AmmoniaAdsorption.pdf

download AmmoniaAdsorption.pdf

of 16

Transcript of AmmoniaAdsorption.pdf

  • 7/30/2019 AmmoniaAdsorption.pdf

    1/16

    White Paper | Confidential and Proprietary | February 2012

    Ammoniaadsorptiononash

    PenelopeStamatakis,PhD

    Introduction

    TherearetwoprimarypostcombustiontechnologiesthatreduceNOxviatheintroductionofan

    aminebasedreducingagent,namelySelectiveNonCatalyticReduction(SNCR)andSelective

    CatalyticReduction(SCR).Ammoniaslipisaby-productofbothofthesetechnologiesandit

    referstoammoniainthegaseousphase,typicallymeasuredattheeconomizeroutletusingEPA

    methodCTM-027.Thecontrolofammoniaslipisanintegralpartoftheoptimizationphasein

    anySNCRorSCRapplication.Thegaseousammonialeftuncontrolled,hasthepotentialto

    combinewithSO3inthefluegasandformundesirableammoniumbisulfatedepositsonmetal

    surfaces.Additionally,dependingontheashproperties,asignificantamountoftheammonia

    slipmaybeadsorbedontheash.Typically,ammoniaisadsorbedontheasheitherchemically,

    viatheformationofammoniumsulfateandbisulfatesaltsontheash,orphysically,onunburned

    carbonsurfaces.Thisbecomesaproblemforclientswhoselltheirashtothecementindustry,

    sinceduringthemakingofconcrete,ammoniamaybereleasedfromtheashasthepHincreases

    duetotheadditionoflime.Releasedammoniagivesoffauniqueodorwhichisdetectableby

    smellifthelevelsofammoniaontheflyashexceedtherangeof50to100mg/kg.Utilitiesthat

    employFuelTechsSNCRandSCRtechnologiesroutinelyaskfortheexpectedlevelofammonia

    ontheflyash.Thisstudywilladdressthisquestionbylookingatammoniaadsorptiononthe

    ashasafunctionofcoaltypeandashpropertiesanddevelopamethodologytopredictammonia

    adsorptiononash.

    Background

    Duringthecombustionofsulfur-containingfuels,over95%ofthesulfurisconvertedtosulfur

    dioxide.Subsequently,morethan1%ofthesulfurdioxidemaybefurtheroxidizedtosulfur

    trioxide.(Ref.1)Sulfurtrioxidehasthepotentialtocombinewiththeammoniaslipgenerated

    viatheSNCRandSCRprocessesandformammoniumsulfateandammoniumbisulfatesalts.

    Ammoniumbisulfateformsasaliquidwhichmaydepositoncoldmetalsurfacesthatare

    maintainedattemperaturesbelow360oF.Ammoniumsulfateisapowderysubstancewhich

    formsattemperaturesbelow410oF.(Ref.2)Bothofthesespeciescandepositontheflyash.

    CoalashwithhighcalciumcontentsuchasPRBashexhibitshighalkalinityandassuchithasa

    lowaffinityforcapturingammonia.Easternbituminouscoalhasaverylowalkalinityashwhich

    actsasanammoniasponge.Notallthegaseousammonia,however,willadsorbontheash,

    sinceaportionoftheammoniamayalsocombinewithSO3inthefluegasandformammonium

    bisulfatedepositsoncoldmetalsurfaces.AstudycarriedoutbySouthernCompanyusinghighS

    coalsuggeststhatabout30%oftheammoniaslipgeneratedfromanSNCRorSCRprocess

    becomestiedupinammoniumsulfateandbisulfatedepositsoncoldmetalsurfaceswhile70%is

    availabletotheflyash.(Ref.3)Lessthan1%oftheammoniaslipwillmakeittothestack.

    Clearly,theresultsofthisanalysisdependontheoperatingconditionsduringthestudy,butthey

  • 7/30/2019 AmmoniaAdsorption.pdf

    2/16

    White Paper | Confidential and Proprietary | February 2012

    giveanindicationfortheaffinityofflyashtoammoniawhenfuelswithhighScontentareused.

    AshgeneratedbyPRBcoal,whichhashighalkalinity,haslowpotentialforadsorbingammonia.

    Inaddition,duetothelowSO3concentrationinthefluegas,ammoniumsulfateandbisulfate

    formationwillbefairlylowaswell,andassuch,mostoftheammoniaslipwillgoupthestack.

    Thisnumberisnotknownexactly,butthisanalysiswillassumethataminimumof70%ofthe

    generatedammoniaslipunderPRBcombustionwillbereleasedfromthestackandonly30%will

    beavailableforadsorption.Itisworthnoting,however,thatammoniacanstillabsorbonthe

    unburnedcarbonasdemonstratedbyFuelTechsstudiesatNipscosBailly#8,eveniftheashhas

    lowaffinityfortheammonia.(Ref.4)

    Manyutilitiesselltheirashtothecementindustry.Cementcontainshighquantitiesoflime,and

    asitishydratedtomakeconcrete,itsalkalinityincreases.Thishighalkalinitycausestherelease

    ofammoniafromtheconcrete,andalthoughitdoesnothaveanynegativeimpactonthepropertiesoftheconcrete,itcausesanodorwhichisunacceptabletoboththeconcrete

    manufactureraswellastheconcreteenduser.(Ref.5)Ingeneral,thelimitssetbythecement

    industryontheacceptablelevelofammoniaonashareinthe50to100mg/kgrange.Inorderto

    keepthisconcentrationlow,theammoniainthegasphaseneedstobelimitedinthe2to5ppm

    range.

    In1993,FuelTechbrieflyconsideredtheconceptofthermallytreatingtheashtostripthe

    ammonia.Duringthistime,preliminaryanalyticalworkshowedadirectcorrelationbetweenthe

    alkalinityoftheashandtheamountofammoniaadsorbed.Itwasrecognized,however,that

    moreandmoreutilitiesstartedburningPRBcoalwhichgeneratesashthathaslowaffinityfor

    ammonia,andtheideawasabandoned.(Ref.6)

    Analysis

    ThefluegasflowgeneratedbycombustioncanbecalculatedonthebasisoftheoperatingO2,

    theamountoffuelburned,thehigherheatingvalueofthefuel,andtheFdfactorwhichisfuel

    specificandindicatesthedryfluegasthatisgeneratedforeveryMMBtuoffuelburnedasshown

    bytheequationbelow:

    Fluegas(dscfh)=Fd(dscf/MMBtu)*HHV(Btu/lb)*10-6MMBtu/Btu*Fuel(lb/hr)*20.9/(20.9-O2)(1)

    Ammoniaslipgeneratedinthegasphaseistypicallyexpressedinpartspermillion,ppm,andrepresentsthemolesofammoniapermoleoffluegasmultipliedbyonemillion.

    NH3slip(ppm)=[NH3(moles/hr)/Fluegas(moles/hr)]*106(2)

  • 7/30/2019 AmmoniaAdsorption.pdf

    3/16

    White Paper | Confidential and Proprietary | February 2012

    SincethemolecularweightofNH3is17,themolarflowofammoniacanbecalculatedby

    dividingthemassflowby17.Similarly,themolarflowofthefluegascanbederivedbydividing

    thevolumetricflowby385.4,where385.4comesfromtheidealgaslawandindicatesthe

    volumeoffluegasoccupiedbyonemoleoffluegasunderstandardconditionsoftemperature

    andpressure.Equation(2)canthereforeberewrittenasfollows:

    NH3slip(ppm)=[{NH3(lb/hr)/17(lb/mol)}/{Fluegas(dscfh)/385.4(dscf/mol)}]*106(3)

    AssumingatypicaloperatingO2of3%andcombiningequations(1)and(3),themaximum

    ammoniageneratedin(lb/hr)is:

    NH3(lb/hr)=NH3slip(ppm)*0.0515*Fd(dscf/MMBtu)*HHV(Btu/lb)*Fuel(lb/hr)(4)

    Theammoniaconcentrationontheashistypicallyexpressedonagravimetricbasisorppm-w.

    Thisunitisequivalenttomgofammonia/kgofashorlbofammonia/lbofashdividedbya

    million.

    NH3onash(ppmw)=[NH3(lb/hr)/Ash(lb/hr)]*10-6(5)

    Assumingthat80%oftheashbecomesflyash,theaboveequationcanberewrittenasfollows:

    NH3onash(ppm-w)=[NH3(lb/hr)/{%Ash*Fuel(lb/hr)*0.8}]*10-6(6)

    Itshouldbenotedthatforcyclonefiredunitsonly40%oftheashbecomesflyashwhileforwet

    bottomunitsthisnumbermaybecloserto25%.

    Ifalltheammoniaslipisadsorbedontheashandbycombiningequations4and6,themaximum

    concentrationofammoniaontheashwouldbe:

    NH3onash(ppm-w),maximum=[NH3slip(ppm)*0.0644*Fd*HHV/%Ash]*10-6(7)

    Ifanadsorptionrateisestablished,thentheammoniaontheashofaspecificcoalcanbe

    calculatedasfollows:

    NH3onash(ppm-w)=Adsorption(%)*NH3onash(ppm-w),maximumor(8)

    NH3onash(ppm-w)=Adsorption(%)*[NH3slip(ppm)*0.0644*Fd*HHV/%Ash]*10-6(9)

    EPRIhascarriedoutseveralstudiesinanefforttoinvestigateammoniaadsorptiononflyashfor

    variouscoals.FuelTechwillutilizethemeasuredammoniaonashforeachofthecasesstudied

  • 7/30/2019 AmmoniaAdsorption.pdf

    4/16

    White Paper | Confidential and Proprietary | February 2012

    byEPRIandwilldeterminethe%adsorptionforeachcoalfromtheratioofthemeasured

    amountofadsorbedammoniaandthemaximumamountofammoniaavailableforadsorption.

    TheEPRIstudyfocusedontheashcollectedfromthefollowing8sites(Ref.7):

    TABLEI:Testsites

    Utility Station Unittype Coalrank

    Ameren Baldwin Cyclone Bit.,hvC

    GeorgiaPower Bowen#3 T-fired Bit.,hvB

    AEP CardinalI Wallfired Bit.,hvB

    SRIcombustor LoneMountain Wallfired Bit.,hvA

    AlabamaPower Miller#3 Wallfired PRB

    WEPCO PleasantPrairie Wallfired PRBAmeren SiouxI Cyclone PRB/Bit.hvC

    SouthernPower Stanton Wallfired Bit.,hvA

    TheflyashsamplesfromeachsitewerecollectedfromvariousESPhoppers.(Ref.6)Allthe

    samplesfromaspecificsitewereblendedtogether,andtheanalysiswasdoneonthisblended

    sample.TheammoniaadsorptionontheflyashwasmeasuredbyWashingtonsUniversityinSt.

    LouisAirQualityLaboratory.Theexperimentconsistedofexposing1gramoftheblendedflyash

    samplefor30mintoafluegasconsistingof14%CO2,4%O2,10%H2O,500ppmSO2,15ppmof

    NH3andthebalancewasN2.Thefluegastemperaturewasmaintainedat325oFandthefluegas

    flowwas500accm.Fromtheammoniaflow,fluegasvolume,andtheexposuretime,itwasdeterminedthatthemaximumgravimetricamountofammoniathatcouldhavebeenproduced

    is0.106895mg.Ifallthisammoniaisadsorbedonthe1gofflyash,themaximumamountof

    ammoniaonashwouldbe106.9mg/kg.Thetablebelowsummarizestheactualamountof

    ammoniaadsorbedontheashforalltheapplicationsasmeasuredbytheAirQualityLaboratory.

    Inaddition,itcomparesthisvaluetothecalculatedvalueof106.9mg/kgandtakestheratio.

    Thisratioshowsthepercentofammoniaactuallyadsorbedontheashoutoftheamountthatis

    theoreticallyavailableforadsorptionandisindicativeofthepotentialforadsorptionofammonia

    onflyashforvariousfuels.

    TABLEII:AmmoniaAdsorptiononFlyAshFixedExposure

    Utility StationNH3

    Adsorbed(mg/kg)

    NH3

    Adsorbed(%)

    Ameren Baldwin 92 86

    GeorgiaPower Bowen#3 60 56

    AEP CardinalI 90 84

    SRICombustor LoneMountain 128 100*

    AlabamaPower Miller#3 15 14

  • 7/30/2019 AmmoniaAdsorption.pdf

    5/16

    White Paper | Confidential and Proprietary | February 2012

    WEPCO PleasantPrairie 16 15

    Ameren SiouxI 81 76

    SouthernPower Stanton 110 100*

    The*denotesthatmeasuredvaluewashigherthanwhatwastheoreticallyavailableandfor

    thesecasesitwasassumedthat100%oftheammoniawasadsorbed.Theaboveresultsshow

    thattheashfromMillerandPleasantPrairieexhibitedtheleastamountofammoniaadsorption

    whileflyashfromLoneMountainandStantonStationexhibitedthehighestamountofammonia

    adsorptionontheash.ItisworthnotingthatMillerandPleasantPrairieburnPRBcoalwhile

    loneMountainandStantonburnhighvolatilitybituminousA.

    Theobjectiveofthisanalysisistobeabletocorrelatetheadsorptionpotentialwithspecificcomponentsoftheflyashorthefuel.FuelTechlocatedthefuelanalysisandashanalysisforthe

    aboveapplicationswiththeexceptionofBowen#3.(Ref.9to11).PlantBowenisnotspecifically

    includedinthisdiscussion,althoughthegeneralstatementcanbemadethatforthisbituminous,

    highvolatilityBcoal,therateofadsorptionexceeds50%.Finally,SiouxStationusedablended

    coal,andtheanalysisisbasedonan83%Caballoand17%Illinois#6(2)coal.

    TABLEIII:Fuelanalysis

    Weight(%)

    Moistureand

    ashfree

    Baldwin Cardinal Lone

    Mountain

    Miller Pleasant

    Prairie

    Sioux

    Stanton

    C 78.9 84.1 87.84 74.8 74.94 75.6 83.27

    H 5.5 5.6 5.43 5.37 5.27 5.3 5.53

    O 10 4.96 4.23 18.4 18.34 1.14 8.4

    N 1.38 1.53 1.58 0.96 1.07 1.13 1.6

    S 4 3.86 0.93 0.46 0.38 1 1.08

    HHV(Btu/lb) 12233 13859 15243 13032 14061 13750 13254

    Fd(dscf/MMBtu) 11328 10755 10035 9661 8945 9305 10904

    Theashanalysisfortheabovefuelsistabulatedbelow:

    TABLEIV:Flyashcomposition

    Constituents Baldwin Cardinal Lone

    Mountain

    Miller Pleasant

    Prairie

    Sioux

    *

    Stanton

    SiO2(%) 48.91 39.65 55.83 27.8 31.9 34.79 58.2

    Al2O3(%) 18.26 19.68 28.67 13.1 16.9 17.13 30.67

    Fe2O3(%) 18.06 27.79 7.58 5.5 5.6 7.72 4.88

    TiO2(%) 0.88 0.85 1.29 1.3 1.4 1.31 2.08

    CaO(%) 4.82 4.54 2.56 26.6 24.7 21.32 1.16

  • 7/30/2019 AmmoniaAdsorption.pdf

    6/16

    White Paper | Confidential and Proprietary | February 2012

    MgO(%) 1.04 0.85 1.64 7 4.6 3.99 0.42

    Na2O(%) 1.03 0.9 1.0 1.3 1.4 1.34 0.17

    K2O(%) 2.1 1.21 2.23 0.3 0.3 0.61 0.99

    SO3(%) 4.68 4.18 1.5 16 12.2 10.92 1.29

    P2O5(%) 0.21 0.34 0.37 1.1 1.0 0.87 0.133

    TheprimaryacidiccomponentsofflyashareSiO2,Al2O3andTiO2whilethebasiccomponentsare

    Fe2O3,CaO,MgO,Na2OandK2O.AccordingtotheABBCombustionFossilPowerbook,thesum

    oftheacidiccomponentsrangesbetween20and90%whilethesumofthebasiccomponents

    rangesbetween5and80%.Theratioofthesumofthebasiccomponentsoverthesumofthe

    acidiccomponentsrepresentstheBase/Acid(B/A)ratiooftheash.

    B/A=[Fe2O3+CaO+MgO+Na2O+K2O]/[SiO2+Al2O3+TiO2](10)

    ThefollowingtableillustratestheB/Aratiooftheashfortheapplicationsofinterestasa

    functionoflimeandSO3contentintheashaswellasthevolatileSinthefuel.AshwithhighB/A

    ratiotendstohavehighCaOconcentrationwhichwillreactwiththevolatileSandformCaSO4.

    TheSO3contentintheflyashactuallyrepresentstheamountofScapturedintheformofCaSO4.

    ThisreactionneutralizestheScontentofthefuelandminimizesthepotentialoftheammoniato

    beadsorbedontheash.Thehypothesis,therefore,isthatthehighertheB/Aratioaswellasthe

    CaOandSO3contentoftheash,thehigherthealkalinityoftheash,andthelowerthepotential

    forammoniaadsorptionontheash.TheB/Aratioiscalculatedforeachapplicationusingthe

    informationonTableIValongwithequation(10).TheammoniaadsorptionontheashistakenfromTableIIandtherelationshipofalltheseparametersissummarizedinthetablebelow:

    TABLEV:RelationshipbetweentheammoniaadsorptiononashandtheScontentofthefuel,

    aswellastheB/Aratio,SO3andCaOcontentoftheash

    Baldwin Cardinal Lone

    Mountain

    Miller Pleasant

    Prairie

    Sioux

    Stanton

    NH3adsorbed(%) 86 84 100 14 15 76 100

    B/A 0.42 0.586 0.175 0.964 0.729 0.653 0.084

    Sdaf(%) 4.29 3.864 0.92 0.463 0.35 0.97 1.079

    SO3(%) 4.70 4.183 1.5 16 24.7 10.922 1.292

    CaO(%) 5.40 4.542 2.56 26.6 12.2 21.32 1.157

    Ash(%),dry 10.77 9.4 7.5 5.85 7.3 5.3 6.9

  • 7/30/2019 AmmoniaAdsorption.pdf

    7/16

    White Paper | Confidential and Proprietary | February 2012

    Thisinformationisillustratedgraphicallyinthefollowingfourplots.

    0.000

    0.200

    0.400

    0.600

    0.800

    1.000

    1.200

    0.000

    5.000

    10.000

    15.000

    20.000

    25.000

    30.000

    0 20 40 60 80 100

    Base/Acidrao

    CaO

    (%)

    Adsorponrateofammoniaonash(%)

    Figure1:AmmoniaadsorbedontheashasafunconofashCaOandBase/AcidRao

    AshCaOcontent Base/Acidrao

    0.000

    0.200

    0.400

    0.600

    0.800

    1.000

    1.200

    0.000

    5.000

    10.000

    15.000

    20.000

    25.000

    30.000

    0 20 40 60 80 100

    Base/Acidrao

    CaO

    (%)

    Adsorponrateofammoniaonash(%)

    Figure2:Ammoniaadsorbedontheashasa

    funconofashCaOandBase/AcidRao

    (ExcludesSioux)

    AshCaOcontent Base/Acidrao

  • 7/30/2019 AmmoniaAdsorption.pdf

    8/16

    White Paper | Confidential and Proprietary | February 2012

    0.000

    0.500

    1.000

    1.500

    2.000

    2.500

    3.000

    3.500

    4.000

    4.500

    0.000

    2.000

    4.000

    6.000

    8.000

    10.000

    12.000

    14.000

    16.000

    18.000

    0 20 40 60 80 100

    Sulfurcontent,daf(%)

    SO3(%)

    Adsorponrateofammoniaonash(%)

    Figure3:Ammoniaadsorbedontheashasa

    funconofashSO3andfuelScontent

    AshSO3content Sulfurcontent(%)

    0.000

    0.500

    1.000

    1.500

    2.000

    2.500

    3.000

    3.500

    4.000

    4.500

    0.000

    2.000

    4.000

    6.000

    8.000

    10.000

    12.000

    14.000

    16.000

    18.000

    0 20 40 60 80 100

    Sulfurcontent,daf(%)

    SO3(%)

    Adsorponrateofammoniaonash(%)

    Figure4:Ammoniaadsorbedontheashasa

    funconofashSO3andfuelScontent(Excludes

    Sioux)

    AshSO3content Sulfurcontent(%)

  • 7/30/2019 AmmoniaAdsorption.pdf

    9/16

    White Paper | Confidential and Proprietary | February 2012

    Reviewingtheaboveplots,itappearsthatinthecaseoftheSiouxStation,whichusedthe

    blendedPRBandbituminouscoal,thepropertiesofthebituminouscoaloverwhelminglyaffect

    theadsorptionpotentialoftheashalthoughtheaverageBase/Acidratioishigh,andtheCaOand

    SO3concentrationsarerelativelyhighaswell.Theblendedcoalapplicationintroducesasmall

    amountofscatterinthedata,andconsequently,Figures2and4shouldbetheonesusedin

    estimatingtheadsorptionpotentialofanygivencoal.

    Thesegraphsshowthattherateofammoniaadsorptionontheashisverylow,lessthan20%,

    whentheB/AratioaswellastheCaOandSO3concentrationsarehigh.Ontheotherextreme,as

    theB/Aratiodropsbelow0.15,theammoniaadsorptionontheashapproachesalmost100%.In

    general,theammoniaadsorptiongoesupiftheScontentisover1%,however,theScontentby

    itselfisnotthebestindicatorofhowhightheammoniaadsorptionratewillbeandwillneedto

    beusedinconjunctionwiththeCaOandSO3concentrations.

    EnteringtheinformationreadfromtheplotsintoEquation(9),theamountofammonia

    adsorbedontheashmaybeestimated.Thisisanexpectedvalue,however,andisnotintended

    formakingguarantees.

    Workingexamples

    Themethodologyforassessingtheamountofammoniaadsorbedonflyashisoutlinedbelow.

    Theanalysisisdoneforthreedifferentcoals,namely:Arclair,AntelopeandSanMiguelLignite.It

    isassumedthattheamountofflyashis80%ofthetotalashandthattheamountofammonia

    slipmeasuredattheeconomizeroutletis3ppm.ForthelowSapplications,itwillbeassumed

    that30%oftheammoniaslipwillbeavailableforadsorptionwhiletherestwillgooutthestack.

    ForthehighSapplications,itwillbeassumedthat70%oftheammoniaslipwillbeavailablefor

    adsorptionwiththerestbeentiedupintheairheater.

    Appendix1showsthatArclairhasaB/Aratioof0.42,anSO3contentof1%andaCaOcontentof

    4.2%.Appendix2showsthattheScontentofthisfuelis3.46%onadry,ashfreebasisandtheFd

    factoris9623dscf/MMBtu.Inaddition,theashcontentis8.65%andtheHigherHeating

    Value13149Btu/lbonadrybasis.Figure2illustratesthatforacoalwithaB/Aratioof0.42,the

    adsorptionrateisabout70%whilebasedonaCaOcontentof4.2%,theammoniaadsorption

    potentialapproaches100%.ThishighadsorptionrateisfurthersupportedbytheSO3andS

    concentrationonFigure4.Consequently,byaveragingoutallthesefactors,theammoniaadsorptionontheashforthisparticularcoalisabout90%.

    ApplyingtheaboveadsorptionrateinEquation(9),andassumingthatonly70%oftheammonia

    slipwillbeavailableforadsorption,orjust2.1ppm,itisestimatedthattheammoniaadsorbed

    ontheashinthisapplicationis196ppm-w.Thisiswellabovethe50to100ppm-wthresholdfor

    ashsoldtothecementindustry.Fortheadsorbedammoniatostaybelowthisthreshold,the

  • 7/30/2019 AmmoniaAdsorption.pdf

    10/16

    White Paper | Confidential and Proprietary | February 2012

    NH3slipwillneedtobemaintainedbelow2ppmwhichwillseverelylimittheapplicabilityofthe

    SNCRprocessandperhapschallengetheSCRprocessaswell.

    Forcomparisonpurposes,theaboveanalysisisrepeatedforAntelopecoalunderthesame

    conditions.TheB/AratiofromAppendix1is0.77,theCaOconcentrationis23.6%andtheSO3

    concentrationis10.1%.ThefuelanalysisinAppendix2showsthattheScontentis0.35%ona

    dry,ashfreebasisandanFdfactorof9852dscf/MMBtu.Theashcontentis7.21%andthe

    HigherHeatingValue9505Btu/lbonadrybasis.UsingFigure2basedaCaOconcentrationof

    23.6%andaB/Aratioof0.77,theamountofammoniaadsorbedontheashisexpectedtobe

    around15%.ThisisalsoconsistentwiththeinformationinFigure4basedontheSconcentration

    of0.35%whilebasedontheSO3concentrationtheadsorptionrateiscloserto30%.Byaveraging

    outallthesefactors,theammoniaadsorptionrateforthiscoalisabout20%.Inaddition,since

    thisisalowSPRBcoal,70%oftheammoniaslipisexpectedtobereleasedfromthestackandonly30%ofthe3ppmammoniaslipwillbeavailableforadsorption.Again,usingEquation(9)for

    0.9ppmNH3slipavailableforadsorptionontheash,theamountofammoniaadsorbedonthe

    ashisonlyabout15ppm-w.ThissuggeststhateveniftheSNCR/SCRprocessoperatesata

    relaxedammoniaslipof5to10ppm,the50to100ppm-wthresholdofammoniaonashis

    satisfied.

    ThisisconsistentwithobservationsattheBoardmanStationinOregonwhereFuelTechranan

    SNCRdemonstrationin2009.Manyflyashsampleswerecollectedandanalyzedandthe

    averageamountofammoniaadsorbedontheashatthedifferentsectionsoftheESPwerebelow

    11.7ppm-wevenwhentheammoniadosagewasashighas21ppm.Thisinformationis

    summarizedinAppendix4.

    Finally,theaboveexerciseisrepeatedforSanMiguelLignite.Appendix1showsthatSanMiguel

    LignitehasaB/Aratioof0.112,anSO3concentrationof2.9%andaCaOcontentof3.0%.

    Appendix2showsthattheScontentofthisfuelis3.66%onadry,ashfreebasisandtheFdfactor

    is8665dscf/MMBtu.Inaddition,theashcontentis36.3%andtheHigherHeatingValueis8446

    Btu/lbonadrybasis.UsingFigure2,itisdeterminedthatbothonthebasisoftheCaOandthe

    B/A,theammoniaadsorptionpotentialapproaches100%.Thishighadsorptionrateisfurther

    supportedbytheSO3anSconcentrationsonFigure4.

    AsinthecaseoftheArclaircoal,sincethisisalsoahighScoal,itisassumedthat70%ofthe3ppmammoniaslipisavailableforadsorptionor2.1ppm.Surprisingly,whentheabove

    adsorptionrateisusedinEquation(9),itisestimatedthattheammoniaadsorbedontheashin

    thisapplicationisonly27ppm-w.Thisisaverylowconcentrationanditisduetothehighash

    contentofthefuelwhichdilutestheammoniaadsorptioneffect.Clearly,incaseslikethis,the

    amountofammoniaontheashisnotthedrivingfactorforlimitingtheammoniaslipbutrather

    thehighpotentialforammoniumbisulfatefoulingontheairheatersurfaces.

  • 7/30/2019 AmmoniaAdsorption.pdf

    11/16

    White Paper | Confidential and Proprietary | February 2012

    Theaboveanalysishasnottakenintoaccounttheammoniaadsorbedduetounburnedcarbon.Based

    onstudiesperformedbyFuelTechsSCRgroupatNipsco,itwasdeterminedthatammoniaalsoadsorbs

    onunburnedcarbonandtheammoniaslipmeasurementisnotatruemeasureoftheammoniaslip

    generatedinthegaseousphase.Thetrueammoniaslipwillneedtobeadjustedbythe%unburned

    carbonassuminga10%adsorptionrate.Therefore,thehighertheamountofunburnedcarbon,the

    higherthetrueammoniaslip,thehighertheamountofammoniaadsorbedontheash.

    Conclusions

    1. ForhighSbituminouscoals,about70%ofthegeneratedammoniaslipisavailableforadsorptionontheash.Approximately30%mayreactwithSO3toformammoniumbisulfateandsulfatesalts

    whichmaydepositoncoolermetalsurfaces,andaverysmallportionisreleasedfromthestack.

    2. ForPRBcoal,duetothelowSO3concentrationinthefluegas,asmallportionoftheammoniaslipwillparticipateintheformationofammoniumbisulfateandsulfatesalts.Inaddition,duetothehighalkalinityoftheash,thepotentialforammoniaadsorptionontheashislow,anditis

    expectedthatthemajorityoftheammoniaslipwillbereleasedfromthestack.Forthepurposes

    ofthisanalysis,ithasbeenassumedthat30%ofthegeneratedammoniawillbeavailablefor

    adsorption.

    3. Thepotentialofammoniaadsorptionontheashisgreatwhenthealkalinityoftheashislowasinthecaseofbituminousfuels.Undertheseconditions80to100%ofthegaseousammonia

    availableforadsorptionontheashmaybeadsorbedontheash.

    4. ThepotentialofammoniaontheashislowwhenthealkalinityoftheashishighasinthecaseofPRBfuels.Undertheseconditions,only10to20%ofthegaseousammoniaavailablefor

    adsorptionontheashmayadsorbedontheash.

    5. TheB/Aratio,CaOandSO3concentrationoftheash,aswellasthe%Scontentofthefuelaregoodindicatorsinassessingtheadsorptionrateofammoniaontheash.

    6. TheashgeneratedbyahighSfuelmaybeveryacidiciftheCaOconcentrationislowandhasthepotentialtoadsorb100%oftheavailableammonia.However,theactualconcentrationonthe

    ashmaystillbeanacceptablevalueforthecementindustry,ifthisfuelhasaveryhighash

    concentration.

    7. TheashproducedbythecombustionofaPRBfuelhasaverylowpotentialforadsorbingammonia.Thispotential,however,increasesinthepresenceofunburnedcarbon.

    References

    1. CombustionFossilPower,Windsor,Connecticut:CombustionEngineering,Inc.,1991

    2. AirheaterFoulingbyAmmoniaBisulfateDeposition,FueltechInternalReport,March1996

    3. LorimoreL.,EffectsofAmmoniaFromPostCombustionNOxcontrolonAshHandlingandUse.,FuelChemistryDivisionReprints,2002

  • 7/30/2019 AmmoniaAdsorption.pdf

    12/16

    White Paper | Confidential and Proprietary | February 2012

    4. DiscussionswithVolkerRummenhohlinternaltoFuelTech

    5. HomepageofW.S.HintonandAssociates,FlyAshBehavior,www.wshinton.com

    6. HandlingofAmmoniaintheAsh,FuelTechInternalReport,August1993

    7. ImpactsofAmmoniaContaminationofFlyAshonDisposalandUse.EPRIReport1004609,October2001

    8. InvestigationofAmmoniaAdsorptiononFlyAsh.EPRIInterimReport112172,December1998

    9. ArchCoal,Inc.FuelAnalyses

    10.AshChemistry,UltimateAnalysesandHeatingValuesofVariousCoals,www.et.byu.edu

    11.AlstomCleanCombustionTechnologies,Canada:Transcontinentalprinting,2009

  • 7/30/2019 AmmoniaAdsorption.pdf

    13/16

    White Paper | Confidential and Proprietary | February 2012

    Appendix1

    Fuel SiO2 Al2O3 Fe2O3 TiO2 CaO MgO Na2O K2O SO3 P2O5 B/A

    BeulahLignite 21.23 13.97 12.25 0.42 16.36 4.46 6.50 0.22 24.60 0.00 1.12

    Arclair 48.08 18.59 20.60 0.99 4.22 0.88 0.54 2.23 0.99 0.00 0.42

    Buckskin 30.76 13.51 5.85 1.03 24.78 5.71 1.59 0.23 15.1 1.44 0.84

    BlackThunder 30.67 16.46 5.10 1.29 21.32 4.80 1.43 0.35 17.67 0.92 0.68

    Antelope 31.74 15.71 5.96 1.25 23.75 5.65 1.64 0.54 10.11 1.72 0.77

    SUFCO 52.02 13.17 4.12 0.81 13.28 3.83 2.28 1.01 5.21 0.46 0.37

    ElkCreek 53.94 23.57 6.58 0.99 3.94 1.41 1.76 1.59 1.76 1.01 0.20

    McElroy 48.17 21.91 21.57 0.91 2.8 0.76 0.50 1.84 2.35

    0.39

    EasternKentucky 58.20 30.67 4.88 2.08 1.16 0.42 0.17 0.99 1.29 0.13 0.08WesternKentucky 51.06 18.41 19.56 0.99 3.04 1.14 0.63 2.88 2.02 0.12 0.39

    Ohio#9 47.30 23.00 22.80 1.00 1.30 0.90 0.30 2.00 1.2

    0.38

    Bailey/EnlowFork 47.14 23.02 21.17 0.98 2.78 0.80 0.67 1.83 2.17

    0.38

    Illinois#6(2) 52.69 12.84 18.77 0.71 5.39 0.55 1.45 1.38 4.72 0.16 0.42

    Kentucky#9 44.38 18.66 22.69 0.97 5.56 0.92 0.46 2.57 3.09 0.44 0.50

    Pittsburgh#8(1) 41.70 20.66 29.33 0.90 2.08 0.79 0.40 1.74 2.35 0.15 0.54

    Pittsburgh#8(2) 47.82 24.14 16.85 1.05 3.47 0.84 0.45 1.76 3.00 0.62 0.32

    Pittsburgh#8(3) 39.66 19.68 27.79 0.85 4.54 0.85 0.90 1.21 4.18 0.34 0.59

    Pocahontas#3 37.92 24.16 17.14 1.14 7.67 2.40 0.83 1.84 6.79 0.10 0.47

    Alicia 47.48 24.08 17.11 1.12 3.57 0.68 0.68 1.58 2.99

    0.33

    SanMiguelLignite 66.79 19.69 1.69 0.88 3.04 0.49 2.63 1.91 2.86 0.01 0.11

    UpperFreeport 51.53 24.35 13.46 0.92 2.48 1.30 0.30 3.07 2.43 0.14 0.27

    Rochelle 34.10 17.00 5.50 1.30 23.5 5.50 1.70 0.40 9.80 1.20 0.70

    CentralAppalachia 55.83 28.67 7.58 1.29 2.56 1.64 1.00 2.23 1.50 0.37 0.18

    BelleAyr 27.80 13.10 5.50 1.30 26.60 7.00 1.30 0.30 16.00 1.10 0.96

    Caballo 31.90 16.90 5.60 1.40 24.70 4.60 1.40 0.30 12.20 1.00 0.73

    BlendCaballo&Illinois#6(2) 35.34 16.21 7.84 1.28 21.42 3.91 1.41 0.48 10.93 0.86 0.68

  • 7/30/2019 AmmoniaAdsorption.pdf

    14/16

    White Paper | Confidential and Proprietary | February 2012

    Appendix2

    Fuel,dryashfreebasis

    C

    (%)

    H

    (%)

    N

    (%)

    S

    (%)

    O

    (%)

    HHV,dry

    (Btu/lb)

    %

    H2O

    %ash,

    dry

    Fd

    (dscf/MMBtu)

    BeulahLignite 70.49 4.75 1.22 2.14 21.36 7210 34.8 9.5 10533

    Arclair 79.91 5.34 1.79 3.46 9.50 13419 9.33 8.65 9623

    Buckskin 76.26 5.15 1.00 0.51 17.08 8979 30.86 5.1 9856

    BlackThunder 74.73 5.40 1.00 0.51 18.27 9479 26.03 7.59 9833

    Antelope 75.93 5.29 1.15 0.35 18.23 9505 26.5 7.21 9852

    SUFCO 79.70 5.28 1.41 0.45 13.15 12146 10.13 12.1 9812

    ElkCreek 77.97 5.39 1.75 0.56 7.6 13651 6.71 10.7 9293

    McElroy 80.30 5.49 1.66 3.76 8.76 14023 6.17 10.2 9447

    EasternKentucky 84.00 5.50 1.70 1.00 7.80 14664 2.5 7.2 9691

    WesternKentucky 79.00 5.60 1.70 3.60 10.10 13223 8.3 12.2 9632

    Ohio#9 80.70 5.07 1.32 3.73 8.33 13009 10.33 10.4 9678

    Bailey/EnlowFork 83.00 5.60 1.75 2.29 7.10 14038 6.32 8.06 9720

    Illinois#6(2) 78.70 5.50 1.40 3.50 10.90 11773 18.3 7.59 9549

    Kentucky#9 80.10 5.50 1.70 4.70 8.00 13700 6.1 11.9 9720

    Pittsburgh#8(1) 80.90 5.70 1.50 2.50 10.90 13092 8.7 9.3 9843

    Pittsburgh#8(2) 86.70 5.50 1.81 1.47 4.50 15012 2.6 9.34 9842

    Pittsburgh#8(3) 84.07 5.58 1.53 3.86 4.96

    10755

    Pocahontas#3 91.65 4.46 1.31 0.79 1.62 14390 4.4 7.4 10387

    Alicia 83.60 5.48 1.66 2.67 6.50 14237 5.96 8.6 9685

    SanMiguelLignite 61.54 6.70 1.06 3.66 26.88 8446 32.49 36.3 8665

    UpperFreeport 89.50 4.80 1.50 1.30 2.90 12372 1.1 8.58 12312

    Rochelle 74.90 5.15 1.07 0.31 19.20 12566 2.73 6.3 9663

    CentralAppalachia 87.84 5.43 1.58 0.92 4.23 14252 6.5 7.5 10035

    BelleAyr 74.78 5.37 0.96 0.46 18.38 9148 29.8 6.55 9661

    Caballo 74.94 5.27 1.07 0.38 18.34 8927 29.9 8.7 9876

    BlendCaballo&Illinois#6(2) 75.58 5.31 1.15 0.91 17.08 9384

    27.9

    8.5 9814

  • 7/30/2019 AmmoniaAdsorption.pdf

    15/16

    White Paper | Confidential and Proprietary | February 2012

    Appendix3

    Fuel B/A

    S(%),

    daf CaO(%) SO3(%)

    Applicationsimilar

    to

    %NH3

    adsorbed

    BeulahLignite 1.12 2.14 16.4 24.6

    Arclair 0.42 3.46 4.2 1.0

    Buckskin 0.84 0.51 24.8 15.1

    BlackThunder 0.68 0.51 21.3 17.7

    Antelope 0.77 0.35 23.8 10.1

    SUFCO 0.37 0.45 13.3 5.2

    ElkCreek 0.20 0.56 3.9 1.8

    McElroy 0.39 3.76 2.8 2.4

    EasternKentucky 0.08 1.00 1.2 1.3 Stanton 100

    WesternKentucky 0.39 3.60 3.0 2.0

    Ohio#9 0.38 3.73 1.3 1.2

    Kentucky#9) 0.38 2.29 2.8 2.2

    Illinois#6(2) 0.42 3.50 5.4 4.7 Baldwin 86

    Kentucky#9 0.50 4.70 5.6 3.1

    Pittsburgh#8(1) 0.54 2.50 2.1 2.3

    Pittsburgh#8(2) 0.32 1.47 3.5 3.0

    Pittsburgh#8(3) 0.59 3.86 4.5 4.2 Cardinal 84

    Pocahontas#3 0.47 0.79 7.7 6.8

    Alicia 0.33 2.67 3.6 3.0

    SanMiguelLignite 0.11 3.66 3.0 2.9

    UpperFreeport 0.27 1.30 2.5 2.4

    Rochelle 0.70 0.31 23.5 9.8

    CentralAppalachia 0.18 0.92 2.6 1.5 LoneMountain 100

    BelleAyr 0.96 0.46 26.6 16.0 Miller 14

    Caballo 0.73 0.38 24.7 12.2 PleasantPrairie 15

    BlendCaballoandIllinois#6(2) 0.68 0.91 21.4 10.9 Sioux 76

  • 7/30/2019 AmmoniaAdsorption.pdf

    16/16

    White Paper | Confidential and Proprietary | February 2012

    Appendix4

    REPORTOFFLYASH

    TitleoftheProject:BoardmanAmmoniaTestingDuringSNCRTrialsDateReceived:08-Dec-09

    ContactPerson:PamFlynnTestedBy:KC

    ProjectNumber:5257ReportDate:16-Dec-09

    BoralSampleIDOperationsDetails SampleDescription NH3(ppmNH3inFA)

    91208012 10PPMdoserate.Boilerundernormalconditions 12/4Row31A 3.7

    9120801310PPMdoserate.Boilerundernormalconditions 12/4Row31C 5.6

    9120801410PPMdoserate.Boilerundernormalconditions 12/4Row31D 9.5

    9120801510PPMdoserate.Boilerundernormalconditions 12/4Row31E 10.8

    9120801610PPMdoserate.Boilerundernormalconditions 12/4Row31F 13.7

    9120801710PPMdoserate.Boilerundernormalconditions 12/4Row31G 15.5

    9120801810PPMdoserate.Boilerundernormalconditions 12/4Row31H 11.7

    9120801910PPMdoserate.Boilerundernormalconditions 12/4Row31J 3.8

    9120802010PPMdoserate.Boilerundernormalconditions 12/4Row31K 3.5

    9120802110PPMdoserate.Boilerundernormalconditions 12/4Row31L 3.2

    9120802210PPMdoserate.Boilerundernormalconditions 12/4Row31M 3.0

    9120802310PPMdoserate.Boilerundernormalconditions 12/4Row32A 7.29120802410PPMdoserate.Boilerundernormalconditions 12/4Row32B 2.8

    9120802510PPMdoserate.Boilerundernormalconditions 12/4Row32C 8.5

    9120802610PPMdoserate.Boilerundernormalconditions 12/4Row32D 6.3

    9120802710PPMdoserate.Boilerundernormalconditions 12/4Row32E 17.3

    9120802810PPMdoserate.Boilerundernormalconditions 12/4Row32F 13.5

    9120802910PPMdoserate.Boilerundernormalconditions 12/4Row32G 11.7

    9120803010PPMdoserate.Boilerundernormalconditions 12/4Row32H 21.2

    9120803110PPMdoserate.Boilerundernormalconditions 12/4Row32J 13.8

    9120803210PPMdoserate.Boilerundernormalconditions 12/4Row32K 6.7

    9120803310PPMdoserate.Boilerundernormalconditions 12/4Row32L 4.6

    9120803410PPMdoserate.Boilerundernormalconditions 12/4Row32M 2.9

    9120803510PPMdoserate.Boilerundernormalconditions 12/4Row35COMPOSITE 7.7

    9120803621PPMdoserate.BoilersettomimiclowNOxconditions 12/6Row31A 3.0

    91208037 21PPMdoserate.BoilersettomimiclowNOxconditions 12/6Row31C 4.3

    9120803821PPMdoserate.BoilersettomimiclowNOxconditions 12/6Row31D 10.3

    91208039 21PPMdoserate.BoilersettomimiclowNOxconditions 12/6Row31E 22.6

    9120804021PPMdoserate.BoilersettomimiclowNOxconditions 12/6Row31F 21.9

    91208041 21PPMdoserate.BoilersettomimiclowNOxconditions 12/6Row31G 14.7

    9120804221PPMdoserate.BoilersettomimiclowNOxconditions 12/6Row31H 18.5

    9120804321PPMdoserate.BoilersettomimiclowNOxconditions 12/6Row31J 9.3

    9120804421PPMdoserate.BoilersettomimiclowNOxconditions 12/6Row31K 5.0

    9120804521PPMdoserate.BoilersettomimiclowNOxconditions 12/6Row31L 4.6

    9120804621PPMdoserate.BoilersettomimiclowNOxconditions 12/6Row31M 3.2

    9120804721PPMdoserate.BoilersettomimiclowNOxconditions 12/6Row32A 6.1

    9120804821PPMdoserate.BoilersettomimiclowNOxconditions 12/6Row32B 3.8

    9120804921PPMdoserate.BoilersettomimiclowNOxconditions 12/6Row32C 8.8

    9120805021PPMdoserate.BoilersettomimiclowNOxconditions 12/6Row32D 5.2

    9120805121PPMdoserate.BoilersettomimiclowNOxconditions 12/6Row32E 17.3

    9120805221PPMdoserate.BoilersettomimiclowNOxconditions 12/6Row32F 22.5

    9120805321PPMdoserate.BoilersettomimiclowNOxconditions 12/6Row32G 9.5

    9120805421PPMdoserate.BoilersettomimiclowNOxconditions 12/6Row32H 22.69120805521PPMdoserate.BoilersettomimiclowNOxconditions 12/6Row32J 3.1

    9120805621PPMdoserate.BoilersettomimiclowNOxconditions 12/6Row32K 7.7

    9120805721PPMdoserate.BoilersettomimiclowNOxconditions 12/6Row32L 4.8

    9120805821PPMdoserate.BoilersettomimiclowNOxconditions 12/6Row32M 4.2

    9120805921PPMdoserate.BoilersettomimiclowNOxconditions 12/6Row35COMPOSITE 11.7

    45NELOOP410,SUITE700 SANANTONIO,TEXAS (210)349-4069