

€g/

€l/

Agri

cult

ure

, fo

rest

ry,

fish

ing

1-5

308.0

94.4

993.0

20.3

60.4

00.0

50.8

12.8

120.2

39,4

72.8

40.3

40.4

119.7

433.5

91.9

124.9

30.8

227.1

0

Coa

l, p

eat,

pet

role

um

,

met

al

ores

, qu

arr

yin

g

10-1

4849.5

60.0

70.2

70.6

41.2

80.1

82.7

02.2

30.0

36.0

30.9

60.2

01,8

13.2

175.7

40.0

10.0

30.0

00.0

9

Foo

d,

bev

erage,

tob

acc

o15-1

6404.0

81.6

033.0

60.3

11.0

10.1

41.1

51.8

37.1

23,3

32.1

90.2

40.3

036.6

7146.5

51.9

98.9

40.4

311

.42

Tex

tile

s C

loth

ing L

eath

er

& F

ootw

ear

17-1

9128.8

10.1

22.3

10.0

70.3

10.0

40.4

30.4

40.4

9227.1

10.2

70.2

213.8

310.8

90.1

40.6

10.0

20.7

0

Woo

d &

woo

d p

rod

uct

s20

461.6

20.3

56.2

90.2

10.6

50.0

92.0

91.3

51.3

4624.2

10.2

11.6

918.1

4234.6

90.1

41.6

60.0

61.8

7

Pu

lp,

pap

er &

pri

nt

pro

du

ctio

n21-2

2258.7

80.0

40.5

70.5

24.0

30.3

80.5

11.0

40.0

511

.27

0.5

80.6

823.1

422.3

80.0

30.0

80.0

15.6

6

Ch

emic

al

pro

du

ctio

n24

262.4

20.1

70.8

62.8

31.1

80.1

60.5

50.7

10.1

043.5

63.7

05.0

922.0

911

.17

0.2

20.2

30.0

20.6

7

Ru

bber

& p

last

ic p

rod

uct

ion

25

304.9

20.0

60.6

20.5

20.9

00.1

21.1

70.8

60.0

939.0

00.7

10.6

918.6

07.7

20.0

40.1

30.0

10.2

7

Non

-met

all

ic m

iner

al

pro

du

ctio

n26

2,1

47.1

80.0

50.6

00.9

71.4

00.1

91.9

72.6

80.0

36.2

07.2

51.0

411

1.3

513.1

80.0

10.0

40.0

00.1

3

Met

al

pro

d.

excl

. m

ach

iner

y &

tran

spor

t eq

uip

.27-2

8355.1

30.0

30.2

50.7

11.1

30.1

01.6

50.9

80.0

25.5

75.9

70.1

9292.8

210.8

10.0

10.0

30.0

01.2

5

Agri

cult

ure

& i

nd

ust

ria

l

mach

iner

y29

74.8

00.0

10.1

14.8

90.1

60.0

20.2

90.2

10.0

12.0

90.2

70.1

012.6

43.2

30.0

00.0

20.0

00.3

5

Off

ice

an

d d

ata

pro

cess

mach

ines

30

73.7

30.0

10.2

55.8

30.2

90.0

40.2

30.2

00.0

14.2

30.3

20.2

19.9

13.4

50.0

10.0

30.0

10.2

5

Ele

ctri

cal

goo

ds

31-3

3125.8

10.0

20.2

448.9

40.4

60.0

60.4

70.3

60.0

14.8

90.9

51.0

116.8

05.3

70.0

10.0

30.0

00.2

4

Tra

nsp

ort

equ

ipm

ent

34-3

549.9

90.0

10.0

70.5

70.2

10.0

30.1

80.1

50.0

11.9

10.3

60.5

27.5

02.9

70.0

00.0

10.0

00.2

9

Oth

er m

an

ufa

ctu

rin

g23,3

6-3

7355.8

90.0

40.5

11.1

20.8

70.1

20.9

40.9

40.0

730.1

90.7

90.3

2236.9

924.0

50.0

20.1

00.0

10.2

2

Fu

el,

pow

er,

wate

r40,4

1858.9

60.1

01.6

83.0

03.0

10.2

73.7

92.2

70.0

517.0

70.6

10.6

1282.5

880.8

70.0

20.0

90.0

10.2

0

Con

stru

ctio

n45

307.7

90.0

30.5

81.2

80.9

60.1

30.5

70.6

90.0

727.0

51.1

50.8

5292.3

1474.7

70.0

20.1

00.0

10.2

1

Ser

vic

es,

excl

. tr

an

spor

t50-5

5,6

4-9

5208.9

80.0

31.4

70.4

71.0

10.1

40.5

50.5

90.0

622.2

30.0

90.0

715.1

113.4

90.0

70.2

00.0

30.1

3

Tra

nsp

ort

60-6

31,7

87.3

00.2

00.7

00.4

027.9

03.9

30.7

69.6

40.2

97.5

60.1

30.1

029.9

510.1

00.0

10.0

40.0

10.1

1

Note

s: C

lim

ate

: C

O2

= c

arb

on

dio

xid

e;

N2O

= n

itro

us o

xid

e;

CH

4=

meth

an

e;

HF

C+

F

= h

yd

rofl

uoro

carb

on

s a

nd

flu

ori

nate

d g

ases;

CO

= c

arb

on

mon

oxid

e;

NM

VO

C =

non

-meta

llic

vola

tile

org

an

ic

com

pou

nd

s,

excl

. m

eth

an

e; A

cid

ific

ati

on

; S

O2

= s

ulp

hu

r d

ioxid

e;

NO

x=

nit

rogen

oxid

es (

NO

an

d N

O2);

NH

3=

am

mon

ia;

Waste

: A

W =

agri

cult

ura

l w

aste

; H

IWN

R =

hazard

ou

s i

nd

ustr

ial

waste

,

not

recy

cled

; H

IWR

= h

azard

ou

s i

nd

ustr

ial

waste

, re

cycl

ed

; N

HIW

NR

= n

on

-hazard

ou

s i

nd

ustr

ial

waste

, n

ot

recy

cled

; N

HIW

R =

non

-hazard

ou

s i

nd

ustr

ial

waste

, re

cycl

ed

; E

utr

op

hic

ati

on

: B

OD

= o

rgan

ic m

att

er

(bio

logic

al

oxygen

dem

an

d):

N =

nit

rogen

; P

= p

hosp

horu

s.

01 Doherty article 13/09/2007 11:13 Page 166

Page 11: An Environmental Input–Output Model for Ireland...input-output model – as well as historical data – to forecast emissions, waste and water use out to 2020. The growth in emissions

difference. This difference is so large because there is hardly any methane

emission from production itself, while wood and wood products use substantial

amounts of agricultural products as inputs.5

IV EFFICIENCIES AND DAMAGES

There are two methods by which one can gauge a sector’s contribution to

the economy – the net output of the sector (which is equal to its net inputs),

and the value added by a sector. As such, when calculating a sector’s

environmental efficiency there are two corresponding measures. Table 2 shows

the emission coefficients of production, measured by total sectoral output

(which is equal to total sectoral input). As such, the inverses of these

coefficients are the total environmental efficiencies for each sector per

emission released; these are given in Table A1. Table A2 shows the alternative

measure, value added per emission released, the inverses of Table 3. Each can

be considered a measure of environmental efficiency and, broken down by

sector and by pollutant, these tables reveal which sectors contribute most to

pollution and resource use relative to its economic activity. It also reveals

which sectors are best targeted for emission reduction – particularly if

structural policy is used for environmental ends.6 Indeed, if a sector produces

less output – or adds less value – per tonne of pollution than the damage done

by that tonne, then it would, to a first approximation, be better to close that

sector.7

The average value added is €2,000/tCO2, with a minimum of €150/tCO2 in

non-metallic production, a sector dominated in Ireland by the concrete

industry. If total output is used to measure activity, then these figures rise to

€6,090 and €520, respectively. This compares favourably with the price of a

carbon dioxide permit, which is €9.45/tCO2,8 not too far from the $50/tC

reasonable upper limit of the marginal damage cost suggested by the meta-

analysis of Tol (2005). Non-metallic mineral production (i.e., cement) adds

almost twenty times the value that it destroys through carbon dioxide

AN ENVIRONMENTAL INPUT–OUTPUT MODEL FOR IRELAND 167

5 Note the aggregation problem; the methane of course comes from animal husbandry, while the

wood comes from timber. A further disaggregation is unfortunately impossible with publicly

available data, but will be a priority in future research.6 It should be noted that a sector, which ostensibly pollutes very little may have marginal cases of

high polluting units, and vice versa.7 This reasoning is from an Irish perspective. Presumably, Irish consumers would still buy these

products, which would be imported. The environmental effects of production would then burden

other countries. 8 On Nov 8, 2006 according to www.pointcarbon.com; on Jan 2, 2007, the price had fallen to

6.55/tC2.

01 Doherty article 13/09/2007 11:13 Page 167

Page 12: An Environmental Input–Output Model for Ireland...input-output model – as well as historical data – to forecast emissions, waste and water use out to 2020. The growth in emissions

emissions. Similar, or better comparisons hold for the other greenhouse gas

emissions – methane (CH4) is about 20 times as potent as carbon dioxide (CO2)

as a greenhouse gas, while laughing gas (N2O) is about 300 times as potent

(Ramaswamy et al., 2001). For instance, the production of office and data

process machines adds value of €150,000/tCO2; eq, and produces output of over

€1.3 million/tCO2; eq, which should be compared to the same €9.45/tCO2 in

abatement and damage costs.

The cost-benefit comparison is also favourable for acidification. Irish

farmers add value (including subsidies) of €21.20, and produce output of

€43.57 for every cubic metre (1,000 litres) of water used. This compares rather

well with the €0.31/m3 that it costs, on average, to produce drinking water in

Ireland (Camp Dresser and McKee, 2004).9

The distinctions between the two methods of measuring economic activity

can be stark, however. For example, non-recycled, non-hazardous waste costs

on average €0.14/kg to dispose of, and yields as little as €0.13/kg (in mining)

if the value added marker is used, but €0.58/kg using total output. Other

waste categories are hard to value in the aggregate.

Eutrophication is difficult to value too, and few attempts have been

reported. The Baltic Sea is probably the best studied. Turner et al. (1999)

report damages as high as €3.66/kg of nitrogen and €96.24/kg of phosphorous.

Eutrophication is less of a problem in and around Ireland than in the Baltic,

however. Pretty et al. (2000, 2003) report total damages of £16 million for

nitrates, and £55 million for phosphates. If we assume that eutrophication is

similar in the UK and Ireland (Aertebjerg and Carstensen, 2003; EEA, 2005;

Trent, 2003) and that total damage is proportional to GDP, then impacts

amount to €0.01/kgN and €0.59/kgP. The cost-benefit ratio for nitrate is

rather positive – around 130,000 (4,700) for the economy as a whole

(agriculture) when measured by total output; 45,000 (2,300) when measured

by value added – but less so for phosphate – 40,000 (2,500) for the economy as

a whole (agriculture) when measured by total output; 14,000 (1,200) when

measured by value added. Note that the cost-benefit ratio is also positive for

the much higher damage estimates of Turner et al. (1999).

From Table 5 one can see that, not unexpectedly, mining and agriculture

stand out as the least environmentally efficient sectors. Taking agriculture,

multiplying all emissions with their damage cost estimates and adding the

results, the total environmental damage done amounts to €0.3 billion while

total output is €6.9 billion. That is, for every €1.00 of output produced (value

added) in agriculture, the amount lost in environmental damage is €0.04

168 THE ECONOMIC AND SOCIAL REVIEW

9 This number is the ratio of the total water demand and the annual expenditure on public water

supply.

01 Doherty article 13/09/2007 11:13 Page 168

Page 13: An Environmental Input–Output Model for Ireland...input-output model – as well as historical data – to forecast emissions, waste and water use out to 2020. The growth in emissions

AN ENVIRONMENTAL INPUT–OUTPUT MODEL FOR IRELAND 169T

able

5:

En

vir

on

men

tal

Da

ma

ges

, Ir

ela

nd

, 2000

NA

CE

Tot

al

Va

lue

Da

ma

ges

(C

ost

of E

mis

sion

s)T

ota

lT

ota

l T

ota

l

Ou

tpu

tA

dd

edD

am

ages

Da

ma

ges

/D

am

ages

/

CO

2N

2OC

H4

HF

C+

FC

ON

MV

OC

S

O2

NO

XN

H3

NH

IWN

R

N

PT

ota

l S

up

ply

Va

lue

Ad

ded

Da

ma

ge

Cos

t E

stim

ate

s0.0

13.1

00.2

40.0

10.0

00.1

80.1

50.2

00.1

20.1

50.0

10.5

9

€m

m

€m

m

€m

m

€m

m

€m

m

€m

m

€m

€m

€m

Agri

cult

ure

, fo

rest

ry,

fish

ing

1-5

6,9

45

3,3

85

12

.38

2.7

13

2.9

0.0

0.0

0.0

0.5

3.0

14

.50

.01

.52

.82

50

.20

.03

60

0.0

73

9

Coa

l, p

eat,

pet

role

um

, or

es,

qu

arr

yin

g1

0-1

41

,48

13

47

1

0.1

0.2

0.0

0.0

0.0

0.0

0.5

0.5

0.0

38

6.1

0.0

0.0

39

7.4

0.2

68

31

.14

37

Foo

d,

bev

era

ge,

tob

acc

o1

5-1

61

3,6

96

3,2

97

2

5.8

0.5

0.1

0.0

0.0

0.0

1.3

1.2

0.0

37

.70

.01

.16

7.8

0.0

04

90

.02

06

Tex

tile

s C

loth

ing L

eath

er

& F

ootw

ear

17

-19

3,2

19

41

9

2.4

0.1

0.0

0.0

0.0

0.0

0.1

0.1

0.0

3.7

0.0

0.0

6.5

0.0

02

00

.01

55

Woo

d &

woo

d p

rod

uct

s2

09

56

21

0

2.7

0.1

0.0

0.0

0.0

0.0

0.2

0.1

0.0

0.5

0.0

0.0

3.6

0.0

03

80

.01

71

Pu

lp,

pa

per

& p

rin

t p

rod

uct

ion

21

-22

7,7

32

1,4

54

2

.50

.10

.00

.00

.00

.00

.20

.10

.09

.50

.00

.01

2.5

0.0

01

60

.00

86

Ch

emic

al

pro

du

ctio

n2

42

2,2

85

7,8

48

2

5.6

8.5

0.2

0.5

0.0

0.0

0.9

0.8

0.0

5.6

0.0

0.0

42

.10

.00

19

0.0

05

4

Ru

bb

er &

pla

stic

pro

du

ctio

n2

52

,06

93

38

3

.60

.10

.00

.00

.00

.00

.30

.20

.00

.60

.00

.04.7

0.0

02

30

.01

40

Non

-met

all

ic m

iner

al

pro

du

ctio

n2

61

,63

34

73

3

1.2

0.2

0.1

0.0

0.0

0.0

0.4

0.6

0.0

10

.10

.00

.04

2.7

0.0

26

10

.09

03

Met

al

pro

du

ctio

n e

xcl

ud

ing

ma

chin

ery &

tra

nsp

ort

equ

ipm

ent

27

-28

3,3

31

55

0

7.6

0.1

0.0

0.0

0.0

0.0

0.6

0.4

0.0

10

9.9

0.0

0.0

118

.60

.03

56

0.2

15

8

Agri

cult

ure

& i

nd

ust

ria

l

ma

chin

ery

29

4,7

16

62

3

1.9

0.1

0.0

0.1

0.0

0.0

0.1

0.1

0.0

1.1

0.0

0.0

3.4

0.0

00

70

.00

55

Off

ice

an

d d

ata

pro

cess

ma

chin

es3

02

0,8

61

2,3

65

1

.70

.00

.00

.00

.00

.00

.10

.10

.00

.90

.00

.02.8

0.0

00

10

.00

12

Ele

ctri

cal

goo

ds

31

-33

14

,58

92

,97

4

7.2

0.2

0.0

6.2

0.0

0.0

0.5

0.3

0.0

2.3

0.0

0.0

16

.70

.00

110

.00

56

Tra

nsp

ort

equ

ipm

ent

34

-35

4,7

75

39

4

1.0

0.0

0.0

0.0

0.0

0.0

0.1

0.0

0.0

0.5

0.0

0.0

1.7

0.0

00

40

.00

43

Oth

er m

an

ufa

ctu

rin

g2

3,3

6-3

72

,50

64

72

4

.00

.10

.00

.00

.00

.00

.10

.20

.03

.60

.00

.08.0

0.0

03

20

.01

70

Fu

el,

pow

er,

wa

ter

40

,41

2,3

65

84

5

14

.00

.50

.60

.00

.00

.01

.10

.70

.01

0.4

0.0

0.0

27

.20

.011

50

.03

22

Con

stru

ctio

n4

51

5,5

17

54

65

0

.40

.00

.00

.00

.00

.00

.00

.00

.03

45

.70

.00

.03

46

.30

.02

23

0.0

63

4

Ser

vic

es,

excl

. tr

an

spor

t5

0-5

5,6

4-9

57

0,6

29

35

,67

5

77

.32

.61

7.5

0.0

0.0

0.1

4.1

2.7

0.0

0.0

0.1

1.1

10

5.5

0.0

01

50

.00

30

Tra

nsp

ort

60

-63

8,8

05

2,2

04

11

0.6

3.7

0.6

0.0

0.7

4.5

0.5

12

.20

.20

.00

.00

.01

33

.10

.01

51

0.0

60

4

Tot

al

208,1

09

69,3

39

341.9

99.9

152.2

6.8

0.8

4.8

11.7

23.4

14.7

928.2

1.6

5.0

1,5

90.9

0.0

076

0.0

229

Not

es:

Cli

ma

te:

CO

2=

ca

rbon

dio

xid

e; N

2O =

nit

rou

s ox

ide;

CH

4=

met

ha

ne;

HF

C+

F

= h

yd

rofl

uor

oca

rbon

s a

nd

flu

orin

ate

d g

ase

s; C

O =

ca

rbon

mon

oxid

e; N

MV

OC

= n

on-m

eta

llic

vol

ati

le o

rga

nic

com

pou

nd

s, e

xcl

.

met

ha

ne;

Aci

dif

ica

tion

; S

O2

= s

ulp

hu

r d

ioxid

e; N

OX

= n

itro

gen

oxid

es (

NO

an

d N

O2)

; N

H3

= a

mm

onia

; W

ast

e: A

W =

agri

cult

ura

l w

ast

e; H

IWN

R =

ha

zard

ous

ind

ust

ria

l w

ast

e, n

ot r

ecycl

ed;

HIW

R =

ha

zard

ous

ind

ust

ria

l w

ast

e, r

ecycl

ed;

NH

IWN

R =

non

-ha

zard

ous

ind

ust

ria

l w

ast

e, n

ot r

ecycl

ed;

NH

IWR

= n

on-h

aza

rdou

s in

du

stri

al

wa

ste,

rec

ycl

ed;

Eu

trop

hic

ati

on:

BO

D =

org

an

ic m

att

er (

bio

logic

al

oxygen

dem

an

d):

N =

nit

rogen

; P

= p

hos

ph

oru

s. D

am

age

cost

s: C

O2:

glo

ba

l d

am

age

less

th

an

$5

0/t

C (

Tol

, 2

00

5);

N2O

, C

H4,

HF

C+

F:

CO

2ti

mes

glo

ba

l w

arm

ing p

oten

tia

l (2

96

, 2

3);

C

O,

NO

x: a

ver

age

of R

omil

ly (

19

99

) a

nd

Sp

itle

y e

t a

l.

(20

05

); V

OC

: S

pit

zley

et

al.

(20

05

); S

O2:

Rom

illy

(1

99

9);

NH

3, N

, P

: P

rett

y e

t a

l.(2

00

0);

NH

IWN

R:

For

fás

(20

06

); H

2O:

Ca

mp

Dre

sser

an

d M

cKee

(2

00

4).

01 Doherty article 13/09/2007 11:13 Page 169

Page 14: An Environmental Input–Output Model for Ireland...input-output model – as well as historical data – to forecast emissions, waste and water use out to 2020. The growth in emissions

(€0.07). Methane emissions are the largest contribution (53 per cent), followed

by nitrous oxide (33 per cent) and ammonia (6 per cent) emissions. Actually,

mining is the least environmentally efficient sector, losing 27 cents for every

euro of output produced, 97 per cent of which is due to waste.10 Mining in fact

causes more environmental damage than the value it adds to the economy,

causing €1.14 worth of damage for every €1.00 of value added. Metal

production comes third (after agriculture), losing 4 cents in every euro, 93 per

cent of which is due to waste.

For the economy as a whole, less than 1 cent is lost on every euro of output

and 2 cent is lost on every euro of value added. Of this, 58 per cent is due to

waste, and 37 per cent due to greenhouse gas emissions. The total environ-

mental damage of production is about €1.6 billion; 25 per cent is due to the

mining industry, 22 per cent due to construction, and 16 per cent due to

agriculture. Mining and agriculture are also among the least environmentally

efficient industries. Construction ranks 4th, but is ten times bigger than metal

production when measured by value added to the economy.

Although the damage estimates are crude, they do allow us to identify the

largest environmental problems (waste, climate change) and the dirtiest

sectors (mining, agriculture and metal production if measured in terms of

average efficiency; mining, agriculture and construction if measured in terms

of total pollution). This helps to target environmental pollution.

V FORECASTS

5.1 Constant Emission Coefficients

Tables A3 and A4 show scenarios of possible changes in the Irish economy

out to 2020. Table A3 corresponds to the High Growth scenario of Barrett et al.

(2005), whereas Table A4 is based on their Low Growth alternative.11 These

results were derived from the HERMES model of the Irish economy. Note that

the HERMES model has six service sectors while the model here has only two;

and that HERMES has three industrial sectors where this model has sixteen.

The scenario in Table A3 assumes continued rapid economic growth,

whereas Table A4 presents a slower growth path. In both models, growth is

fastest in industry and transport. Agriculture is projected to grow only slowly,

170 THE ECONOMIC AND SOCIAL REVIEW

10 Again, there may be an aggregation problem. Mining waste is unlike waste from other sectors;

the bulk of the waste is earth and stone.11 The high growth scenario is presented as “… one in which the US economy does not adjust and

continues to experience robust growth, although remaining on an unsustainable growth path”

(Barrett et al., 2005, p. 28). The low growth scenario is one in which ‘the US current account deficit

declines gradually to a long-run sustainable level’ (ibid).

01 Doherty article 13/09/2007 11:13 Page 170

Page 15: An Environmental Input–Output Model for Ireland...input-output model – as well as historical data – to forecast emissions, waste and water use out to 2020. The growth in emissions

while construction grows first but then declines. These scenarios are used only

for illustration.

Table 6 shows what would happen to emissions, waste, and water use if

the economy were to grow as in Table A3. Table 7 shows the equivalent for the

low growth alternative (see Table A4). In both tables it is assumed that there

would be no policy, technological or behavioural changes with regard to the

environment; that is, emission coefficients stay constant at their 2000 levels.

This, of course, is an unrealistic assumption. See below for a limited

sensitivity analysis.

Under both scenarios, all indicators go up, some more slowly than

economic growth (e.g., agricultural waste, ammonia, nitrogen, methane) and

some faster (e.g., HFCs, carbon monoxide, hazardous industrial waste).

Nitrogen oxides are projected to rise at a rate marginally above that for

economic growth in the high growth scenario, but at a rate less than economic

growth in the low growth alternative. Again, this is strictly illustrative. Policy,

technology, and behaviour will change between now and 2020.

5.2 Falling Emission Coefficients

Emission coefficients are unlikely to stay constant. CSO (2006b) has

emission data for selected greenhouse and acidifying gases, while sectoral

economic activity can be downloaded from http://www.cso.ie. For these

pollutants, emission coefficients have fallen consistently between 1994 and

2004. The year-on-year changes in emission intensities in the period 1994-

2004 were used to construct both the arithmetic and geometric mean of

changes in this period for each sector and pollutant.12 These were then used to

extrapolate out to 2020 using the predicted growth rates of each sector shown

in Tables A3 and A4. For comparison, a third trend is also shown wherein

intensities were assumed not to change over the period, and thus emissions

change only with changes in industry production (as above). The projected

changes in emissions are shown in Figure 1 (see also Tables A5 to A10).

For carbon dioxide, there is a downward trend in emissions for most

sectors, though the largest contributors (non-metallic mineral production,

transport and services) will increase their emissions, ensuring an overall

increase in carbon dioxide emissions. For nitrous oxide, there is a downward

trend in emissions for most sectors, but the only contributor of note

(agriculture) will increase its N2O emissions. For methane, the largest

contributors are agriculture and the services sector, which dwarf all other

AN ENVIRONMENTAL INPUT–OUTPUT MODEL FOR IRELAND 171

12 The geometric mean better reflects the exponential nature of growth but is, for short time

series, subject to uncertainties introduced by interannual variability.

01 Doherty article 13/09/2007 11:13 Page 171

Page 16: An Environmental Input–Output Model for Ireland...input-output model – as well as historical data – to forecast emissions, waste and water use out to 2020. The growth in emissions

172 THE ECONOMIC AND SOCIAL REVIEW

Table

6:

Em

issi

on

s, W

ast

e, a

nd

Con

sum

pti

ve

Wa

ter

Use

, Ir

ela

nd

, 2000-2

020 –

Hig

h G

row

th S

cen

ari

o

Abso

lute

Ind

ex

2000

2005

2010

2015

2020

2000

2005

2010

2015

2020

CO

210^

9 g

34,1

88.8

43,8

37.4

58,0

94.4

7,2

014.9

88,1

80.3

100.0

128.2

169.9

210.6

257.9

N2O

10^

9 g

32.2

34.7

39.1

43.0

46.7

100.0

107.5

121.3

133.3

144.9

CH

410^

9 g

634.2

675.6

744.2

803.0

858.0

100.0

106.5

117.3

126.6

135.3

HF

C+

F10^

9 g

678.2

881.1

1,2

38.3

1,5

48.5

1,8

55.6

100.0

129.9

182.6

228.3

273.6

CO

10^

9 g

196.4

249.0

323.4

409.5

522.4

100.0

126.8

164.7

208.5

266.1

VO

C10^

9 g

26.5

33.5

43.4

55.0

70.2

100.0

126.6

163.9

207.7

265.4

SO

210^

9 g

78.2

101.1

134.8

165.2

199.1

100.0

129.4

172.5

211.4

254.8

NO

x10^

9 g

117.0

146.0

188.5

233.1

287.6

100.0

124.8

161.2

199.3

245.9

NH

310^

9 g

122.4

126.5

135.6

143.0

148.9

100.0

103.3

110.8

116.8

121.6

AW

10^

9 g

56,5

16.2

58,1

90.8

62,1

61.7

65,2

45.5

67,5

46.0

100.0

103.0

110.0

115.4

119.5

HIW

NR

10^

9 g

120.9

157.1

220.0

273.2

325.2

100.0

129.9

182.0

225.9

269.0

HIW

R10^

9 g

132.4

172.1

240.2

296.1

350.0

100.0

130.0

181.4

223.6

264.3

NH

IWN

R10^

9 g

6,1

87.8

8,0

48.3

10,7

81.5

12,0

13.3

12,6

54.2

100.0

130.1

174.2

194.1

204.5

NH

IWR

10^

9 g

7,3

69.1

9,5

93.2

12,3

24.0

12,1

88.4

10,7

72.4

100.0

130.2

167.2

165.4

146.2

BO

D10^

9 g

34.8

42.5

55.7

67.2

78.6

100.0

122.3

160.2

193.2

226.0

N10^

9 g

160.3

168.3

183.6

196.2

207.0

100.0

105.0

114.5

122.4

129.1

P10^

9 g

8.4

9.7

11.6

13.4

15.1

100.0

115.0

138.5

159.3

180.0

H2O

10^

6 l

232,9

26

259,6

46

309,5

65

351,8

88

391,6

65

100.0

111.5

132.9

151.1

168.1

GD

Pat

fact

or

cost

10^

6 €

208,1

09

269,2

53

359,0

27

432,7

42

506,5

27

100.0

129.4

172.5

207.9

243.4

Note

s:C

lim

ate

: C

O2

= c

arb

on

dio

xid

e;

N2O

= n

itro

us o

xid

e;

CH

4=

meth

an

e;

HF

C+

F

= h

yd

rofl

uoro

carb

on

s a

nd

flu

ori

nate

d g

ases;

CO

= c

arb

on

mon

oxid

e;

NM

VO

C

= n

on

-meta

llic

vola

tile

org

an

ic c

om

pou

nd

s,

excl

. m

eth

an

e; A

cid

ific

ati

on

; S

O2

= s

ulp

hu

r d

ioxid

e;

NO

x=

nit

rogen

oxid

es (

NO

an

d N

O2);

NH

3=

am

mon

ia;

Wa

ste

: A

W

= a

gri

cult

ura

l w

aste

; H

IWN

R =

hazard

ou

s i

nd

ustr

ial

waste

, n

ot

recy

cled

; H

IWR

= h

azard

ou

s i

nd

ustr

ial

waste

, re

cycl

ed

; N

HIW

NR

= n

on

-ha

za

rdou

s i

nd

ustr

ial

wa

ste

,

not

recy

cled

; N

HIW

R =

non

-hazard

ou

s i

nd

ustr

ial

waste

, re

cycl

ed

; E

utr

op

hic

ati

on

: B

OD

= o

rgan

ic m

att

er

(bio

logic

al

oxygen

dem

an

d):

N =

nit

rogen

; P

= p

hosp

horu

s.

01 Doherty article 13/09/2007 11:13 Page 172

Page 17: An Environmental Input–Output Model for Ireland...input-output model – as well as historical data – to forecast emissions, waste and water use out to 2020. The growth in emissions

AN ENVIRONMENTAL INPUT–OUTPUT MODEL FOR IRELAND 173T

able

7:

Em

issi

on

s, W

ast

e, a

nd

Con

sum

pti

ve

Wa

ter

Use

, Ir

ela

nd

, 2000-2

020 –

Low

Gro

wth

Sce

na

rio

Abso

lute

Ind

ex

2000

2005

2010

2015

2020

2000

2005

2010

2015

2020

CO

210^

9 g

34,1

88.8

43,8

37.4

53,9

49.7

64,2

24.7

77,0

53.5

100.0

128.2

157.8

187.9

225.4

N2O

10^

9 g

32.2

34.7

38.3

41.3

43.9

100.0

107.5

118.7

128.0

136.1

CH

410^

9 g

634.2

675.6

737.6

784.2

817.6

100.0

106.5

116.3

123.6

128.9

HF

C+

F10^

9 g

678.2

881.1

1,1

04.0

1,3

36.9

1,6

21.2

100.0

129.9

162.8

197.1

239.0

CO

10^

9 g

196.4

249.0

304.6

365.9

444.5

100.0

126.8

155.1

186.3

226.4

VO

C10^

9 g

26.5

33.5

40.9

49.1

59.6

100.0

126.6

154.6

185.7

225.4

SO

210^

9 g

78.2

101.1

125.1

148.0

176.9

100.0

129.4

160.0

189.4

226.3

NO

x10^

9 g

117.0

146.0

177.1

209.5

249.9

100.0

124.8

151.4

179.1

213.7

NH

310^

9 g

122.4

126.5

135.4

141.5

143.9

100.0

103.3

110.6

115.6

117.6

AW

10^

9 g

56,5

16.2

58,1

90.8

62,1

37.9

64,7

25.3

65,5

39.4

100.0

103.0

109.9

114.5

116.0

HIW

NR

10^

9 g

120.9

157.1

196.9

237.2

286.0

100.0

129.9

162.9

196.2

236.5

HIW

R10^

9 g

132.4

172.1

215.8

258.5

309.7

100.0

130.0

162.9

195.2

233.9

NH

IWN

R10^

9 g

6,1

87.8

8,0

48.3

10,1

17.4

11,2

97.9

12,3

85.8

100.0

130.1

163.5

182.6

200.2

NH

IWR

10^

9 g

7,3

69.1

9,5

93.2

12,0

90.9

12,5

49.3

12,3

27.6

100.0

130.2

164.1

170.3

167.3

BO

D10^

9 g

34.8

42.5

51.2

59.9

70.0

100.0

122.3

147.3

172.2

201.3

N10^

9 g

160.3

168.3

182.2

192.3

198.4

100.0

105.0

113.7

120.0

123.8

P10^

9 g

8.4

9.7

11.1

12.4

13.8

100.0

115.0

132.4

148.2

164.9

H2O

10^

6 l

232,9

26.0

259,6

46.2

294,9

42.3

327,4

84.2

360,5

96.6

100.0

111.5

126.6

140.6

154.8

GD

Pa

t

fact

or

cost

10^

6€

208,1

09

269,2

53

332,7

54

389,4

75

455,6

92

100.0

129.4

159.9

187.1

2,1

9.0

Note

s:C

lim

ate

: C

O2

= c

arb

on

dio

xid

e;

N2O

= n

itro

us o

xid

e;

CH

4=

meth

an

e;

HF

C+

F

= h

yd

rofl

uoro

carb

on

s a

nd

flu

ori

nate

d g

ases;

CO

= c

arb

on

mon

oxid

e;

NM

VO

C =

non

-meta

llic

vola

tile

org

an

ic c

om

pou

nd

s,

excl

. m

eth

an

e; A

cid

ific

ati

on

; S

O2

= s

ulp

hu

r d

ioxid

e;

NO

x =

nit

rogen

oxid

es (

NO

an

d N

O2);

NH

3=

am

mon

ia;

Waste

: A

W =

agri

cult

ura

l w

aste

; H

IWN

R =

hazard

ou

s i

nd

ustr

ial

waste

, n

ot

recy

cled

; H

IWR

= h

azard

ou

s i

nd

ustr

ial

waste

, re

cycl

ed

; N

HIW

NR

= n

on

-hazard

ou

s i

nd

ustr

ial

waste

, n

ot

recy

cled

; N

HIW

R =

non

-hazard

ou

s i

nd

ustr

ial

waste

, re

cycl

ed

; E

utr

op

hic

ati

on

:

BO

D =

org

an

ic m

att

er

(bio

logic

al

oxygen

dem

an

d):

N =

nit

rogen

; P

= p

hosp

horu

s.

01 Doherty article 13/09/2007 11:13 Page 173

Page 18: An Environmental Input–Output Model for Ireland...input-output model – as well as historical data – to forecast emissions, waste and water use out to 2020. The growth in emissions

174 THE ECONOMIC AND SOCIAL REVIEW

Forecast CO2 emissions

30000

35000

40000

45000

50000

55000

60000

65000

70000

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020year

10^9

g

low, arithmetichigh, arithmeticlow, geometrichigh, geometriclow, constanthigh, constant

Forecast N2O emissions

25

26

27

28

29

30

31

32

33

34

35

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020year

10^9

g

low, arithmetichigh, arithmeticlow, geometrichigh, geometriclow, constanthigh, constant

Forecast CH4 Emissions

600

650

700

750

800

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020year

10^9

g

low, arithmetichigh, arithmeticlow, geometrichigh, geometriclow, constanthigh, constant

Figure 1: Emission Forecasts

01 Doherty article 13/09/2007 11:13 Page 174

Page 19: An Environmental Input–Output Model for Ireland...input-output model – as well as historical data – to forecast emissions, waste and water use out to 2020. The growth in emissions

Forecast SO2 emissions

15

25

35

45

55

65

75

85

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020year

10^9

g

low, arithmetichigh, arithmeticlow, geometrichigh, geometriclow, constanthigh, constant

Forecast NOX emissions

70

90

110

130

150

170

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020year

10^9

g

low, arithmetichigh, arithmeticlow, geometrichigh, geometriclow, constanthigh, constant

Forecast NH3 emissions

110

115

120

125

130

135

140

145

150

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

year

10^9

g

low, arithmetichigh, arithmeticlow, geometrichigh, geometriclow, constanthigh, constant

AN ENVIRONMENTAL INPUT–OUTPUT MODEL FOR IRELAND 175

Figure 1: Emission Forecasts (contd.)

01 Doherty article 13/09/2007 11:13 Page 175

Page 20: An Environmental Input–Output Model for Ireland...input-output model – as well as historical data – to forecast emissions, waste and water use out to 2020. The growth in emissions

sectors. Agricultural emissions are set to continue rising out to 2020,13 with

emissions in services set to remain largely constant. The overall trend is for

increased methane emissions, however. For sulphur dioxide, all sectors show

a reduction in emissions out to 2020. The largest of these contributors – the

services sector (excluding transport) – will reduce its emissions by around 50

per cent compared to 2004 levels. For oxides of nitrogen, there is a downward

trend in emissions for the largest contributors (agriculture, transport and

services) that will lead to an overall decline in emissions of NOx. However,

there will be large percentage increases for some industries that currently

emit relatively low levels of NOx (mining, non-metallic mineral production and

textiles and clothing). For ammonia, emissions from agriculture are set to rise

slowly out to 2020, though this is from a relatively high base. Conversely, the

transport sector will see ammonia emissions rise by between 550 per cent

(assuming a low growth rate, and calculated using a geometric mean) and 700

per cent (assuming a high growth rate, and calculated using an arithmetic

mean), but from a much lower level compared to agriculture.

For all of the pollutants discussed here, the high-growth scenario would

result in higher levels of emissions than in the low growth alternative, and

predicted emissions are higher when an arithmetic mean is used to calculate

future trends. This can be seen in Figure 1.

It is also clear that the projections based on constant emission coefficients

overestimate future emissions. This is particularly striking for emissions of

sulphur and oxides of nitrogen, where technological progress changes the sign

of the change, but it can also be seen for the other pollutants.

VI CONCLUSIONS

An environmental input-output model, ISus 0.0, was constructed for

Ireland for the year 2000. The model results confirm that certain sectors

pollute more than others – even when normalised by the sectoral value added.

Mining, agriculture, metal production and construction stand out as the

dirtiest industries. Most sectors add more value than they do environmental

damage. However, the dirtiest industry, mining, does 127 cents worth of

damage for every euro of value added. For the Irish economy as a whole, only

1 cent is lost in damage for every euro earned. Waste and greenhouse gas

emissions are the largest environmental problems. The environmental impact

of consumption is very different from the impact of production because of the

176 THE ECONOMIC AND SOCIAL REVIEW

13 The HERMES model predicts that agricultural emissions will continue to rise out to 2020.

However, this model does not incorporate any future changes to the Common Agricultural Policy

of the EU, which could impose regulations that reduce emissions from agriculture.

01 Doherty article 13/09/2007 11:13 Page 176

Page 21: An Environmental Input–Output Model for Ireland...input-output model – as well as historical data – to forecast emissions, waste and water use out to 2020. The growth in emissions

intermediary deliverables. We find differences up to a factor of 1.5 million, in

case production is ‘clean’ but intermediates are ‘dirty’. Even without

technological progress, behavioural changes, and policy interventions, most

environmental problems will increase more slowly than the rate of economic

growth, with the exception of fluorinated gases, carbon monoxide, and

hazardous industrial waste. For the subset of pollutants for which data are

available, emission intensity falls. For sulphur, emission intensities fall

sufficiently fast to more than offset economic growth. When a forecast is

constructed of emissions out to 2020, certain trends become apparent.

Emissions of greenhouse gases (CO2, N2O and CH4) will increase, while

emissions of acid rain gases (SO2, NOx and NH3) will decrease.

These results should be treated with caution. The results for waste and

eutrophication are particularly weak. Partly, this is a matter of data – the

analysis here is restricted to data in the public domain. Furthermore, waste

and eutrophication are not national, but regional phenomena. The same holds

true for water. A regional analysis would require either regionalising the

national results, or using a regional input-output model for crucial sectors

(e.g., agriculture). Either route would be constrained by data availability.

Further improvement of the sectoral disaggregation would be needed too – as

demonstrated by the methane emissions attributed to the wood products

sector. A finer categorisation of ‘waste’ would be welcome too. Emission

coefficients are here assumed to be static, but in fact respond to structural

changes within the economic sectors, technological changes, prices, and

environmental policies. Finally, input-output analysis focuses on the

production side of the domestic economy. Household pollution and resource use

is not included. This particularly affects carbon dioxide, waste and water.

Similarly, the environmental impacts of the production of imported goods are

excluded.

It is evident that much remains to be done in developing a thorough model

of environment-economy relationships in Ireland. The results presented here

may prove to be a useful first step. Later versions of the ISus model will

address the weaknesses of the current model and paper.

REFERENCES

AERTEBJERG, GUNNI and JACOB CARSTENSEN, 2003. Chlorophyll-a in

Transitional, Coastal and Marine Waters, Copenhagen: European Environment

Agency.

BARRETT, ALAN and JOHN LAWLOR, 1995. The Economics of Solid Waste

Management in Ireland, Policy Research Series No 26, Dublin: The Economic and

Social Research Institute.

AN ENVIRONMENTAL INPUT–OUTPUT MODEL FOR IRELAND 177

01 Doherty article 13/09/2007 11:13 Page 177

Page 22: An Environmental Input–Output Model for Ireland...input-output model – as well as historical data – to forecast emissions, waste and water use out to 2020. The growth in emissions

BARRETT, ALAN, ADELE BERGIN, DAVID DUFFY, SHANE GARRETT, JOHN FITZ

GERALD, IDE KEARNEY and YVONNE MCCARTHY, 2005. Medium-Term

Review 2005-2012, Dublin: The Economic and Social Research Institute.

BEHAN, JESMINA and KIERAN MCQUINN, 2002. Projecting Net Greenhouse Gas

Emissions from Irish Agriculture and Forestry [online], Available from

http://www.tnet.teagasc.ie/fapri/downloads/esri.pdf.

BERGIN, ADELE, JOE CULLEN, DAVID DUFFY, JOHN FITZ GERALD, IDE

KEARNEY and DANIEL MCCOY, 2003. Medium-Term Review: 2003-2010,

Dublin: The Economic and Social Research Institute.

CAMP DRESSER and MCKEE, 2004. Economic Analysis of Water Use in Ireland,

Dublin: Department of the Environment, Heritage and Local Government.

CONNIFFE, DENIS, JOHN FITZ GERALD, SUE SCOTT, and FERGAL SHORTALL,

1997. The Costs to Ireland of Greenhouse Gas Abatement, Policy Research Series

No 32, Dublin: The Economic and Social Research Institute.

CENTRAL STATISTICS OFFICE, 2006a. 2000 Supply and Use and Input-Output

Tables, Cork: Central Statistics Office.

CENTRAL STATISTICS OFFICE, 2006b. Environmental Accounts for Ireland 1997-

2004, Cork: Central Statistics Office.

DELLINK, ROB, MARTIJN BENNIS and HARMEN VERBRUGGEN, 1999.

“Sustainable Economic Structures” Ecological Economics, Vol 29, pp 141-154.

DEPARTMENT OF PUBLIC ENTERPRISE, 2000. Environmental Impacts of Irish

Transport Growth and of Related Sustainable Policies, Report prepared by Oscar

Faber Transportation in association with ECOTEC Research & Consulting Ltd.,

Goodbody Economic Consultants Limited and The Economic and Social Research

Institute [online], Available from: http://www.transport.ie/upload/general/2637.pdf.

DUCHIN, FAYE and GLENN-MARIE LANGE, 1994. The Future of the Environment:

ecological economics and technical change, Oxford: Oxford University Press.

EUROPEAN ENVIRONMENT AGENCY, 2005. May 2005 Assessment [online],

available from http://themes.eea.europa.eu/IMS/IMS/ISpecs/ISpecification2004

1007131526/IAssessment1116513959574/view_content.

ENVIRONMENT PROTECTION AGENCY, 2005a. Irish Submission to the United

Nations Framework Convention on Climate Change, Johnstown Castle: Environ-

mental Protection Agency.

ENVIRONMENT PROTECTION AGENCY, 2005b. National Waste Report 2004,

Johnstown Castle: Environmental Protection Agency.

FITZ GERALD, JOHN, 2004. “An Expensive Way to Combat Global Warming: Reform

Needed in EU Emissions Trading Regime” Quarterly Economic Commentary

(Spring 2004), Dublin: The Economic and Social Research Institute.

GREN, ING-MARIE, THOMAS SOEDERQVIST, and FREDRIC WULFF, 1997.

“Nutrient Reductions to the Baltic Sea: Ecology, Costs and Benefits”, Journal of

Environmental Management, Vol 51, pp. 123-143.

HENDRICKSON, CHRIS T., LESTER B. LAVE, H. SCOTT MATTHEWS, ARPAD

HORVATH, SATISH JOSHI, FRANCIS C. MCMICHAEL, HEATHER MACLEAN,

GYORGYI CICAS, DEANNA MATTHEWS and JOULE BERGERSON 2006.

Environmental Life-Cycle Assessment of Goods and Services: An Input-Output

Approach, Washington, D.C.: Resources for the Future.

LEONTIEF, WASSILY, 1970. “Environmental Repercussions and the Economic

Structure: An Input-Output Approach”, Review of Economics and Statistics, Vol 52,

No 3, pp. 262-271.

PRETTY, JULES, CRAIG BRETT, DAVID GEE, RACHEL E. HINE, CHRISTOPHER

F. MASON, JAMES I.L. MORISON, H. RAVEN, MATTHEW RAYMENT and

178 THE ECONOMIC AND SOCIAL REVIEW

01 Doherty article 13/09/2007 11:13 Page 178

Page 23: An Environmental Input–Output Model for Ireland...input-output model – as well as historical data – to forecast emissions, waste and water use out to 2020. The growth in emissions

GERT VAN DER BIJL, 2000. “An Assessment of Total External Costs of UK

Agriculture”, Agricultural Systems, Vol 65, pp. 113-136.

PRETTY, JULES, CHRISTOPHER F. MASON, DAVID B. NEDWELL, RACHEL E.

HINE, SIMON LEAF and RACHAEL DILS, 2003. “Environmental Costs of

Freshwater Eutrophication in England and Wales”, Environmental Science and

Technology, Vol 37, No 2, pp. 201-208.

RAMASWAMY, VENKATACHALA, OLIVIER BOUCHER, JOANNA D. HAIGH,

DIDIER HAUGLUSTAINE, JAMES HAYWOOD, GUNNAR MYHRE, TERUYUKI

NAKAJIMA, GUANGYU SHI and SUSAN SOLOMON, 2001. “Radiative Forcing

of Climate Change” in John T. Houghton and Yihui Ding (eds.), Climate Change

2001: The Scientific Basis – Contribution of Working Group I to the Third

Assessment of the Intergovernmental Panel on Climate Change, Cambridge:

Cambridge University Press.

RAVETZ, JOE, DARRYN MCEVOY, SARAH LINDLEY and JOHN HANDLEY, 2003.

Linking Up: Linking Environmental-Economic Modelling into Sustainable

Planning in Wales and the Regions, Environment Agency R&D Technical Report

E2-058/TR [online], Available from http://www.sed.manchester.ac.uk/research/

cure/ downloads/reward_main.pdf.

ROMILLY, PETER, 1999. “Substitution of Bus for Car Travel in Urban Britain: An

Economic Evaluation of Bus and Car Exhaust Emission and Other Costs”,

Transportation Research Part D, Vol. 4, pp. 109-125.

SCOTT, SUE,1999. Pilot Environmental Accounts, Cork: Central Statistics Office.

SCOTT, SUE, 2004. Research Needs of Sustainable Development, ESRI Working Paper

No 162, Dublin: The Economic and Research Institute.

SCOTT, SUE, JOHN CURTIS, JOHN EAKINS, JOHN FITZ GERALD and

JONATHAN HORE, 2001. Time Series and Eco-Taxes: Energy, Water, Waste,

Report for EUROSTAT (B1 section: National Accounts methodology, statistics for

own resources), Ref KITZ99/274.

SPITZLEY, DAVID V., DARBY E.GRANDE, GREGORY A. KEOLEIAN AND HYUNG

CHUL KIM, 2005. “Life Cycle Optimization of Ownership Costs and Emission

Reduction in US Vehicle Retirement Decisions”, Transportation Research Part D,

Vol. 10, pp. 161-175.

TONER, PAUL, JIM BOWMAN, KEVIN CLABBY, JOHN LUCEY, MARTIN

MCGARRIGLE, COLMAN CONCANNON, CONOR CLENAGHAN, PETER

CUNNINGHAM, JOHN DELANEY, SHANE O’BOYLE, MICHAEL

MACCÁRTHAIGH, MATTHEW CRAIG and R. QUINN, 2005. Water Quality in

Ireland 2001-2003, Wexford: Environmental Protection Agency.

TOL, RICHARD S.J., 2005. “The Marginal Damage Costs of Carbon Dioxide Emissions:

An Assessment of the Uncertainties”, Energy Policy, Vol 33, No. 16, pp. 2064-2074.

TRENT, ZOE, 2003. National River Classification Schemes, European Environment

Agency, Copenhagen.

TURNER, R. KERRY, STAVROS GEORGIOU, ING-MARIE GREN, FREDRIC

WULFF, SCOTT BARRETT, TORE SOEDERQVIST, IAN J. BATEMAN, CARL

FOLKE, SINDRE LANGAAS, TOMASZ ZYLICZ, KARL-GOERAN MALER and

AGNIESZKA MARKOWSKA, 1999. “Managing Nutrient Fluxes and Pollution in

the Baltic: An Interdisciplinary Simulation Study’” Ecological Economics, Vol. 30,

pp. 333-352.

VAN DEN BERGH, JEROEN C.J.M. and MARJAN W. HOFKES, 1999. “Economic

Models of Sustainable Development” in Jeroen C. J. M. Van den Bergh (ed.),

Handbook of Environmental and Resource Economics, Cheltenham: Edward Elgar.

AN ENVIRONMENTAL INPUT–OUTPUT MODEL FOR IRELAND 179

01 Doherty article 13/09/2007 11:13 Page 179

Page 24: An Environmental Input–Output Model for Ireland...input-output model – as well as historical data – to forecast emissions, waste and water use out to 2020. The growth in emissions

180 THE ECONOMIC AND SOCIAL REVIEW

Table

A1:

En

vir

on

men

tal

Eff

icie

nci

es P

er S

ecto

r (M

easu

red

by T

ota

l O

utp

ut

= T

ota

l In

pu

t),

Irel

an

d,

2000

Cli

mat

e C

han

ge

Aci

dif

icat

ion

W

aste

E

utr

oph

icat

ion

W

ater

NA

CE

C

O2

N2O

C

H4

HF

C+F

C

O

NM

VO

C

SO

2N

OX

NH

3A

W

HIW

NR

H

IWR

N

HIW

NR

N

HIW

R

BO

D

N

PH

2O

€/k

g€

/kg

€/k

g€

/kg

€/k

g€

/kg

€/k

g€

/kg

461.

07€

/kg

€/k

g€

/kg

€/k

g€

/kg

€/k

g€

/kg

€/k

g€

/kg

€/m

3

Agr

icu

ltu

re, f

ores

try,

fish

ing

1-5

5.64

260.

3612

.54

––

–21

74.3

961

3.52

57.5

50.

1215

21.0

6–

––

694.

4746

.77

1469

.78

43.5

7

Coa

l, pe

at, p

etro

leu

m, o

res,

quar

ryin

g10

-14

1.47

1931

9.84

2939

9.76

––

–41

7.89

2197

.85

2116

346.

83–

1229

69.3

340

453.

100.

5815

.31

––

––

Foo

d, b

ever

age,

tob

acco

15-1

65.

3183

670.

1625

144.

03–

1266

29.6

847

8663

.08

1570

.45

4714

.24

––

5646

.88

1819

6.57

54.5

18.

0778

9.86

7504

.78

7609

.01

577.

39

Text

iles

Clo

thin

g L

eath

er

& F

ootw

ear

17-1

913

.24

1623

08.9

956

334.

54–

8909

2.70

4588

53.1

634

28.9

414

54.8

6–

–46

495.

8975

14.2

313

0.94

174.

2417

882.

07–

––

Woo

d &

woo

d pr

odu

cts

203.

5431

280.

0425

2254

569.

69–

8909

2.70

4588

53.1

669

4.62

1272

8.13

––

3236

.36

861.

4630

7.62

5.70

––

––

Pu

lp, p

aper

&

prin

t pr

odu

ctio

n21

-22

30.8

027

1886

.31

1341

2769

29.8

9–

866.

2032

807.

7961

15.1

857

10.5

6–

–30

6.05

2686

.75

122.

0810

1.35

––

–24

9.99

Ch

emic

al p

rodu

ctio

n24

8.69

8143

.31

2763

5.31

458.

6717

9715

.67

7428

24.7

838

43.4

823

90.6

2–

–48

96.0

521

9.08

595.

4542

6.25

6105

.41

1526

3.52

3183

53.4

824

53.7

3

Ru

bber

& p

last

ic p

rodu

ctio

n25

5.80

5202

4.54

8558

6520

0.32

–89

092.

7045

8853

.16

1142

.96

503.

81–

–14

8.06

4154

.51

539.

0645

7.42

––

––

Non

-met

alli

c m

iner

al

prod

uct

ion

260.

5230

908.

7232

25.5

5–

8909

2.70

4588

53.1

662

5.10

1775

.23

––

190.

9511

46.5

524

.14

186.

97–

––

Met

al p

rodu

ctio

n e

xclu

din

g

mac

hin

ery

& t

ran

spor

t

equ

ipm

ent

27-2

84.

3869

465.

6215

1784

.87

–27

33.8

864

8721

.41

783.

9192

27.7

6–

–24

159.

3799

00.8

94.

5523

5.80

––

–94

6.21

Agr

icu

ltu

re &

in

dust

rial

mac

hin

ery

2924

.75

2571

49.8

416

0198

.95

338.

0689

092.

7045

8853

.16

5806

.53

5635

1.41

––

2099

0.56

2482

7.04

645.

6266

3.46

––

–36

99.0

6

Off

ice

and

data

pro

cess

mac

hin

es30

125.

9313

1610

9.09

1374

7795

988.

01–

8909

2.70

4588

53.1

628

927.

1384

09.4

5–

–17

47.3

521

570.

6634

62.1

235

57.8

0–

––

9248

.56

Ele

ctri

cal

good

s31

-33

20.3

818

1815

.06

3067

2550

97.2

323

.72

8909

2.70

4588

53.1

640

37.7

719

865.

88–

–44

66.8

812

28.9

596

4.00

678.

00–

––

9248

.56

Tran

spor

t eq

uip

men

t34

-35

48.1

844

7178

.34

3189

4019

39.1

9–

8909

2.70

4588

53.1

694

42.0

530

47.9

8–

–26

74.7

821

22.3

513

05.1

762

0.12

––

–41

16.7

2

Oth

er m

anu

fact

uri

ng

23,3

6-37

6.29

1224

15.2

119

508.

2437

25.2

380

505.

7126

4856

.24

2702

.07

693.

39–

–40

33.1

675

47.1

210

3.19

291.

17–

––

Fu

el, p

ower

, wat

er40

,41

1.69

1443

4.45

941.

60–

579.

5796

44.0

933

1.49

1413

52.5

2–

–51

50.8

723

44.7

634

.22

19.8

9–

––

Con

stru

ctio

n45

345.

3229

4258

6.29

––

8909

2.70

4588

53.1

667

577.

8953

01.9

4–

––

2344

.97

6.73

3.06

––

––

Ser

vice

s, e

xcl.

tran

spor

t50

-55,

64-9

59.

1382

996.

6396

7.13

–24

146.

7511

2109

.92

2593

.90

144.

60–

––

––

–19

619.

2483

09.3

239

238.

47–

Tran

spor

t60

-63

0.80

7338

.91

3399

.81

–49

.41

350.

4425

34.7

617

79.4

349

56.6

3–

1721

.07

––

––

––

Tota

l6.

0964

55.9

532

8.13

306.

8510

59.7

978

65.3

526

62.8

314

4.60

1699

.68

3.68

148.

0615

71.5

933

.63

28.2

459

85.3

112

98.3

724

789.

6689

3.46

Min

imu

m0.

5226

0.36

12.5

423

.72

49.4

135

0.44

331.

490.

2057

.55

0.12

219.

080.

583.

0669

4.47

46.7

714

69.7

843

.57

Not

es:

Cli

mat

e: C

O2

= ca

rbon

dio

xide

; N

2O =

nit

rou

s ox

ide;

CH

4=

met

han

e; H

FC

+F

= h

ydro

flu

oroc

arbo

ns

and

flu

orin

ated

gas

es;

CO

= c

arbo

n m

onox

ide;

NM

VO

C =

non

-met

alli

c vo

lati

le o

rgan

ic c

ompo

un

ds,

excl

. m

eth

ane;

Aci

difi

cati

on;

SO

2=

sulp

hu

r

diox

ide;

NO

X=

nit

roge

n o

xide

s (N

O a

nd

NO

2); N

H3

= am

mon

ia; W

aste

: AW

= a

gric

ult

ura

l was

te; H

IWN

R =

haz

ardo

us

indu

stri

al w

aste

, not

rec

ycle

d; H

IWR

= h

azar

dou

s in

dust

rial

was

te, r

ecyc

led;

NH

IWN

R =

non

-haz

ardo

us

indu

stri

al w

aste

, not

rec

ycle

d;

NH

IWR

= n

on-h

azar

dou

s in

dust

rial

was

te, r

ecyc

led;

Eu

trop

hic

atio

n: B

OD

= o

rgan

ic m

atte

r (b

iolo

gica

l ox

ygen

dem

and)

: N =

nit

roge

n; P

= ph

osph

oru

s.

01 Doherty article 13/09/2007 11:13 Page 180

Page 25: An Environmental Input–Output Model for Ireland...input-output model – as well as historical data – to forecast emissions, waste and water use out to 2020. The growth in emissions

AN ENVIRONMENTAL INPUT–OUTPUT MODEL FOR IRELAND 181T

able

A2:

En

vir

on

men

tal

Eff

icie

nci

es P

er S

ecto

r (M

easu

red

by V

alu

e A

dd

ed),

Ire

lan

d,

2000

Cli

ma

te C

ha

nge

A

cid

ific

ati

on

Wa

ste

Eu

trop

hic

ati

on

Wa

ter

NA

CE

C

O2

N2O

C

H4

HF

C+

F

CO

N

MV

OC

S

O2

NO

XN

H3

AW

H

IWN

R

HIW

R

NH

IWN

R N

HIW

R

BO

D

N

PH

2O

€/

kg€

/kg

€/

kg€

/kg

€/

kg€

/kg

€/

kg€

/kg

461.

07€

/kg

€/

kg€

/kg

€/

kg€

/kg

€/

kg€

/kg

€/

kg€

/kg

€/

m3

Agr

icu

ltu

re,

fore

stry

,

fish

ing

1-5

2.8

126.

96.

1–

––

1059

.822

4.7

28.1

0.1

––

––

338.

522

.871

6.4

21.2

Coa

l, p

eat,

pet

role

um

,

ores

, qu

arry

ing

10-1

40.

345

31.3

6895

.5–

––

98.0

143.

949

6376

.0–

356.

894

88.0

0.1

3.6

––

––

Foo

d,

beve

rage

, to

bacc

o15

-16

1.3

2014

4.0

6053

.6–

3048

6.8

1152

40.7

378.

152

9.1

––

2960

5.5

4380

.913

.11.

919

0.2

1806

.818

31.9

139.

0

Tex

tile

s C

loth

ing

Lea

ther

& F

ootw

ear

17-1

91.

721

115.

473

28.8

–11

590.

459

694.

044

6.1

613.

3–

–73

4.6

977.

617

.022

.723

26.4

––

Woo

d &

woo

d p

rod

uct

s20

0.8

6878

.355

4689

38.0

–19

590.

810

0898

.515

2.7

319.

9–

–10

224.

118

9.4

67.6

1.3

––

––

Pu

lp,

pap

er &

pri

nt

pro

du

ctio

n21

-22

5.8

5113

2.4

2522

4757

4.7

–16

2.9

6170

.011

50.1

2393

.7–

–60

8.6

505.

323

.019

.1–

––

47.0

Ch

emic

al p

rod

uct

ion

243.

128

67.7

9731

.916

1.5

6328

7.9

2615

89.9

1353

.520

11.0

––

107.

877

.120

9.7

150.

121

50.1

5375

.111

2110

.086

4.1

Ru

bber

& p

last

ic

pro

du

ctio

n25

0.9

8491

.313

9691

287.

2–

1454

1.4

7489

2.4

186.

639

0.2

––

799.

167

8.1

88.0

74.7

––

––

Non

-met

alli

c m

iner

al

pro

du

ctio

n26

0.2

8945

.993

3.6

–25

786.

213

2806

.518

0.9

145.

8–

–42

.933

1.8

7.0

54.1

––

––

Met

al p

rod

uct

ion

exc

lud

ing

mac

hin

ery

& t

ran

spor

t

equ

ipm

ent

27-2

80.

711

465.

325

052.

2–

451.

210

7071

.812

9.4

293.

0–

–31

.516

34.1

0.8

38.9

––

–15

6.2

Agr

icu

ltu

re &

in

du

stri

al

mac

hin

ery

293.

333

994.

621

177.

944

.711

777.

960

659.

476

7.6

1219

.9–

–31

93.8

3282

.185

.387

.7–

––

489.

0

Off

ice

and

dat

a p

roce

ss

mac

hin

es30

14.3

1492

26.6

1558

7892

01.0

–10

101.

752

026.

932

79.9

6389

.4–

–23

80.0

2445

.839

2.6

403.

4–

––

1048

.6

Ele

ctri

cal

good

s31

-33

4.2

3706

1.3

6252

3048

0.7

4.8

1816

0.7

9353

2.8

823.

117

14.2

––

356.

225

0.5

196.

513

8.2

––

–18

85.2

Tra

nsp

ort

equ

ipm

ent

34-3

54.

036

918.

526

3313

480.

3–

7355

.437

882.

477

9.5

1640

.1–

–36

8.8

175.

210

7.8

51.2

––

–33

9.9

Oth

er m

anu

fact

uri

ng

23,3

6-37

1.2

2306

4.0

3675

.570

1.9

1516

7.9

4990

1.1

509.

157

4.3

––

503.

914

21.9

19.4

54.9

––

––

Fu

el,

pow

er,

wat

er40

,41

0.6

5158

.533

6.5

–20

7.1

3446

.611

8.5

247.

8–

–14

41.4

838.

012

.27.

1–

––

Con

stru

ctio

n45

121.

610

3638

2.1

––

3137

8.5

1616

08.6

2380

1.0

4978

4.5

––

1814

.182

5.9

2.4

1.1

––

––

Ser

vice

s, e

xcl.

tra

nsp

ort

50-5

5,64

-95

4.6

4192

1.7

488.

5–

1219

6.6

5662

6.9

1310

.226

78.0

––

––

––

9909

.741

97.1

1981

9.4

Tra

nsp

ort

60-6

30.

218

37.3

851.

1–

12.4

87.7

634.

636

.212

40.9

––

––

––

––

Tot

al2.

021

51.0

109.

310

2.2

353.

126

20.6

887.

259

2.9

566.

31.

257

3.4

523.

611

.29.

419

94.2

432.

682

59.6

Min

imu

m0.

1512

6.90

6.11

4.84

12.3

787

.73

98.0

136

.20

28.0

50.

0631

.52

77.1

50.

131.

0819

0.16

22.7

971

6.40

297.

7

Not

es: C

lim

ate:

CO

2=

car

bon

dio

xid

e; N

2O =

nit

rou

s ox

ide;

CH

4=

met

han

e; H

FC

+F

= h

ydro

flu

oroc

arbo

ns

and

flu

orin

ated

gas

es; C

O =

car

bon

mon

oxid

e; N

MV

OC

= n

on-m

etal

lic

vola

tile

org

anic

com

pou

nd

s, e

xcl.

met

han

e; A

cid

ific

atio

n; S

O2

= s

ulp

hu

r d

ioxi

de;

NO

X=

nit

roge

n o

xid

es (

NO

an

d N

O2)

; N

H3

= a

mm

onia

; W

aste

: A

W =

agr

icu

ltu

ral

was

te;

HIW

NR

= h

azar

dou

s in

du

stri

al w

aste

, n

ot r

ecyc

led

; H

IWR

= h

azar

dou

s in

du

stri

al w

aste

, re

cycl

ed;

NH

IWN

R =

non

-haz

ard

ous

ind

ust

rial

was

te,

not

rec

ycle

d;

NH

IWR

= n

on-h

azar

dou

s in

du

stri

al w

aste

, re

cycl

ed;

Eu

trop

hic

atio

n:

BO

D =

org

anic

mat

ter

(bio

logi

cal

oxyg

en d

eman

d):

N =

nit

roge

n;

P=

ph

osp

hor

us.

01 Doherty article 13/09/2007 11:13 Page 181

Page 26: An Environmental Input–Output Model for Ireland...input-output model – as well as historical data – to forecast emissions, waste and water use out to 2020. The growth in emissions

182 THE ECONOMIC AND SOCIAL REVIEW

Table

A3:

Ou

tpu

t P

er S

ecto

r A

ccord

ing t

o t

he

Hig

h G

row

th S

cen

ari

o o

f B

arr

ett

et a

l. (

2005)

NA

CE

O

utp

ut

(10

6€

) In

dex

2000

2005

2010

2015

2020

2000

2005

2010

2015

2020

Agri

cult

ure

, fo

restr

y, f

ish

ing

1-5

6,9

45

7,1

51

7,6

38

8,0

17

8,3

00

100.0

103.0

110.0

115.4

119.5

Coal,

peat,

petr

ole

um

, m

eta

l

ore

s,

qu

arr

yin

g10-1

41,4

81

1,9

25

2,7

05

3,3

82

4,0

53

100.0

129.9

182.6

228.3

273.6

Food

, bevera

ge,

tobacc

o15-1

613,6

96

17,7

94

25,0

07

31,2

71

37,4

72

100.0

129.9

182.6

228.3

273.6

Texti

les C

loth

ing L

eath

er

& F

ootw

ear

17-1

93,2

19

4,1

82

5,8

77

7,3

49

8,8

06

100.0

129.9

182.6

228.3

273.6

Wood

& w

ood

pro

du

cts

20

956

1,2

42

1,7

45

2,1

82

2,6

15

100.0

129.9

182.6

228.3

273.6

Pu

lp,

pap

er

& p

rin

t

pro

du

ctio

n21-2

27,7

32

10,0

46

14,1

18

17,6

54

21,1

55

100.0

129.9

182.6

228.3

273.6

Ch

em

ical

pro

du

ctio

n24

22,2

85

28,9

52

40,6

88

50,8

80

60,9

70

100.0

129.9

182.6

228.3

273.6

Ru

bber

& p

lasti

c p

rod

uct

ion

25

2,0

69

2,6

87

3,7

77

4,7

23

5,6

60

100.0

129.9

182.6

228.3

273.6

Non

-meta

llic

min

era

l

pro

du

ctio

n26

1,6

33

2,1

22

2,9

82

3,7

29

4,4

68

100.0

129.9

182.6

228.3

273.6

Meta

l p

rod

uct

ion

excl

ud

ing

mach

inery

& t

ran

sp

ort

equ

ipm

en

t27-2

83,3

31

4,3

27

6,0

81

7,6

05

9,1

13

100.0

129.9

182.6

228.3

273.6

Agri

cult

ure

& i

nd

ustr

ial

mach

inery

29

4,7

16

6,1

27

8,6

11

10,7

68

12,9

04

100.0

129.9

182.6

228.3

273.6

Off

ice a

nd

data

pro

cess

mach

ines

30

20,8

61

27,1

02

38,0

89

47,6

30

57,0

75

100.0

129.9

182.6

228.3

273.6

Ele

ctri

cal

good

s31-3

314,5

89

18,9

54

26,6

36

33,3

09

39,9

14

100.0

129.9

182.6

228.3

273.6

Tra

nsp

ort

equ

ipm

en

t34-3

54,7

75

6,2

04

8,7

19

10,9

03

13,0

65

100.0

129.9

182.6

228.3

273.6

Oth

er

man

ufa

ctu

rin

g23,3

6-3

72,5

06

3,2

56

4,5

75

5,7

21

6,8

56

100.0

129.9

182.6

228.3

273.6

Fu

el,

pow

er,

wate

r40,4

12,3

65

3,1

30

4,0

68

4,8

11

6,3

39

100.0

132.4

172.0

203.5

268.1

Con

str

uct

ion

45

15,5

17

20,2

09

24,9

04

21,3

07

13,6

96

100.0

130.2

160.5

137.3

88.3

Serv

ices,

excl

. tr

an

sp

ort

50-5

5,6

4-9

570,6

29

92,7

12

118,4

22

143,2

22

170,6

36

100.0

131.3

167.7

202.8

241.6

Tra

nsp

ort

60-6

38,8

05

11,1

31

14,3

86

18,2

79

23,4

32

100.0

126.4

163.4

207.6

266.1

GD

Pat

fact

or

cost

208,1

09

269,2

53

359,0

27

432,7

42

506,5

27

100.0

129.4

172.5

207.9

243.4

01 Doherty article 13/09/2007 11:13 Page 182

Page 27: An Environmental Input–Output Model for Ireland...input-output model – as well as historical data – to forecast emissions, waste and water use out to 2020. The growth in emissions

AN ENVIRONMENTAL INPUT–OUTPUT MODEL FOR IRELAND 183T

able

A4:

Ou

tpu

t P

er S

ecto

r A

ccord

ing t

o t

he

Low

Gro

wth

Sce

na

rio o

f B

arr

ett

et a

l. (

2005)

NA

CE

O

utp

ut

(10

6€

) In

dex

2000

2005

2010

2015

2020

2000

2005

2010

2015

2020

Agri

cult

ure

, fo

restr

y, f

ish

ing

1-5

6,9

45

7,1

51

7,6

36

7,9

53

8,0

54

100.0

103.0

109.9

114.5

116.0

Coal,

peat,

petr

ole

um

,

meta

l ore

s,

qu

arr

yin

g

10-1

4

1,4

81

1,9

25

2,4

12

2,9

20

3,5

41

100.0

129.9

162.8

197.1

239.0

Food

, bevera

ge,

tobacc

o15-1

613,6

96

17,7

94

22,2

95

26,9

98

32,7

39

100.0

129.9

162.8

197.1

239.0

Texti

les C

loth

ing L

eath

er

& F

ootw

ear

17-1

93,2

19

4,1

82

5,2

40

6,3

45

7,6

94

100.0

129.9

162.8

197.1

239.0

Wood

& w

ood

pro

du

cts

20

956

1,2

42

1,5

56

1,8

84

2,2

84

100.0

129.9

162.8

197.1

239.0

Pu

lp,

pa

per

& p

rin

t

pro

du

ctio

n21-2

27,7

32

10,0

46

12,5

87

15,2

42

18,4

83

100.0

129.9

162.8

197.1

239.0

Ch

em

ical

pro

du

ctio

n24

22,2

85

28,9

52

36,2

76

43,9

28

53,2

69

100.0

129.9

162.8

197.1

239.0

Ru

bber

& p

lasti

c p

rod

uct

ion

25

2,0

69

2,6

87

3,3

67

4,0

78

4,9

45

100.0

129.9

162.8

197.1

239.0

Non

-meta

llic

min

era

l

pro

du

ctio

n26

1,6

33

2,1

22

2,6

59

3,2

19

3,9

04

100.0

129.9

162.8

197.1

239.0

Meta

l p

rod

uct

ion

excl

ud

ing

mach

inery

& t

ran

sp

ort

equ

ipm

en

t27-2

83,3

31

4,3

27

5,4

22

6,5

65

7,9

61

100.0

129.9

162.8

197.1

239.0

Agri

cult

ure

& i

nd

ustr

ial

mach

inery

29

4,7

16

6,1

27

7,6

77

9,2

97

11,2

74

100.0

129.9

162.8

197.1

239.0

Off

ice a

nd

data

pro

cess

mach

ines

30

20,8

61

27,1

02

33,9

59

41,1

21

49,8

65

100.0

129.9

162.8

197.1

239.0

Ele

ctri

cal

good

s31-3

314,5

89

18,9

54

23,7

48

28,7

57

34,8

72

100.0

129.9

162.8

197.1

239.0

Tra

nsp

ort

equ

ipm

en

t34-3

54,7

75

6,2

04

7,7

74

9,4

13

11,4

15

100.0

129.9

162.8

197.1

239.0

Oth

er

man

ufa

ctu

rin

g23,3

6-3

72,5

06

3,2

56

4,0

79

4,9

39

5,9

90

100.0

129.9

162.8

197.1

239.0

Fu

el,

pow

er,

wate

r40,4

12,3

65

3,1

30

4,0

58

4,7

23

5,9

46

100.0

132.4

171.6

199.7

251.4

Con

str

uct

ion

45

15,5

17

20,2

09

25,5

18

24,5

18

20,8

40

100.0

130.2

164.5

158.0

134.3

Serv

ices,

excl

. tr

an

sp

ort

50-5

5,6

4-9

570,6

29

92,7

12

112,9

17

131,2

49

152,7

83

100.0

131.3

159.9

185.8

216.3

Tra

nsp

ort

60-6

38,8

05

11,1

31

13,5

75

16,3

24

19,8

34

100.0

126.4

154.2

185.4

225.3

GD

Pat

fact

or

cost

208,1

09

269,2

53

332,7

54

389,4

75

455,6

92

100.0

129.4

159.9

187.1

219.0

01 Doherty article 13/09/2007 11:13 Page 183

Page 28: An Environmental Input–Output Model for Ireland...input-output model – as well as historical data – to forecast emissions, waste and water use out to 2020. The growth in emissions

184 THE ECONOMIC AND SOCIAL REVIEW

Table

A5:

Extr

ap

ola

ted

Em

issi

on

s by I

nd

ust

ry –

Ca

rbon

Dio

xid

e (M

illi

on

Gra

ms

of

CO

2)

Low

Gro

wth

Hig

h G

row

th –

L

ow G

row

th –

H

igh

Gro

wth

Ari

thm

etic

Mea

nA

rith

met

ic M

ean

Geo

met

ric

Mea

nG

eom

etri

c M

ean

2005

2010

2015

2020

2005

2010

2015

2020

2005

2010

2015

2020

2005

2010

2015

2020

Agri

cult

ure

, F

ores

try,

Fis

hin

g901.0

894.3

866.0

815.1

901.0

0894.6

9872.9

2840.0

4885.0

9803.6

5711

.81

612.8

8885.0

9803.9

6717.5

4631.6

4

Fu

el,

Pow

er,

Wate

r976.0

955.1

839.1

797.4

975.9

7957.3

1854.7

7850.1

1970.3

1922.3

2787.0

7726.4

8970.3

1924.4

4801.7

4774.4

9

Coa

l, p

eat,

pet

role

um

,

met

al

ores

, qu

arr

yin

g972.2

1,3

95.9

1,9

37.0

2,6

91.6

972.2

11,5

65.6

72,2

43.5

43,0

80.7

4961.4

61,3

05.8

51,7

14.0

72,2

53.0

9961.4

61,4

64.6

61,9

85.3

52,5

78.8

4

Foo

d,

bev

erage,

tob

acc

o1,2

02.0

1,0

33.3

858.5

714.3

1,2

02.0

11,1

59.0

0994.3

9817.5

51,1

94.1

4993.3

9798.6

5643.0

01,1

94.1

41,1

14.2

0925.0

5735.9

6

Tex

tile

s C

loth

ing L

eath

er

& F

ootw

ear

420.2

640.7

944.2

1,3

93.3

420.1

9718.6

31,0

93.6

01,5

94.7

7418.3

1623.7

0898.7

41,2

96.8

8418.3

1699.5

61,0

40.9

81,4

84.3

8

Woo

d &

woo

d p

rod

uct

s132.1

96.8

68.5

48.6

132.0

6108.5

479.3

955.6

4131.0

592.4

162.9

842.9

8131.0

5103.6

572.9

549.2

0

Pu

lp,

pa

per

& p

rin

t

pro

du

ctio

n106.3

72.4

47.7

31.5

106.2

681.2

255.2

436.0

0105.4

369.0

943.7

527.7

5105.4

377.4

950.6

831.7

6

Ch

emic

al

pro

du

ctio

n563.7

222.7

85.1

32.5

563.7

0249.8

398.5

237.2

3557.2

0207.7

874.8

827.0

2557.2

0233.0

586.7

330.9

3

Ru

bb

er &

pla

stic

pro

du

ctio

n249.0

234.6

213.5

194.7

249.0

0263.0

8247.3

3222.8

2248.1

1229.5

7205.2

8183.8

2248.1

1257.4

9237.7

7210.4

0

Non

-met

all

ic m

iner

al

pro

du

ctio

n3,6

77.1

4,8

21.6

6,1

10.1

7,7

53.8

3,6

77.1

45,4

07.9

87,0

77.0

88,8

74.8

23,6

47.3

84,5

92.0

75,5

87.4

56,8

08.1

83,6

47.3

85,1

50.5

56,4

71.7

67

,792.5

0

Met

al

pro

du

ctio

n e

xcl

ud

ing

ma

chin

ery &

tra

nsp

ort

equ

ipm

ent

775.0

839.4

878.6

921.0

774.9

7941.4

51,0

17.6

71,0

54.1

4771.2

3815.3

3833.0

2852.3

0771.2

3914.4

8964.8

6975.5

2

Agri

cult

ure

& i

nd

ust

ria

l

mach

iner

y136.3

130.7

121.1

112.3

136.2

7146.5

4140.2

2128.5

8135.4

2125.8

811

3.0

8101.7

3135.4

2141.1

9130.9

811

6.4

4

Off

ice

an

d d

ata

pro

cess

mach

ines

116.5

98.9

81.1

66.6

116.5

311

0.9

093.9

276.2

1109.2

867.2

640.0

123.8

4109.2

875.4

546.3

527.2

8

Ele

ctri

cal

goo

ds

436.1

417.6

386.5

358.2

436.0

7468.4

1447.6

9410.0

4424.6

6356.2

0288.7

5234.4

1424.6

6399.5

2334.4

5268.3

0

Tra

nsp

ort

equ

ipm

ent

68.1

58.3

48.3

40.0

68.1

165.4

155.8

945.7

667.8

056.7

245.8

637.1

367.8

063.6

153.1

142.4

9

Oth

er m

an

ufa

ctu

rin

g416.9

528.3

646.9

793.2

416.9

4592.5

2749.2

5907.9

0407.3

9459.6

7501.2

6547.3

8407.3

9515.5

7580.5

9626.5

2

Con

stru

ctio

n16.6

11.0

5.6

2.5

16.6

010.7

64.8

41.6

416.2

09.5

14.2

51.6

816.2

09.2

83.6

91.1

0

Tra

nsp

ort*

11,1

23.2

12,6

88.3

14,2

71.9

16,2

20.1

11,1

23.1

613,4

46.4

615,9

81.2

419,1

62.7

911

,116.4

612,6

42.5

514,1

77.6

416,0

64.6

011

,116.4

613,3

97.9

615,8

75.7

218,9

79.0

2

Ser

vic

es e

xcl

. T

ran

spor

t7,9

31.5

8,8

96.1

9,5

22.4

10,2

08.1

7,9

31.5

39,3

29.7

110,3

91.1

111

,400.8

77,9

29.1

88,8

80.2

69,4

91.4

510,1

59.8

27,9

29.1

89,3

13.1

510,3

57.3

111

,346.9

6

01 Doherty article 13/09/2007 11:13 Page 184

Page 29: An Environmental Input–Output Model for Ireland...input-output model – as well as historical data – to forecast emissions, waste and water use out to 2020. The growth in emissions

AN ENVIRONMENTAL INPUT–OUTPUT MODEL FOR IRELAND 185T

able

A6:

Extr

ap

ola

ted

Em

issi

on

s by I

nd

ust

ry –

Nit

rou

s O

xid

e (M

illi

on

Gra

ms

of

N2O

)

Low

Gro

wth

Hig

h G

row

th –

L

ow

Gro

wth

Hig

h G

row

th –

Ari

thm

etic

Mea

nA

rith

met

ic M

ean

Geo

met

ric

Mea

nG

eom

etri

c M

ean

2005

2010

2015

2020

2005

2010

2015

2020

2005

2010

2015

2020

2005

2010

2015

2020

Agri

cult

ure

, F

ore

str

y,

Fis

hin

g25.5

027.4

028.7

329.2

825.4

99

27.4

14

28.9

59

30.1

73

25.4

66

27.0

94

28.1

19

28.3

69

25.4

66

27.1

05

28.3

45

29.2

38

Fu

el,

Pow

er,

Wate

r0.1

00.0

90.0

70.0

60.0

97

0.0

86

0.0

69

0.0

61

0.1

05

0.0

93

0.0

74

0.0

63

0.1

05

0.0

93

0.0

75

0.0

67

Coal,

peat,

petr

ole

um

, m

eta

l

ore

s,

qu

arr

yin

g0.0

60.0

80.1

00.1

20.0

64

0.0

91

0.1

16

0.1

42

0.0

64

0.0

77

0.0

90

0.1

05

0.0

64

0.0

86

0.1

04

0.1

20

Food

, bevera

ge,

tobacc

o0.0

60.0

50.0

40.0

30.0

63

0.0

55

0.0

42

0.0

31

0.0

70

0.0

54

0.0

41

0.0

31

0.0

70

0.0

61

0.0

47

0.0

35

Texti

les C

loth

ing L

eath

er

& F

ootw

ear

0.0

30.0

40.0

50.0

70.0

26

0.0

41

0.0

57

0.0

76

0.0

26

0.0

35

0.0

46

0.0

61

0.0

26

0.0

39

0.0

53

0.0

69

Wood

& w

ood

pro

du

cts

0.0

10.0

10.0

10.0

00.0

12

0.0

09

0.0

06

0.0

04

0.0

13

0.0

09

0.0

06

0.0

04

0.0

13

0.0

10

0.0

07

0.0

05

Pu

lp,

pap

er

& p

rin

t p

rod

uct

ion

0.0

10.0

10.0

00.0

00.0

10

0.0

07

0.0

05

0.0

03

0.0

11

0.0

07

0.0

05

0.0

03

0.0

11

0.0

08

0.0

05

0.0

03

Ch

em

ical

pro

du

ctio

n0.0

40.0

10.0

00.0

00.0

38

0.0

09

0.0

02

0.0

00

0.0

54

0.0

07

0.0

01

0.0

00

0.0

54

0.0

07

0.0

01

0.0

00

Ru

bber

& p

lasti

c p

rod

uct

ion

0.0

20.0

20.0

20.0

10.0

24

0.0

23

0.0

20

0.0

17

0.0

26

0.0

23

0.0

19

0.0

17

0.0

26

0.0

25

0.0

22

0.0

19

Non

-meta

llic

min

era

l p

rod

uct

ion

0.0

30.0

20.0

20.0

10.0

29

0.0

26

0.0

21

0.0

16

0.0

31

0.0

25

0.0

20

0.0

16

0.0

31

0.0

28

0.0

23

0.0

18

Meta

l p

rod

uct

ion

excl

ud

ing

mach

inery

& t

ran

sp

ort

equ

ipm

en

t0.0

30.0

20.0

20.0

10.0

27

0.0

23

0.0

18

0.0

13

0.0

29

0.0

23

0.0

18

0.0

14

0.0

29

0.0

26

0.0

21

0.0

16

Agri

cult

ure

& i

nd

ustr

ial

mach

inery

0.0

10.0

10.0

10.0

10.0

13

0.0

14

0.0

13

0.0

12

0.0

13

0.0

13

0.0

12

0.0

11

0.0

13

0.0

14

0.0

14

0.0

13

Off

ice a

nd

data

pro

cess

mach

ines

0.0

10.0

10.0

10.0

10.0

12

0.0

12

0.0

10

0.0

08

0.0

13

0.0

08

0.0

04

0.0

03

0.0

13

0.0

09

0.0

05

0.0

03

Ele

ctri

cal

good

s

0.0

40.0

40.0

30.0

30.0

40

0.0

40

0.0

36

0.0

30

0.0

43

0.0

34

0.0

26

0.0

20

0.0

43

0.0

38

0.0

30

0.0

23

Tra

nsp

ort

equ

ipm

en

t0.0

10.0

10.0

00.0

00.0

07

0.0

06

0.0

05

0.0

03

0.0

07

0.0

06

0.0

04

0.0

03

0.0

07

0.0

06

0.0

05

0.0

04

Oth

er

man

ufa

ctu

rin

g0.0

10.0

10.0

10.0

10.0

13

0.0

13

0.0

12

0.0

10

0.0

14

0.0

12

0.0

10

0.0

09

0.0

14

0.0

14

0.0

12

0.0

10

Con

str

uct

ion

0.0

30.0

30.0

30.0

30.0

29

0.0

34

0.0

28

0.0

17

0.0

29

0.0

34

0.0

30

0.0

24

0.0

29

0.0

33

0.0

26

0.0

15

Tra

nsp

ort

*1.2

31.5

82.0

12.5

81.2

29

1.6

78

2.2

53

3.0

52

1.2

15

1.5

32

1.9

04

2.3

91

1.2

15

1.6

23

2.1

32

2.8

25

Serv

ices e

xcl

. T

ran

sp

ort

0.7

70.7

90.7

70.7

60.7

73

0.8

31

0.8

45

0.8

48

0.8

00

0.8

31

0.8

24

0.8

18

0.8

00

0.8

71

0.8

99

0.9

14

01 Doherty article 13/09/2007 11:13 Page 185

Page 30: An Environmental Input–Output Model for Ireland...input-output model – as well as historical data – to forecast emissions, waste and water use out to 2020. The growth in emissions

186 THE ECONOMIC AND SOCIAL REVIEW

Table

A7:

Extr

ap

ola

ted

Em

issi

on

s by I

nd

ust

ry –

Met

ha

ne

(Mil

lion

Gra

ms

of

CH

4)

Low

Gro

wth

Hig

h G

row

th –

L

ow G

row

th –

H

igh

Gro

wth

Ari

thm

etic

Mea

nA

rith

met

ic M

ean

Geo

met

ric

Mea

nG

eom

etri

c M

ean

2005

2010

2015

2020

2005

2010

2015

2020

2005

2010

2015

2020

2005

2010

2015

2020

Agri

cult

ure

, F

ores

try,

Fis

hin

g548.2

399

590.2

359

619.8

629

632.8

148

548.2

399

590.4

619

624.8

45

652.1

901

547.3

436

585.8

106

611

.6027

620.7

154

547.3

437

586.0

349

616.5

184

639.7

202

Fu

el,

Pow

er,

Wate

r2.0

1675

1.9

33632

1.6

64387

1.5

49564

2.0

1675

1.9

38076

1.6

95411

1.6

51973

2.1

42178

1.9

81782

1.6

45944

1.4

78593

2.1

42178

1.9

86337

1.6

76623

1.5

76312

Coa

l, p

eat,

pet

role

um

,

met

al

ores

, qu

arr

yin

g0.0

27368

0.0

33873

0.0

40518

0.0

48535

0.0

27368

0.0

37993

0.0

46931

0.0

55552

0.0

27435

0.0

27804

0.0

27232

0.0

2671

0.0

27435

0.0

311

85

0.0

31542

0.0

30572

Foo

d,

bev

erage,

tob

acc

o0.2

30186

0.1

51536

0.0

96412

0.0

61427

0.2

30186

0.1

69966

0.1

11671

0.0

70308

0.2

61806

0.1

68854

0.1

0525

0.0

65697

0.2

61806

0.1

8939

0.1

21907

0.0

75195

Tex

tile

s C

loth

ing L

eath

er

& F

ootw

ear

0.1

18838

0.2

02277

0.3

32749

0.5

48148

0.1

18838

0.2

26878

0.3

85411

0.6

27399

0.1

11775

0.1

80133

0.2

80557

0.4

37582

0.1

11775

0.2

02041

0.3

24

959

0.5

00847

Pu

lp,

pa

per

& p

rin

t

pro

du

ctio

n0.0

01292

0.0

00597

0.0

00266

0.0

0011

90.0

01292

0.0

00669

0.0

00308

0.0

00136

0.0

01578

0.0

00635

0.0

00247

9.6

1E

-05

0.0

01578

0.0

00712

0.0

00

286

0.0

0011

Ch

emic

al

pro

du

ctio

n0.0

36202

0.0

07026

0.0

01318

0.0

00248

0.0

36202

0.0

07881

0.0

01527

0.0

00283

0.0

52568

0.0

07701

0.0

0109

0.0

00155

0.0

52568

0.0

08

637

0.0

01263

0.0

00177

Non

-met

all

ic m

iner

al

pro

du

ctio

n0.7

77247

1.1

83438

1.7

41444

2.5

66168

0.7

77247

1.3

27367

2.0

17055

2.9

3718

0.7

47532

0.9

07688

1.0

65176

1.2

51749

0.7

47532

1.0

18081

1.2

337

56

1.4

32724

Met

al

pro

du

ctio

n e

xcl

ud

ing

ma

chin

ery &

tra

nsp

ort

equ

ipm

ent

0.0

14216

0.0

07723

0.0

04055

0.0

02132

0.0

14216

0.0

08663

0.0

04697

0.0

02441

0.0

16802

0.0

08458

0.0

0411

50.0

02005

0.0

16802

0.0

09486

0.0

047

66

0.0

02294

Oth

er m

an

ufa

ctu

rin

g0.1

0514

0.1

09435

0.1

10084

0.1

10892

0.1

0514

0.1

22745

0.1

27506

0.1

26925

0.1

0911

40.0

88426

0.0

69257

0.0

54319

0.1

0911

40.0

991

81

0.0

80218

0.0

62173

Tra

nsp

ort*

1.7

99281

1.5

87331

1.3

8082

1.2

13678

1.7

99281

1.6

82177

1.5

46204

1.4

33862

1.9

19653

1.6

88599

1.4

64643

1.2

83611

1.9

19653

1.7

89496

1.6

400

66

1.5

16482

Ser

vic

es e

xcl

. T

ran

spor

t72.2

68

73.3

0422

70.9

614

68.7

957

72.2

68

76.8

7762

77.4

3482

76.8

3424

74.9

6083

74.5

1801

70.6

9658

67.1

7095

74.9

6083

78.1

5058

77.1

4585

75.0

1964

Not

es:

Da

ta f

or t

he

foll

owin

g s

ecto

rs h

ave

extr

ap

ola

ted

va

lues

of

zero

ou

t to

20

20

: W

ood

& w

ood

pro

du

cts;

Ru

bb

er &

pla

stic

pro

du

ctio

n;

Agri

cult

ure

& i

nd

ust

ria

l m

ach

iner

y;

Off

ice

an

d d

ata

pro

cess

ma

chin

es;

Ele

ctri

cal

goo

ds;

Tra

nsp

ort

equ

ipm

ent

an

d C

onst

ruct

ion

.

01 Doherty article 13/09/2007 11:13 Page 186

Page 31: An Environmental Input–Output Model for Ireland...input-output model – as well as historical data – to forecast emissions, waste and water use out to 2020. The growth in emissions

AN ENVIRONMENTAL INPUT–OUTPUT MODEL FOR IRELAND 187T

able

A8:

Extr

ap

ola

ted

Em

issi

on

s by I

nd

ust

ry –

Su

lph

ur

Dio

xid

e (M

illi

on

Gra

ms

of

SO

2)

Low

Gro

wth

Hig

h G

row

th –

L

ow G

row

th –

H

igh

Gro

wth

Ari

thm

etic

Mea

nA

rith

met

ic M

ean

Geo

met

ric

Mea

nG

eom

etri

c M

ean

2005

2010

2015

2020

2005

2010

2015

2020

2005

2010

2015

2020

2005

2010

2015

2020

Agri

cult

ure

, F

ores

try,

Fis

hin

g1.7

81.3

00.9

20.6

41.7

81.3

00.9

30.6

61.9

31.3

60.9

30.6

21.9

31.3

60.9

40.6

4

Fu

el,

Pow

er,

Wate

r2.5

71.6

70.9

80.6

22.5

71.6

80.9

90.6

62.9

51.8

00.9

80.5

82.9

51.8

01.0

00.6

2

Coa

l, p

eat,

pet

role

um

,

met

al

ores

, qu

arr

yin

g1.8

11.8

01.7

31.6

61.8

12.0

22.0

01.9

01.8

91.6

31.3

61.1

31.8

91.8

31.5

71.3

0

Foo

d,

bev

erage,

tob

acc

o2.3

51.4

80.9

10.5

52.3

51.6

61.0

50.6

32.6

91.5

60.8

80.4

92.6

91.7

51.0

20.5

6

Tex

tile

s C

loth

ing L

eath

er

& F

ootw

ear

0.8

40.8

30.7

90.7

60.8

40.9

30.9

20.8

70.8

80.8

40.7

70.7

10.8

80.9

40.8

90.8

2

Woo

d &

woo

d p

rod

uct

s0.3

70.2

10.1

10.0

60.3

70.2

30.1

30.0

70.4

40.2

30.1

10.0

60.4

40.2

50.1

30.0

6

Pu

lp,

pap

er &

pri

nt

pro

du

ctio

n0.2

90.1

50.0

70.0

40.2

90.1

60.0

80.0

40.3

50.1

60.0

70.0

30.3

50.1

80.0

80.0

3

Ch

emic

al

pro

du

ctio

n1.4

00.5

70.2

20.0

91.4

00.6

40.2

60.1

01.7

50.6

90.2

60.1

01.7

50.7

70.3

00.1

1

Ru

bber

& p

last

ic p

rod

uct

ion

0.6

50.4

20.2

70.1

70.6

50.4

70.3

10.1

90.7

40.4

50.2

60.1

60.7

40.5

10.3

10.1

8

Non

-met

all

ic m

iner

al

pro

du

ctio

n1.0

90.7

30.4

80.3

11.0

90.8

20.5

50.3

51.2

30.7

80.4

70.2

91.2

30.8

70.5

50.3

3

Met

al

pro

du

ctio

n e

xcl

ud

ing

ma

chin

ery &

tra

nsp

ort

equ

ipm

ent

3.7

73.7

63.6

23.5

03.7

74.2

24.2

04.0

03.9

43.7

63.4

73.2

13.9

44.2

24.0

23.6

7

Agri

cult

ure

& i

nd

ust

ria

l

mach

iner

y0.3

80.2

80.2

00.1

50.3

80.3

20.2

40.1

70.4

20.2

90.1

90.1

30.4

20.3

30.2

20.1

5

Off

ice

an

d d

ata

pro

cess

mach

ines

0.3

20.2

00.1

20.0

70.3

20.2

20.1

40.0

80.3

60.1

50.0

60.0

30.3

60.1

70.0

70.0

3

Ele

ctri

cal

goo

ds

1.1

10.7

10.4

40.2

81.1

10.8

00.5

10.3

11.2

70.6

90.3

60.1

91.2

70.7

80.4

20.2

2

Tra

nsp

ort

equ

ipm

ent

0.1

80.1

10.0

60.0

30.1

80.1

20.0

70.0

40.2

10.1

20.0

60.0

30.2

10.1

30.0

70.0

4

Oth

er m

an

ufa

ctu

rin

g0.5

40.4

20.3

10.2

30.5

40.4

70.3

60.2

70.5

90.4

20.2

90.1

90.5

90.4

70.3

30.2

2

Con

stru

ctio

n0.7

50.6

60.4

50.2

70.7

50.6

50.3

90.1

70.8

10.6

50.4

00.2

20.8

10.6

40.3

50.1

4

Tra

nsp

ort*

1.8

81.1

60.7

00.4

31.8

81.2

30.7

90.5

12.1

61.0

50.5

00.2

42.1

61.1

10.5

60.2

9

Ser

vic

es e

xcl

. T

ran

spor

t17.0

713.8

410.7

18.3

017.0

714.5

211

.69

9.2

718.5

214.6

211

.02

8.3

218.5

215.3

312.0

29.2

9

01 Doherty article 13/09/2007 11:13 Page 187

Page 32: An Environmental Input–Output Model for Ireland...input-output model – as well as historical data – to forecast emissions, waste and water use out to 2020. The growth in emissions

188 THE ECONOMIC AND SOCIAL REVIEW

Table

A9:

Extr

ap

ola

ted

Em

issi

on

s by I

nd

ust

ry –

Nit

rogen

Oxid

es (

Mil

lion

Gra

ms

of

NO

x)

Low

Gro

wth

Hig

h G

row

th –

L

ow G

row

th –

H

igh

Gro

wth

Ari

thm

etic

Mea

nA

rith

met

ic M

ean

Geo

met

ric

Mea

nG

eom

etri

c M

ean

2005

2010

2015

2020

2005

2010

2015

2020

2005

2010

2015

2020

2005

2010

2015

2020

Agri

cult

ure

, F

ores

try,

Fis

hin

g13.4

714.4

915.2

215.5

313.4

714.5

015.3

416.0

113.4

414.3

314.9

015.0

613.4

414.3

415.0

215.5

3

Fu

el,

Pow

er,

Wate

r2.0

01.6

11.1

60.9

12.0

01.6

11.1

80.9

72.2

01.7

11.1

90.9

02.2

01.7

11.2

10.9

6

Coa

l, p

eat,

pet

role

um

, m

eta

l

ores

, qu

arr

yin

g2.1

52.8

13.5

54.4

92.1

53.1

54.1

15.1

42.1

42.6

83.2

53.9

62.1

43.0

13.7

74.5

3

Foo

d,

bev

erage,

tob

acc

o2.6

72.0

81.5

61.1

82.6

72.3

31.8

11.3

52.9

42.2

31.6

31.2

02.9

42.5

01.8

91.3

7

Tex

tile

s C

loth

ing L

eath

er

& F

ootw

ear

1.1

21.5

21.9

92.6

11.1

21.7

02.3

02.9

81.1

01.4

61.8

82.4

21.1

01.6

42.1

82.7

6

Woo

d &

woo

d p

rod

uct

s0.2

70.1

70.1

00.0

60.2

70.1

90.1

10.0

70.3

10.1

80.1

00.0

60.3

10.2

10.1

20.0

7

Pu

lp,

pap

er &

pri

nt

pro

du

ctio

n0.2

20.1

30.0

80.0

40.2

20.1

50.0

90.0

50.2

60.1

50.0

80.0

40.2

60.1

60.0

90.0

5

Ch

emic

al

pro

du

ctio

n1.2

20.5

70.2

50.1

11.2

20.6

30.2

90.1

31.4

80.6

60.2

80.1

21.4

80.7

40.3

30.1

4

Ru

bber

& p

last

ic p

rod

uct

ion

0.5

10.3

90.2

90.2

20.5

10.4

40.3

40.2

50.5

60.4

20.3

10.2

30.5

60.4

70.3

60.2

6

Non

-met

all

ic m

iner

al

pro

du

ctio

n4.0

65.1

36.2

77.6

84.0

65.7

67.2

78.7

94.0

54.5

24.8

75.2

64.0

55.0

75.6

46.0

2

Met

al

pro

du

ctio

n e

xcl

ud

ing

ma

chin

ery &

tra

nsp

ort

equ

ipm

ent

1.8

61.8

51.7

71.7

11.8

62.0

72.0

51.9

51.9

41.8

91.7

81.6

81.9

42.1

22.0

71.9

2

Agri

cult

ure

& i

nd

ust

ria

l

mach

iner

y0.2

80.2

20.1

70.1

30.2

80.2

50.2

00.1

50.3

10.2

30.1

70.1

30.3

10.2

60.2

00.1

4

Off

ice

an

d d

ata

pro

cess

mach

ines

0.2

40.1

90.1

40.1

10.2

40.2

10.1

60.1

20.2

70.1

40.0

70.0

40.2

70.1

60.0

80.0

4

Ele

ctri

cal

goo

ds

0.8

80.7

00.5

40.4

20.8

80.7

90.6

30.4

80.9

60.6

60.4

40.3

00.9

60.7

50.5

20.3

4

Tra

nsp

ort

equ

ipm

ent

0.1

40.1

00.0

70.0

50.1

40.1

10.0

80.0

50.1

60.1

10.0

70.0

50.1

60.1

20.0

80.0

6

Oth

er m

an

ufa

ctu

rin

g0.8

00.8

70.9

10.9

50.8

00.9

71.0

51.0

90.8

20.8

20.7

90.7

60.8

20.9

20.9

10.8

7

Con

stru

ctio

n0.5

80.6

20.5

00.3

60.5

80.6

10.4

40.2

40.6

00.6

20.4

90.3

40.6

00.6

10.4

20.2

2

Tra

nsp

ort*

43.0

436.7

630.9

626.3

543.0

438.9

634.6

731.1

346.2

239.1

732.7

427.6

446.2

241.5

136.6

632.6

6

Ser

vic

es e

xcl

. T

ran

spor

t12.7

112.6

512.0

211

.44

12.7

113.2

713.1

212.7

813.2

313.1

312.4

511

.81

13.2

313.7

713.5

813.1

9

01 Doherty article 13/09/2007 11:13 Page 188

Page 33: An Environmental Input–Output Model for Ireland...input-output model – as well as historical data – to forecast emissions, waste and water use out to 2020. The growth in emissions

AN ENVIRONMENTAL INPUT–OUTPUT MODEL FOR IRELAND 189

Table

A10: E

xtr

ap

ola

ted

Em

issi

on

s by I

nd

ust

ry –

Am

mon

ia (

Mil

lion

Gra

ms

of

NH

3)

Low

Gro

wth

Hig

h G

row

th –

L

ow G

row

th –

H

igh

Gro

wth

Ari

thm

etic

Mea

nA

rith

met

ic M

ean

Geo

met

ric

Mea

nG

eom

etri

c M

ean

2005

2010

2015

2020

2005

2010

2015

2020

2005

2010

2015

2020

2005

2010

2015

2020

Agri

cult

ure

, F

ores

try,

Fis

hin

g11

1.6

43

118.8

261

123.3

693

124.5

126

111.6

43

118.8

716

124.3

608

128.3

249

111.7

161

117.9

827

121.5

447

121.7

207

111

.7161

118.0

279

122.5

216

125.4

475

Tra

nsp

ort*

2.2

34635

4.0

63522

7.2

86179

13.2

006

2.2

34635

4.3

06324

8.1

58858

15.5

9544

2.0

63027

3.6

8163

6.4

78532

11.5

1887

2.0

63027

3.9

01613

7.2

5447

813.6

0861

Not

es:

Data

for

th

e fo

llow

ing s

ecto

rs h

ave

extr

ap

olate

d v

alu

es o

f ze

ro o

ut

to 2

020:

Fu

el,

pow

er a

nd

wate

r; C

oal,

pea

t, p

etro

leu

m;

met

al

ores

/qu

arr

yin

g;

Foo

d,

bev

erage,

tob

acc

o; T

exti

les

Clo

thin

g L

eath

er &

Foo

twea

r; W

ood

&

woo

d p

rod

uct

s; P

ulp

, p

ap

er &

pri

nt

pro

du

ctio

n;

Ch

emic

al

pro

du

ctio

n;

Ru

bber

& p

last

ic p

rod

uct

ion

; N

on-m

etall

ic m

iner

al

pro

du

ctio

n;

Met

al

pro

d.

excl

. m

ach

iner

y &

tra

nsp

ort

equ

ipm

ent;

Agri

cult

ure

& i

nd

ust

rial

mach

iner

y;

Off

ice

an

d d

ata

pro

cess

mach

ines

; E

lect

rica

l goo

ds;

Tra

nsp

ort

equ

ipm

ent;

Oth

er m

an

ufa

ctu

rin

g;

Con

stru

ctio

n,

an

d S

ervic

es (

excl

ud

ing T

ran

spor

t).

01 Doherty article 13/09/2007 11:13 Page 189

Page 34: An Environmental Input–Output Model for Ireland...input-output model – as well as historical data – to forecast emissions, waste and water use out to 2020. The growth in emissions

01 Doherty article 13/09/2007 11:13 Page 190