An alternative approach to alternating sign...

268
Erwin Schrödinger Institute Vienna, 20 May 2008 xavier viennot LaBRI, CNRS Université Bordeaux 1 An alternative approach to alternating sign matrices

Transcript of An alternative approach to alternating sign...

Page 1: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

Erwin Schrödinger InstituteVienna, 20 May 2008

xavier viennot LaBRI, CNRS

Université Bordeaux 1

An alternative approachto

alternating sign matrices

Page 2: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 3: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 4: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

§1 Four operators A, A’, B, B’

§2 Heisenberg operators U, D

§3 representation of operators U, D and “local rules” for RSK

§4 FPL and operators A, A, B, B

§5 FPL, Temperley-Lieb algebra, heaps of dimersinspiration from some papers ?

§6 operators for the PASEP Bijection Laguerre histories permutations

xgv website

local RSK and geometric RSK

Temperley-Lieb algebra “contraction” of heaps of dimers

Complements:

Supplement: §7 Other examples of the “cellular ansatz”

Conclusion: the “cellular ansatz”

Page 5: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

Islande hiver 02 xgv

§1 Four operatorsA, A’, B, B’

Page 6: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 7: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 8: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

BA

“planar” proof:

Page 9: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

B

A

A’B’B

A

B’

A’ A’B’

A

B

A

BA’

B’A A’

B

+

+

B’

“planarisation” of the “rewriting rules”

Page 10: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

BA

Page 11: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

BA

Page 12: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

BA

Page 13: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

BA

Page 14: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

BA

A’

B’

Page 15: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

BA

A’

B’

Page 16: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

BA

A’

B’

Page 17: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

BA

A’

B’

Page 18: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

BA

A’

B’

Page 19: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

BA

A’

B’

Page 20: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

BA

A’

B’

Page 21: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

BA

A’

B’

Page 22: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

BA

A’

B’

Page 23: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

BA

A’

B’

Page 24: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

BA

A’

B’

Page 25: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

BA

A’

B’

Page 26: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

BA

A’

B’

Page 27: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

BA

A’

B’

Page 28: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

BA

A’

B’

Page 29: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

BA

A’

B’

Page 30: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

BA

A’

B’

Page 31: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

BA

A’

B’

Page 32: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

BA

A’

B’

Page 33: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

BA

A’

B’

Page 34: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

BA

A’

B’

Page 35: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

BA

A’

B’

Page 36: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

BA

A’

B’

Page 37: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 38: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

Kerala, Inde 02 xgv

§2 Heisenbergoperators

U, D

UD = q DU + I

Page 39: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

+

“planarisation” of the “rewriting rules”U

D ID

U IU

I

U

I

I

I

D D

I I

I

I

Page 40: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

+

U

D ID

U IU

I

U

I

I

I

D D

I I

I

I

UD = qDU + I

Page 41: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

UD

Page 42: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

UD

Page 43: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

UD

Page 44: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

UD

Page 45: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

UD

Page 46: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

UD

Page 47: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

UDI

Page 48: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

UDI

Page 49: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

UDI

Page 50: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

UDI

Page 51: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

UDI

I

Page 52: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

UDI

I

Page 53: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

UDI

I

Page 54: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

UDI

I

Page 55: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

UDI

I

Page 56: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

UDI

I

Page 57: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

UDI

I

Page 58: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

UDI

I

Page 59: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

UDI

I

Page 60: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

UDI

I

Page 61: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

UDI

I

Page 62: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

UDI

I

Page 63: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

UDI

I

Page 64: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

UDI

I

Page 65: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

UDI

I

Page 66: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

UDI

I

Page 67: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

§3 representation

of operators U, D

and“local rules”

for RSK

Robinson-Schensted-Knuth correspondence

Page 68: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

The Robinson-Schensted correspondence between permutations and pair of (standard) Young tableaux with the same shape

Page 69: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

Operators U and D

UD●

Young lattice

addingor deleting

a cell ina Ferrersdiagram

Page 70: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

Heisenberg commutation relation

UD = DU + I

● ●

Page 71: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

UD = DU + I

Page 72: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

I

combinatorial “representation” of the commutation relation UD = DU + I

Page 73: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

RSK withFomin’s

“local rules”

Sergey Fomin(with C. K.)

UD = q DU + I

Page 74: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

UDI

I

Page 75: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

U

D

I

I

Page 76: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

α

β

γ

δU

D I

U

D

α

β

γ

δU

D

U

β

γ

δU

D

I

β ≠ γ β = γ

U

U

D DI

I

I

I

I

I

II

I

1 2 3

4 5 6

δ = β ∪ γ β = γ = α+ (i)δ = β+ (i+1)

α = β = γδ = α + (1)

α = β δ = γ = β +(i)

α = γδ = β = α + (i)

δ = α = β = γ

α

β

γ

δ

α

β

γ

δ

α

β

γ

δ

Page 77: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

U

D

I

I

Page 78: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

α

β

γ

δ

α

β

γ

δ

α

β

γ

δ

β ≠ γ β = γα ≠ β

I

1 2 3

6

δ = β ∪ γ β = γ = α+ (i)δ = β+ (i+1)

δ = α + (1)

δ = α = β = γ

α

β

γ

δ

α = β = γ

α = β = γ4α

β

γ

δ

β

γ

δ

Page 79: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 80: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 81: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

?

?

?

Page 82: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

BA

A’

B’

Page 83: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

Tamil Nadu, Inde 02 xgv

§4 FPLand

operatorsA, A, B, B

“Fully packed loop configurations”

Page 84: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

Thebijection

AMSFPL

Page 85: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

The6-vertexmodel

Page 86: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 87: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 88: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 89: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

FPL“Fully

PackedLoop”

configuration

Page 90: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

dualFPL

Page 91: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 92: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 93: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 94: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

B

A

AB

Page 95: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

B

A

AB

Page 96: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

B

A

AB

Page 97: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

B

A

AB

Page 98: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

B

A

AB

Page 99: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

Page 100: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

B

A

AB

Page 101: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

B

A

AB

Page 102: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

B

A

AB

Page 103: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

B

A

AB

Page 104: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

B

A

AB

Page 105: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

B

A

AB

Page 106: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

B

A

AB

Page 107: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

B

A

AB

Page 108: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

B

A

AB

Page 109: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

B

A

AB

Page 110: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

B

A

AB

Page 111: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

B

A

AB

Page 112: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

B

A

AB

Page 113: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

B

A

AB

Page 114: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

B

A

AB

Page 115: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

B

A

AB

Page 116: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

B

A

AB

Page 117: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

B

A

AB

Page 118: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

B

A

AB

Page 119: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

B

A

AB

Page 120: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

B

A

AB

Page 121: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

B

A

AB

Page 122: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

Page 123: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 124: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 125: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

Kerala, Inde 02 xgv

§5 FPL,Temperley-

Lieb algebra,heaps

of dimers

Page 126: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

From FPL to “decorated” heaps of dimers with threads

Page 127: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

B

A

AB

Page 128: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

B

A

AB

Page 129: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

“decorated heaps of dimers”

in bijectionwith FPL

Page 130: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 131: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

From “decorated heaps of

dimers” to element of

theTemperley-

Lieb algebra

Page 132: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

an element of the Temperley-Lieb algebra

Page 133: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

“big dimers” and small “dimers”

Page 134: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

Tamil Nadu, Inde 02 xgv

inspirationfrom

some papers ?

Page 135: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

Combinatorial representationof operators A, A’, B, B’ ?or operators A, A, B, B ?

Page 136: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 137: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 138: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 139: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 140: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 141: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 142: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 143: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

de Gier, Essler(2005)

Page 144: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

§6operators

for thePASEP

IIT Mumbai, Inde 02 xgv DE = q ED + E + D

Page 145: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

this section §6 “Operators for the PASEP” is a summary of parts of the talk given at the Isaac Newton Instituteon 23 April 2008 on“Alternative tableaux, permutations and asymmetric exclusion process”

for more details see the slides or the video http://www.newton.cam.ac.uk/ (page “web seminar”

Page 146: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 147: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 148: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 149: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 150: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

q=0 TASEP

Page 151: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

w(E,D) = D D E D E E D E

D DE (D E) E D E

DDE(E)EDE DDE(D)EDEDDE(ED)EDE+ +

“profile” w(E,D)

rewriting rules

commutation relation

Page 152: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

I

D

E

E

D

I

I

I

II

I

I

I

Page 153: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

E

D

Page 154: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

E

D

Page 155: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

E

D

Page 156: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

E

D

Page 157: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

E

D

Page 158: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

E

D

Page 159: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

E

D

Page 160: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

E

D

Page 161: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

E

D

Page 162: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

E

D

Page 163: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

E

D

Page 164: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

E

D

Page 165: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

E

D

Page 166: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

E

D

Page 167: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

E

D

Page 168: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

E

D

Page 169: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

E

D

Page 170: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

E

D

Page 171: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

E

D

Page 172: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

E

D

Page 173: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

E

D

D

E

E

E

Page 174: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

alternative tableau

Ferrers diagram(= Young diagram)

with some colored cells blue or red

Page 175: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

n = 12

alternative tableau

no colored cell at the left of a blue cell

or below a red cell

Page 176: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

from:

suppose there exist “formal symbols” D, E, V, W, such that

we get:

“matrix ansatz”

Page 177: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

we get immediately:

Another equivalent interpretation has been given by S.Corteel and L.Williams in term of “permutations tableaux”(2006). For more details see §5 of the slides ot the talk given 23 April 2008 at the Isaac Newton Institute and references therein.

called “free” rowor column

Page 178: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

n = 12

alternative tableau

Page 179: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 180: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

K

S

S = +

Page 181: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

S S

S S S

Page 182: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

S S

S S S

Page 183: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 184: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 185: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

Bijection Laguerre histories

permutations

Françon-xgv., 1978

Page 186: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 187: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

A

K

A

S

SJ A

S

416978352

1 1 2

1 3 241 3 241 352

416 352416 7 352416 78352

1

2

34

416978352

5

6 78

A permutation with its corresponding “Laguerre history”

Page 188: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

A

K

A

S

SJ A

S

K

A

AS

JI

KI

KJ

K

I

K

J

K

I

K

J

propagation ofthe “local rules”

Page 189: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

416978352

The “local rules”give a bijection

between permutations and alternative tableaux

Page 190: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

some other operators on chord diagrams

?

Page 191: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

Askey-Wilson polynomials

Orthogonal polynomials are behind operators and the story of PASEP, ASM and Alternating Tableaux

Page 192: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 193: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

Colomo, Pronco, (2004)

ASM1-, 2-, 3- enumeration A (x)

n

Hankel determinants

(continuous) Hahn, Meixner-Pollaczek, (continuous) dual Hahn orthogonal polynomials

Ismail, Lin, Roan (2004) XXZ spin chains and Askey-Wilson operator

Page 194: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

Conclusion

“The cellular ansatz”

from the “matrix ansatz” to the :

Page 195: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

Conclusion: In this talk I have presented a sort of “cellular ansatz”

- Some (formal) operators satisfying some commutation relations are given and generate a certain quadratic algebra.

- The computations in this algebra are made by some (oriented) rewriting rules which are visualized in a planar way on a (square) elementary cell of a grid. May be the operator identity I has to be introduced as another formal operator.

- The rewriting of a word of the algebra is visualized by a kind of a 2D cellular oriented expansion. The edges of the grid are labeled by the operators, the cells are labeled by each of the possible rewriting rules.

- The grid with the final labeling of the cells is in bijection with a class P of combinatorial objects ( Permutations, Alernative tableaux, ASM, FPL, Tilings, etc ...).

- If the operators can be represented as combinatorial operators acting on a certain class F of combinatorial objects, then a simple combinatorial explanation of the commutation rules can be “attached” to each labeled cell of the grid. The vertices of the grid becomes labeled by the objects of F and “local rules” should be defined. In the case (as in the two examples of RSK and Alternating tableaux) when only the labels of the cells, and not those of the edges, are needed for defining the local rules, then from the cellular propagation of these local rules across the grid, one obtain a bijection between the objects of P and some other objects coded by the sequence of the F-labels on the border of the grid.

Page 196: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

BA

B’

A’

UB

D

A

B

Thankyouvery

much !

Page 197: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

xgv website :

http://www.labri.fr/perso/viennot/ Recherche, cv, publications, exposés, diaporamas, livres, petite école, photos: voir ma page personnelle ici Vulgarisation scientifique voir la page de l'association Cont'Science

downloadable papers, slides and lecture notes, etc ... here(the summary on page “recherches” and most slides are in english)

page “video” “Alternative tableaux, permutations and asymmetric exclusion process” conference 23 April 2008, Isaac Newton Institute for Mathematical science

or http://www.newton.cam.ac.uk/ (page “web seminar”)

Page 198: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

on xgv website : http://www.labri.fr/perso/viennot/ other slides of talks available at the page “exposés”

- For a more complete introduction to RSK and Fomin’s local rules, see:Robinson-Schensted-Knuth: RSK1 (pdf, 9,1 Mo)groupe de travail de combinatoire, Bordeaux, LaBRI, Février 2005Robinson-Schensted-Knuth: RSK2 (pdf,10,8Mo)groupe de travail de combinatoire, Bordeaux, LaBRI, Février 2005

- For a more detailed description of the relationship between Temperley-Lieb algebra and heaps of dimers, see: Jacobi-Trudi, Linström-Gessel-Viennot, Fomin-Kirillov, Lascoux-Schützenberger, Yang-Baxter, Temperley-Lieb, deux exposés au groupe de travail de Combinatoire énumérative, LaBRI, Bordeaux:Première partie 28 Avril 2006 (pdf, 9,4 Mo)Deuxième partie 12 Mai 2006 (pdf, 11,7 Mo)

- Also on this page “exposés” you can find the slides of the talk, with an extended abstract and a complementary set of slides:- Alternative tableaux, permutations and partially asymmetric exclusion process, (pdf, 9,9 Mo) workshop “Statistical Mechanics & Quantum-Field Theory Methods in Combinatorial Enumeration”, Isaac Newton Institute for Mathematical Science, Cambridge, 23 April 2008.

Page 199: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

supported by project ANR BLAN06-2-134516 MARS

Papers corresponding to this talk and the talk on alternative tableaux (Isaac Newton Institute, April 2008), are in preparation:

X.G.Viennot, Alternative tableaux and permutations,

X.G.Viennot, Alternative tableaux and partially asymmetric exclusion process,

X.G.Viennot, A Robinson-Schensted like bijection for alternative tableaux,

X.G.Viennot, The “cellular ansatz”: an alternative approach to alternating sign matrices.

MARS: “Physique combinatoire: Matrices à Signes Alternant et la conjecture de Razumov-Stroganov

Page 200: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

N.M. Bogoliubov, Boxed plane partition as an exactly solvable Boson model, arXiv:cond-mat/0503748.

A. Burstein, On some properties of permutation tableaux, PP’06, June 2006, Reykjavik, Iceland.

M.T Batchelor, J. de Gier and B Nienhuis, The quantum symmetric XXZ chain at delta = -1/2, alternating sign matrices and plane partitions, J. Phys. A 34 (2001) L. 265- L270, arXiv:cond-mat/0101385.

D. Bressoud, Proofs and confirmations. The story of the alternating sign matrix conjecture, Cambridge University Press (1999).

F. Colomo, A.G. Pronco, Square ice, alternatinf matrices, and classical orthogonal polynomials, arXiv:mat-ph/0411076.

S.Corteel and Nadeau, Bijections for permutation tableaux, Europ. J. of Combinatorics, to appear.

S. Corteel, R. Brak, A. Rechnitzer and J. Essam, A combinatorial derivation of the PASEP stationary state, FPSAC’05, Taormina, 2005.

S. Corteel and L.K Williams, A Markov chain on permutations which projects to the PASEP. Int. Math. Res. Not. (2007) article ID rnm055, arXiv:math/0609188.

S. Corteel and L.K. Williams, Tableaux combinatorics for the asymmetric exclusion process, Adv in Apl Maths, to appear, arXiv:math/0602109.

more references:

Page 201: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

J. de Gier, F. Essler, Bethe ansatz solution of the asymmetric exclusion process with open boundaries, arXiv:cond-mat/0508707.

J. de Gier, Loops, matchings and alternating-sign matrices, Discrete Math. 298 (2005) 365-388, arXiv:math.CO/0211285

B. Derrida, M.R. Evans, V. Hakim and V. Pasquier, Exact solution of a one dimensional aysmmetric exclusion model using a matrix formulation, J. Phys. A: Math., 26 (1993) 1493-1517.

B. Derrida, An exactly soluble non-equilibrium system: the asymmetric simple exclusion process, Physics Reports 301 (1998) 65-83, Proc. of the 1997-Altenberg Summer School on Fundamental problems in statistical mechanics.

B. Derrida, Matrix ansatz and large deviations of the density in exclusion process, invited conference, Proceedings of the International Congress of Mathematicians, Madrid, 2006.

P. Di Francesco, Totally symmetric self complementary plane partitions and the quantum Knizhnik-Zamolodchikov equaiotn: a conjecture, J. Stat. Mech. (2006) p09008, arXiv:cond-mat/0607499.

F. Essler, V. Rittenberg, Representation of the quadratic algebra and partially asymmetric diffusion with open boundaries, arXiv: cond-mat/9506131.

S. Fomin, Duality of graded graphs, J. of Algebraic Combinatorics 3 (1994) 357-404.

S. Fomin, Schensted algorithms for dual graded graphs, J. of Algebraic Combinatorics 4 (1995) 5-45.

Page 202: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

S. Fomin, Schur operators and Knuth correspondences, J. of Combinatorial Theory A, 72 (1995) 277-292.

S. Fomin, Dual graphs and Schensted correspondences, Proc SFCA/FPSAC, Series formelles et combinatoire algebrique, P.Leroux and C.Reutenauer, Ed., Montreal, LACIM, UQAM, (1992), 221-236.

J. Françon and X.G.Viennot Permutations selon les pics, creux, doubles montées et doubles descentes, nombres d’Euler et nombres de Genocchi, Discrete Maths., 28 (1979) 21-35.

O.Golinelli, K.Mallick, Family of commuting operators for the totally asymmetric exclusion process, J.Phys.A:Math.Theor. 40 (2007) 5795-5812, arXiv: cond-mat/0612351.

O.Golinelli, K.Mallick, The asymmetric simple exclusion process: an integrable model for non-equilibrium statistical mechanics, J. Phys.A: Math.Gen. 39 (2006), arXiv:cond-mat/0611701.

G. Han, Autour de la correspondance de Robinson-Schensted, Exposé au SLC 52 et LascouxFest, 29/03/2004, http://math.u-strasbg.fr/~guoniu/software/rsk/index.html.

M. Ismail, S-S Lin, S-S Roan, Bethe Ansatz equation of XXZ model and q-Sturm-Liouville problems, arXiv:math-ph/0407033.

G. Kuperberg, Another proof of the alternating sign matrix conjecture, Int. math. Research Notes (1996) 139-150.

W.H. Mills, D.P. Robbins and H. Rumsey, J. Combinatorial Theory A 34 (1983) 340-359.

A. Postnikov, Total positivity, Grassmannians, and networks, arXiv: math.CO/0609764.

Page 203: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

A.V. Razumov, Yu G. Stroganov, Spin chain and combinatorics, J Phys A, 34 (2001) 3185-3190, arXiv:cond-mat/0012141.

A.V. Razumov, Yu G. Stroganov, Combinatorial nature of ground state vector of O(1) loop model, Theor. Math. Phys. 138 (2004) 333-337; Teor. Mat. Fiz. 138 (2004) 395-400, arXiv:math.CO/01044216.

T. Sasamoto, One-dimensional partially asymmetric simple exclusion process with open boundaries: orthogonal polynomials approach., J. Phys. A: math. gen. 32 (1999) 7109-7131.

K. Shigechi, M. Uchiyama, Boxed skew plane partitions and integrable model, ArXiv: cond-mat/0508090.

R. Stanley, Differential posets, J. Amer. Math. Soc. 1 (1988), 919-961.

R.Stanley, Variations on differential posets, in Invariant Theory and Tableaux (D. Stanton, ed.), The IMA Volumes in Mathematics and Its Applications, vol. 19, Springer-Verlag, New York, 1990, pp. 145-165.

E.Steingrimsson and L. Williams Permutation tableaux and permutation patterns, J. Combinatorial Th. A., 114 (2007) 211-234. arXiv:math.CO/0507149

M.Uchiyama, T.Sasamoto, M.Wadati, Asymmetric simple exclusion process with open boundaries and Askey-Wilson polynomials, J. PhysA:Math.Gen.37 (2004) 4985-5002, arXiv: cond-math/0312457.

M. van Leeuwen, The Robinson-Schensted and Schützenberger algorithms, an elementary approach, Electronic J. of Combinatorics, Foata Festschrift, Vol 3, n°2, R15 (1996) X.G. Viennot, Une forme géométrique de la correspondance de Robinson-Schensted, in “Combinatoire et Représentation du groupe symétrique” (D. Foata ed.) Lecture Notes in Mathematics n° 579, pp 29-68, 1976.

Page 204: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

X.G. Viennot, Chain and antichain families, grids and Young tableaux, Annals of Discrete Maths, 23 (1984) 409-464 (gives a survey of the Robinson-Schensted correspondence, (downloadable from xgv website).

X.G. Viennot, Une théorie combinatoire des polynômes orthogonaux, Lecture Notes UQAM, 219 pages., Publication du LACIM, Université du Québec à Montréal, 1984, réed. 1991. (downloadable form xgv website)

X.G.Viennot, Catalan tableaux and the asymmetric exclusion process, in Proc. FPSAC’07 (Formal Power Series and Algebraic Combinatorics), Tienjin, Chine, 2007, 12 pp.http://www.fpsac.cn/PDF-Proceedings/Talks/87.pdf

D; Zeilberger, Proof of the alternating sign matrices, Electronics J. of Combinatorics, (www.combinatorics.org), 3 (2) [Foata Festchrift] R13 (50 pages) (1996).

P. Zinn-Justin and P. Di Francesco, Quantum Knizhnik-Zamolodchikov equation, totally symmetric self-complementary plane partitions and alternating sign matrices, arXiv:mat-ph/0703015

Page 205: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

Supplements

This section has been added after the talk. Many thanks to conversations with P. Di Francesco and P. Nadeau.

ESI, Vienna, 24 May 2008

§7 Other examples

of the cellular ansatz

Islande hiver 02 xgv

Page 206: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

Operators for non-crossing configuration of paths

(square lattice)

Page 207: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

example: binomial determinant

Page 208: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

B

A

BA

B’

A’A

BA’

B’A

A’

B

B’0

+

B’A

A’

B+

“rewriting rules” for non-crossing paths (square lattice)“rewriting rules” for non-crossing paths (square lattice)

Page 209: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

A

B’

BA’

B’A

A’

B+

B’A

A’

B+

“rewriting rules” for non-crossing paths (square lattice)

B

BA

A’A

B’0

Page 210: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

B A’ = A’ B + A B’

operators and commutations for non-crossing paths (square lattice)

B’ A = A B’ + A’ BBA = AB B’ A’ = 0

equivalently, exchanging A and A’ , it can be rewrittten as :

B A = A B + A’ B’B’ A’ = A’ B’ + A BB A’ = A’ B B’ A = 0compare with the commutations with ASM or FPL !

Page 211: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

example: binomial determinant

( )2, 3, 5, 71, 2, 4, 5 The binomial determinant

is equal to the coefficient of the word

A A A’ A’ A A’ A A’ A B B B B B B B B B

when rewriting the word

B A B’ A B’A B A B’ A B’ A B A B A B A

acording to the rewriting rules of the non-crossing configuration of paths (square lattice)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

Page 212: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

another example:Hankel determinant

of moments of orthogonal polynomials

Page 213: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

Operators for configurations of osculating paths

(square lattice)

Page 214: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

AB’

BA’

B’A

A’

B+

B’A

A’

B+

“rewriting rules” for osculating paths (square lattice)

B

BA A’

A

B’

B’

A’

Page 215: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

B A’ = A’ B + A B’B’ A = A B’ + A’ BBA = AB B’ A’ = A’ B’

operators and commutations for osculating paths (square lattice)

equivalently, exchanging A and A’ , it can be rewrittten as :

B A = A B + A’ B’B’ A’ = A’ B’ + A BB A’ = A’ B B’ A = A B’

same as for ASM (which are in bijection with configurations of osculating paths on a square grid)

Page 216: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

Opertors for dimers tiling(square lattice)

Page 217: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

a tiling on the

square lattice

Page 218: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

B

A’

AB’

coding of the edges for tilings

on the square lattice

2 type of tiles

border of a tile

inside a tile

Page 219: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

B

A’

A

B’

0

+A’B

A

B’

A A

B

BA

BB’A’

“rewriting rules” for tilings (square lattice)

Page 220: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

operators and commutations for tilings (square lattice)

B A = A’ B + A B’

B’ A = A B B A’ = A B

B’ A’ = 0

Page 221: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

example:Aztectiling

exercise:express in term

of words in operatorsthe well knownformula for the

number of tilingsof the Aztec diamond

Page 222: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

Operators for tilings of the triangular lattice

After the talk, P. Di Francesco’s gave a construction of four operators for the classical tilings of the triangular lattice coding the TSSCPP and DPP (totally symmetric self-complementary plane partitions and descending plane partitions).Here is a presentation of these operators.

Page 223: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

Operators and commutations for tilings of the triangular lattice

(same as for ASM but with B’A’ A’B’ missing !):

Page 224: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 225: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

B

A’

AB’

coding of the edges for tilings

of the triangular lattice

3 type of tiles

border of a tile

inside a tile

Page 226: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

B

A’B’B

A

A’ A

B

A +

B’

“rewriting rules” for tilings of the triangular lattice

BA = AB + A’B’

B’A’ = AB

Page 227: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

A

B’

BA’

B’A

A’B

B’ A = A B’

B A’ = A’ B

“rewriting rules” for tilings of the triangular lattice

Page 228: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

BA = AB + A’B’B’A’ = ABB’ A = A B’B A’ = A’ B

same as for ASM , except the rewriting ruleB’ A’ A’ B’ is forbidden

“rewriting rules” for tilings of the triangular lattice

Page 229: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

example:plane

partitionsin a box

(MacMahonformula)

Page 230: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

Many examples of enumeration of tilings in a triangular lattice can be rewritten using these four operators A, B, A’, B’

a simple example: Prop. The number of plane partitions in a box k x l x m is the coefficient of the word

when rewriting the word

according to the rewriting rules

k m l k

(A’) A B (B’) k+l m+k

B A

BA AB or A’B’B’A’ AB

B A’ A’ B B’ A A B’question: proof of the MacMahon formula (for q=1) with this algebraic approach ?

Page 231: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

Remark:In order to get the parameter q (number of boxes of the 3D diagram), one should consider “3D rewriting rules”, ot the type:

BA

CB’

A’C’

this would lead to a 3D “cellular ansatz”

Yang-Baxter operators or equation is an example

Page 232: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

Complements

Page 233: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

local RSKand geometric RSK

(the geometric construction with “light” and “shadow” for RSKleads to a simple proof of the fact that RSK and the “local rules”

gives the same bijection)

For a more complete introduction to RSK and Fomin’s local rules, see on my web site (page “exposés”):Robinson-Schensted-Knuth: RSK1 (pdf, 9,1 Mo)groupe de travail de combinatoire, Bordeaux, LaBRI, Février 2005Robinson-Schensted-Knuth: RSK2 (pdf,10,8Mo)groupe de travail de combinatoire, Bordeaux, LaBRI, Février 2005

Page 234: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 235: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

4 2 1 5 3

Page 236: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 237: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 238: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 239: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

1 2 3

1

2

3

1

2

1 2

Page 240: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

β

α

βi

β = α + (i)

Page 241: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

α

β

γ

δ

α

β

γ

δ

α

β

γ

δ

I

α

β

γ

δ

α

β

γ

δ

α

β

γ

δ

i

ji ≠ j

i

i

i = j1

1

1

j

i

β = α + (i)γ = α + (j)δ = α + (i) + (j)

β = γ = α + (i)δ = α + (i) + (i+1)

j

i

i+1

i+1

β = γ = αδ = α + (1)

β = αδ = γ = α + (j)

γ = α δ = β = α + (i)

δ = β = γ = α

Page 242: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

α

β

γ

δ

α

β

γ

δ

α

β

γ

δ

I

1 2 3

4 5 6α

β

γ

δ

α

β

γ

δ

α

β

γ

δ

i

ji ≠ j

i

i

i = j1

1

1

j

i

β = α + (i)γ = α + (j)δ = α + (i) + (j)

β = γ = α + (i)δ = α + (i) + (i+1)

j

i

i+1

i+1

β = γ = αδ = α + (1)

β = αδ = γ = α + (j)

γ = α δ = β = α + (i)

δ = β = γ = α

U

D I

U

D

U

D

U

D

U

D

I

U

U

D DII

I

I

I

II

I

β ≠ γ β = γ

Page 243: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

another example with

6 2 8 4 1 3 7 9 5

P

Q

Page 244: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

Temperley-Lieb algebraand

decorated heaps of dimers

Page 245: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

“decorated heaps of dimers”

in bijectionwith FPL

Page 246: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 247: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

From “decorated heaps of

dimers” to element of

theTemperley-

Lieb algebra

Page 248: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

An element of the TL algebra

Page 249: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

product in the TL algebra

Page 250: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 251: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 252: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 253: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

An element of the basis of the Temperley-Lieb algebra

Page 254: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

An element of the basis of the Temperley-Lieb algebra

Page 255: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

The same element of the basis of the Temperley-Lieb algebra

Page 256: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 257: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 258: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

“big dimers” and small “dimers”

Page 259: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

“contraction”of

heap of dimers

May be it can be useful to study the map sending FPL on the “decorated” heaps of (small) dimers.

Here are example of situtions with some bijections between heaps of “big” dimers and heaps of “small “dimers

(1 big dimer= 2 small dimers)

Page 260: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

more details in the talkA walk in the garden of bijections (pdf, 23,3 Mo)(52th SLC, ViennotFest, Lucelle, Avril 2005slides on my web site, page “exposés”.

Page 261: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 262: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 263: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 264: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

Fibonacci polynomials

Page 265: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign
Page 266: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

bijectiveproof !

Page 267: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

another example with directed animals on the square lattice bijection: Motzkin path, heap of big dimers,

heap of small dimers, directed animal.

Page 268: An alternative approach to alternating sign matriceshomepage.univie.ac.at/summerschool.mathematik/viennot.pdfD. Bressoud, Proofs and confirmations. The story of the alternating sign

aurore boréale Nunavik xgv

The end