Amplifying Quantum Signals with the Josephson...

25
Amplifying Quantum Signals with the Josephson Bifurcation Amplifier (JBA) IRFAN SIDDIQI R. Vijay, E. Boaknin, M. Metcalfe, F. Pierre, C.M. Wilson, C. Rigetti, L. Frunzio, and M. H. Devoret Department of Applied Physics Yale University Acknowledgements: D. Prober, M. Dykman, D. Vion, D. Esteve, R.J. Schoelkopf, & S. Girvin

Transcript of Amplifying Quantum Signals with the Josephson...

Page 1: Amplifying Quantum Signals with the Josephson …qulab.eng.yale.edu/documents/talks/SiddiqiMQC2.pdfAmplifying Quantum Signals with the Josephson Bifurcation Amplifier (JBA) IRFAN SIDDIQI

Amplifying Quantum Signals with the Josephson Bifurcation Amplifier (JBA)

IRFAN SIDDIQIR. Vijay, E. Boaknin, M. Metcalfe, F. Pierre, C.M.

Wilson, C. Rigetti, L. Frunzio, and M. H. Devoret

Department of Applied PhysicsYale University

Acknowledgements: D. Prober, M. Dykman, D. Vion, D. Esteve, R.J. Schoelkopf, & S. Girvin

Page 2: Amplifying Quantum Signals with the Josephson …qulab.eng.yale.edu/documents/talks/SiddiqiMQC2.pdfAmplifying Quantum Signals with the Josephson Bifurcation Amplifier (JBA) IRFAN SIDDIQI

THE READOUT PROBLEM FOR SQUBITSDevoret & Schoelkopf (2000)

QUBITREADOUT

OFF0 1

10α β+ ON

0

1 1quantum information classical information

0

WANT:• Readout ON: T1 / τmeas >> 1• Readout OFF: T1, Tϕ not reduced• Short duty cycle• No energy dissipated on chip

(sensitivity, low backaction)

(good switch, low backaction)

(speed to fight drifts)

(no noise to junction)

Page 3: Amplifying Quantum Signals with the Josephson …qulab.eng.yale.edu/documents/talks/SiddiqiMQC2.pdfAmplifying Quantum Signals with the Josephson Bifurcation Amplifier (JBA) IRFAN SIDDIQI

ARTIFICIAL ATOM : SPLIT COOPER PAIR BOX

( )02ˆ 1( ) cos 1 12 2/

C jn

gH E n n n E nN n n n⎡ ⎤⎛ ⎞= − − + − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

Φ Φ∑

2

1 2

(2 )2( )C

g j j

eEC C C

=+ + 0 0 02jE i i

eϕ= =

Page 4: Amplifying Quantum Signals with the Josephson …qulab.eng.yale.edu/documents/talks/SiddiqiMQC2.pdfAmplifying Quantum Signals with the Josephson Bifurcation Amplifier (JBA) IRFAN SIDDIQI

BOX ENERGY SPECTRUM

Optimum Working Pointcharge capacitance

E1

Ng

Φ/Φ0

E0

hν01

kk

EQU

∂=

2

2k

kEC

U∂

=∂

Ener

gy

(kBK

)current inductance

kk

EI ∂=

∂Φ

12

2k

kEL

−⎛ ⎞∂

= ⎜ ⎟∂Φ⎝ ⎠

Page 5: Amplifying Quantum Signals with the Josephson …qulab.eng.yale.edu/documents/talks/SiddiqiMQC2.pdfAmplifying Quantum Signals with the Josephson Bifurcation Amplifier (JBA) IRFAN SIDDIQI

CAN’T READ CHARGE OR CURRENT!

1 0

1 0

00

Q QC C

− ≠

1 0

1 0

00

Q QC C

− =− ≠

Ng

1 0

1 0

00

I IL L

− ≠

1 0

1 0

00

I IL L

− =− ≠

Φ

|0>

|1>

E

chargenoise

fluxnoise

Page 6: Amplifying Quantum Signals with the Josephson …qulab.eng.yale.edu/documents/talks/SiddiqiMQC2.pdfAmplifying Quantum Signals with the Josephson Bifurcation Amplifier (JBA) IRFAN SIDDIQI

QUANTRONIUM (a.k.a. Charge-Phase Qubit)

• IDC=0 Readout off

• 1/f charge & flux noise immunity

• T1 = 1.8 µsTφ= 500 ns

(D. Vion et al., Science 2002)

• Quasiparticles-slow reset (>10µs)

• Reduced Visibility

~103 ops!charge qubit

A > I0eff

DissipativeVDC=2∆/e

(DC Readout 1)

A < I0eff

SuperconductingVDC=0

(DC Readout 0)

Page 7: Amplifying Quantum Signals with the Josephson …qulab.eng.yale.edu/documents/talks/SiddiqiMQC2.pdfAmplifying Quantum Signals with the Josephson Bifurcation Amplifier (JBA) IRFAN SIDDIQI

DC DRIVE

2dV

e dtδ

=Josephson

0 sin( )I I δ=

0

0 cos( )2 2 DCU I Ie e

ϕ

δ δ= − −

0

0

1cos( )JL

δ= |qubit=0> (IDC < I0) zero-voltage state

|qubit=1> (IDC > I0) voltage state

Page 8: Amplifying Quantum Signals with the Josephson …qulab.eng.yale.edu/documents/talks/SiddiqiMQC2.pdfAmplifying Quantum Signals with the Josephson Bifurcation Amplifier (JBA) IRFAN SIDDIQI

READOUT: WHY NOT USE PHOTONS?

AC Drive: iRF sin(ωt)

0

0p

IC

ωϕ

=

iRF < iB (I0,∆ω) low-amp. & phase lagging (RF readout 0)

iRF > iB (I0,∆ω) high-amp. & phase leading (RF readout 1)

Page 9: Amplifying Quantum Signals with the Josephson …qulab.eng.yale.edu/documents/talks/SiddiqiMQC2.pdfAmplifying Quantum Signals with the Josephson Bifurcation Amplifier (JBA) IRFAN SIDDIQI

BIFURCATION AMPLIFICATION

• Bifurcation amplifier: sensitive to any input variable coupled to I0minimal back-action

- no on-chip dissipation- efficiently thermalize load- back-action narrow band

Page 10: Amplifying Quantum Signals with the Josephson …qulab.eng.yale.edu/documents/talks/SiddiqiMQC2.pdfAmplifying Quantum Signals with the Josephson Bifurcation Amplifier (JBA) IRFAN SIDDIQI

SCHEMATIC RF SETUP T = 300K

Ch1 AWG iRF(t)

πΨ

LO1.58 GHz CW

IF

IF

Ch2 AWG -iRF(t)

RF

1.48 GHz CW

IF

LO

RF

Digital Demodulation

2GS/sec

Page 11: Amplifying Quantum Signals with the Josephson …qulab.eng.yale.edu/documents/talks/SiddiqiMQC2.pdfAmplifying Quantum Signals with the Josephson Bifurcation Amplifier (JBA) IRFAN SIDDIQI

SCHEMATIC CRYOGENIC SETUP

4.2 K

0.3 K

Page 12: Amplifying Quantum Signals with the Josephson …qulab.eng.yale.edu/documents/talks/SiddiqiMQC2.pdfAmplifying Quantum Signals with the Josephson Bifurcation Amplifier (JBA) IRFAN SIDDIQI

NEW ERA OF FILTERS !

-3dB @ 1 MHz

-3dB @ 2 GHz

Page 13: Amplifying Quantum Signals with the Josephson …qulab.eng.yale.edu/documents/talks/SiddiqiMQC2.pdfAmplifying Quantum Signals with the Josephson Bifurcation Amplifier (JBA) IRFAN SIDDIQI

JUNCTION + MICROWAVE CAPACITOR

Al

Si3N4

27.3 pF

Cu

1000 nm Cu

20 nm Cr

35 nm Cr15 nm Ti

Silicon Substrate

Al

1 mm

200 nm Si3N4

=Cu

Alεr=7.5

Al/Al203/AlJunction (1.17 µA)

METALLICUNDERLAYER

Page 14: Amplifying Quantum Signals with the Josephson …qulab.eng.yale.edu/documents/talks/SiddiqiMQC2.pdfAmplifying Quantum Signals with the Josephson Bifurcation Amplifier (JBA) IRFAN SIDDIQI

MINIMAL STRAY INDUCTANCE

Lbond = 2.8 nH

LJ = ϕ0 / I0 = 0.28 nH

C

Lstray

20

1 12 stray

p

C C Le Iω

= +

Lstray = 0.003 nH

C = 27.3 pF

Page 15: Amplifying Quantum Signals with the Josephson …qulab.eng.yale.edu/documents/talks/SiddiqiMQC2.pdfAmplifying Quantum Signals with the Josephson Bifurcation Amplifier (JBA) IRFAN SIDDIQI

RF-DRIVEN JUNCTION: PHASE DIAGRAM

kT/EJ

1/Q

Q=ωpRC

See Delft

(0.1fW)

(1.5

4 G

Hz)

Page 16: Amplifying Quantum Signals with the Josephson …qulab.eng.yale.edu/documents/talks/SiddiqiMQC2.pdfAmplifying Quantum Signals with the Josephson Bifurcation Amplifier (JBA) IRFAN SIDDIQI

PHASE DIAGRAM:EXP & THYIN GOOD

AGEEMENT

• Dark region corresponds towell-jumping

• All parameters in predictionmeasured experimentally!

I.S. et al, cond-mat/0312553

Page 17: Amplifying Quantum Signals with the Josephson …qulab.eng.yale.edu/documents/talks/SiddiqiMQC2.pdfAmplifying Quantum Signals with the Josephson Bifurcation Amplifier (JBA) IRFAN SIDDIQI

DYNAMICS OF DYNAMICAL SWITCHING

• N = 600,000

• ∆φ = 74 deg

• HysteresisIB and IB’ correct ! ( )3/ 23/ 2

016 1

3 3BI Iα α⎡ ⎤= −⎢ ⎥⎣ ⎦1 0.122

p

ωαω

⎛ ⎞= − =⎜ ⎟⎜ ⎟

⎝ ⎠

I(t) 2 µs20 ns

0

time

Page 18: Amplifying Quantum Signals with the Josephson …qulab.eng.yale.edu/documents/talks/SiddiqiMQC2.pdfAmplifying Quantum Signals with the Josephson Bifurcation Amplifier (JBA) IRFAN SIDDIQI

RF vs. DC

I0IB (I0,∆ω)

0

1

0

1

I(t) IDC2 µs

iRF ↔ IDCφ ↔ VDC∆ω ↔ Rs

20 ns

00

~ 10 µs

timetime

Page 19: Amplifying Quantum Signals with the Josephson …qulab.eng.yale.edu/documents/talks/SiddiqiMQC2.pdfAmplifying Quantum Signals with the Josephson Bifurcation Amplifier (JBA) IRFAN SIDDIQI

SWITCHING HISTOGRAMS

• No latching• 40 ns rise + 20 ns settle• τm = 20 ns• N = 1.6 x 106

• Overlap = 10-2

Set by SNR

• Latching• 40 ns rise + 20 ns settle• τm = 300 ns• N = 1.5 x 105

• Overlap = 6 x 10-5

Page 20: Amplifying Quantum Signals with the Josephson …qulab.eng.yale.edu/documents/talks/SiddiqiMQC2.pdfAmplifying Quantum Signals with the Josephson Bifurcation Amplifier (JBA) IRFAN SIDDIQI

SWITCHING PROBABILITY

T = 340 mK

T = 540 mK• ∆I0/I0 = 1%

• d = 80% @ 250mKd = 57% @ 340mKd = 49% @ 540mK

• Predict d > 95% @ 60mK

• ∆IB/IB = 6%

0 0

/ 3 1 5.6/ 4 2

B BI II I α

∆= − =

∆ Single Shot, Latching Qubit Readout>95% Fidelity10-20 MHz Rep. Rate !

I.S. et al, cond-mat/0312623

Page 21: Amplifying Quantum Signals with the Josephson …qulab.eng.yale.edu/documents/talks/SiddiqiMQC2.pdfAmplifying Quantum Signals with the Josephson Bifurcation Amplifier (JBA) IRFAN SIDDIQI

1D METAPOTENTIAL

• Expand system near bifurcation

• Reduce to cubic metapotential

0 1exp

2

dyndyn a U

kTωπ→

⎛ ⎞∆Γ = −⎜ ⎟

⎝ ⎠

( ) ( )3/ 22

30 0

0

64, , 1 118 3

10K

dyn RFRF

B

dyn

iU I i IIe

u

α α α⎛ ⎞⎛ ⎞⎡ ⎤ ⎜ ⎟∆ = − − ⎜ ⎟⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠⎝ ⎠

met

a po

tent

ial

escape coordinate

( )0

1/ 222

(2 ) 35

4

0MHz

13 3

a

RFa p

B

iRCI

ω αω

ω π

⎛ ⎞⎛ ⎞⎡ ⎤ ⎜ ⎟= − ⎜ ⎟⎢ ⎥ ⎜ ⎟⎦ ⎝ ⎠ ⎠≈

⎣ ⎝i (M. Dykman)

Page 22: Amplifying Quantum Signals with the Josephson …qulab.eng.yale.edu/documents/talks/SiddiqiMQC2.pdfAmplifying Quantum Signals with the Josephson Bifurcation Amplifier (JBA) IRFAN SIDDIQI

ESCAPE RATES FOR DYN. SWITCHING

0 0

0 0

9.1K for 1.12 , 340mK( 10.0K)

10.7 K for 1.17 , 340mK( 11.0K)

dyn escst

dyn escst

u I A TTHY

u I A TTHY

µ

µ

= = ==

= = ==

Page 23: Amplifying Quantum Signals with the Josephson …qulab.eng.yale.edu/documents/talks/SiddiqiMQC2.pdfAmplifying Quantum Signals with the Josephson Bifurcation Amplifier (JBA) IRFAN SIDDIQI

YALE QUANTRONIUM

• Observe I0 modulation with gate volage

• Spectroscopy in progress

• T=400mK!

Φ Readout

IslandGate

-2

-1

0

1

2

dIef

f 0 / d

Ug (

mV

lock

in)

-6 -4 -2 0 2 4 6Gate Voltage Ug (mV)

Φ=0

Φ=Φ0/2

Page 24: Amplifying Quantum Signals with the Josephson …qulab.eng.yale.edu/documents/talks/SiddiqiMQC2.pdfAmplifying Quantum Signals with the Josephson Bifurcation Amplifier (JBA) IRFAN SIDDIQI

CRITICAL CURRENT FLUCTUATIONS

• Apply fixed iRF and observe variation in switching probability P(t)caused by I0(t)

• S1/2δI0/I0

(1Hz, 0.3K) = 3.5x10-6

Page 25: Amplifying Quantum Signals with the Josephson …qulab.eng.yale.edu/documents/talks/SiddiqiMQC2.pdfAmplifying Quantum Signals with the Josephson Bifurcation Amplifier (JBA) IRFAN SIDDIQI

SUMMARY & PERSPECTIVES

• BIFURCATION AMPLIFICATION OBSERVED AS PREDICTED

- GAIN- SPEED- ESCAPE RATES- ABSENCE OF EXCESS DISSIPATION

• QUBIT MEASUREMENTS: Bell Inequalities, Error Correction

• QUANTUM LIMIT: Quantum Diffusion vs MQT, Ultimate TN

• NOISE: Temperature dependence of 1/f

• APPLICATIONS: Current Standard, Single Photon Detectors