Amina Tarek Mneimneh - repository.bau.edu.lb:8080

33
Design and Development of Biocompatible Lipid-based Nanocarriers By Amina Tarek Mneimneh Thesis Presented to fulfill the requirements of Master degree in Pharmaceutical Sciences (Pharmaceutics and Pharmaceutical Technology) Department of Pharmaceutical Technology Faculty of Pharmacy 2019

Transcript of Amina Tarek Mneimneh - repository.bau.edu.lb:8080

Page 1: Amina Tarek Mneimneh - repository.bau.edu.lb:8080

Design and Development of Biocompatible Lipid-based Nanocarriers

By

Amina Tarek Mneimneh

Thesis

Presented to fulfill the requirements of Master degree in Pharmaceutical

Sciences

(Pharmaceutics and Pharmaceutical Technology)

Department of Pharmaceutical Technology

Faculty of Pharmacy

2019

Page 2: Amina Tarek Mneimneh - repository.bau.edu.lb:8080

Design and Development of Biocompatible Lipid-based Nanocarriers.

By

Amina Tarek Mneimneh

Thesis

Presented to fulfill the requirements of Master degree in Pharmaceutical

Sciences

(Pharmaceutics and Pharmaceutical Technology)

Department of Pharmaceutical Technology

Faculty of Pharmacy

Supervised by

Dr. Mohammed M. Mehanna

Assistant Prof. of Pharmaceutical Technology

Faculty of Pharmacy

Beirut Arab University

2019

Page 3: Amina Tarek Mneimneh - repository.bau.edu.lb:8080

i

Abstract

Synthesis of new drug alone has been evident to be insufficient to establish

advancement in drug therapy. The conventional drug delivery systems are destined to failure,

due to many factors, mainly low drug solubility, absorption, enzymatic hydrolysis, rapid

metabolism, cellular efflux and variability in plasma concentration. Lipid-based nanocarriers

provide a great prospective of overcoming various technological and stability limitations of

the conventional delivery systems. Lipids can offer wide range of diverse nanocarriers

including, liposomes, niosomes, solid-lipid nanoparticles, lipid-drug conjugate,

nanostructured lipid carriers, microemulsion, nanoemulsion and self-emulsifying delivery

system. Our aim in the current study was to develop and optimize a spontaneous self-

nanoemulsifying drug delivery system (SNEDDS), containing D-limonene as the oily phase,

and Tween®80/propylene glycol mixture as surfactant/co-surfactant. The work was

distributed on three chapters; preparation and optimization of limonene-based self-

nanoemulsifying delivery system, in-vivo evaluation of the tadalafil-loaded SNEDS for its

gastroprotective effect, and in-vitro assessment of levofloxacin-loaded SNEDS for its

antimicrobial activity against Methicillin-resistant Staphylococcus aureus (MRSA)

producing biofilms, and its formulation as an ocular in-situ nanoemulgel.

The optimization of the SNEDS was achieved through the construction of a pseudo-

ternary phase diagram. Limonene-based SNEDS was optimized by evaluating its

physiochemical properties, namely; droplet size, zeta potential, polydispersity index and its

morphology was studied by transmittance electron microscopy. In addition, the stability in

different storage conditions of the formulation for three months was assessed. The optimized

limonene-based SNEDS had the smallest droplet size (113.3 nm), unimodel distribution with

PDI (0.211), the highest percentage transmittance (92.57%) and optimal zeta potential of -

19.13 mV and was stable during the period of study.

Furthermore, the optimized SNEDS was loaded with tadalafil then tested in-vivo for

its protective effect against ethanol-induced injuries in rats, compared to omeprazole. The

results showed significant high gastroprotection percentage (99.59%) in the limonene-based

SNEDS and tadalafil-loaded preparation (99.9%) compared to the omeprazole pre-treated

group (74%). The histological analysis displayed very mild inflammation in the limonene-

Page 4: Amina Tarek Mneimneh - repository.bau.edu.lb:8080

ii

based nanoemulsion group with an intact mucosal structure while normal intact epithelial

layer was noticed in tadalafil-loaded SNEDS pretreated group.

Levofloxacin-loaded limonene-based SNEDS was evaluated in-vitro for its

antimicrobial susceptibility on biofilm forming MRSA strain through kinetics of killing and

biofilm assay. The in-situ nanoemulgel ocular irritation was studied by HET-CAM test. The

results revealed that levofloxacin-loaded limonene-based SNEDS showed improved efficacy

to eradicate MRSA biofilm, where the MIC of the loaded SNEDS was 3.12 mg/ml less than

that of drug alone 6.25 mg/ml. HET-CAM test showed no signs of hemorrhage, coagulation

or lysis for the loaded nanoemulgel same as the negative control. The irritation score was

zero. The data and knowledge accumulated from this research suggested that self-

nanoemulsifying delivery system loaded gel is a promising alternative to standard antibiotic

dosage forms against antibiotic-resistant bacteria and those which form impassable biofilms.

Page 5: Amina Tarek Mneimneh - repository.bau.edu.lb:8080

iii

Table of Contents List of tables vii

List of figures ix

List of Abbreviation xii

Introduction 1

1. Lipid formulation classification system 2

2. Type of lipid-based drug delivery system 3

2.1. Vesicular systems 3

2.2. Lipid particulate systems 9

2.3. Emulsions 13

Chapter Ⅰ 1

Self-Nanoemulsifying Drug Delivery System Based on D-limonene: Design and Optimization 1

1. Introduction 25

Aim of the chapter 28

2. Materials and methods 29

2.1. Materials 29

2.2. Preliminary screening of surfactants 29

2.3. Preliminary screening of co-surfactants 29

2.4. Construction of pseudoternary phase diagram 29

2.5. Preparation of limonene-based self-nanoemulsifying delivery system 30

2.6. Study of SNEDS characteristics 30

2.6.1. Macroscopic examination 30

2.6.2. Turbidity/transparency measurement 30

2.6.3. Self-emulsification time determination 30

2.6.4. Cloud point determination 31

2.6.5. Transmission electron microscopy (TEM) 31

2.6.6. Globule size and zeta potential measurements 31

2.7. Evaluation of the self-nanoemulsifying delivery system 31

2.7.1 Robustness to dilution 31

2.7.1. Thermodynamic stability studies 32

2.8. Stability upon storage 32

2.9. Statistical analysis 32

Page 6: Amina Tarek Mneimneh - repository.bau.edu.lb:8080

iv

3. Results 33

3.1. Selection of surfactants and co-surfactants 33

3.2. Pseudoternary phase diagram of limonene-based SNEDS 34

3.3. Physiochemical characteristics and evaluation of limonene-based SNEDS 37

3.4. Storage stability testing 39

4. Discussion 42

5. Conclusion 46

Chapter II 25

Appraisal of Tadalafil-loaded Limonene-based Self-nanoemulsifying Delivery System Gastroprotective Effect Employing Ethanol-induced Mucosal Injuries Model in Rats 25

1. Introduction 47

Aim of the chapter 50

2. Materials and methods 51

2.1. Materials 51

2.2. UV-VIS Spectrophotometric Assay of Tadalafil 51

2.3. Solubility studies 51

2.4. Formulation of tadalafil-loaded limonene-based SNEDS 51

2.5. Evaluation of tadalafil-loaded limonene-based SNEDS 52

2.5.1. Percentage transmittance measurement 52

2.5.2. Self-emulsification time 52

2.5.3. Robustness to dilution 52

2.5.4. Cloud point determination 52

2.5.5. Thermodynamic stability 52

2.6. Physiochemical characteristics of tadalafil-loaded limonene-based SNEDS 53

2.6.1. Determination of droplet size and polydispersity index (PDI) 53

2.6.2. Zeta potential measurement 53

2.6.3. In-vitro drug release and its kinetics 53

2.7. In-vivo assessment 55

2.7.1. Animals 55

2.7.2. Ethanol-induced gastric ulcer 55

2.7.3. Evaluation of gastric lesion 55

2.7.4. Histopathological assessment 56

Page 7: Amina Tarek Mneimneh - repository.bau.edu.lb:8080

v

2.8. Stability studies 56

2.9. Statistical analysis 57

3. Results 58

3.1. UV-VIS spectrophotometric Assay of Tadalafil 58

3.2. Solubility study 59

3.3. Physical stability of tadalafil SNEDS 59

3.4. Physicochemical characteristics of tadalafil-loaded nanoemulsion 60

3.5. In-vitro dissolution studies 60

3.6. Gross evaluation 62

3.7. Histopathological evaluation 66

3.8. Storage stability 66

4. Discussion 70

5. Conclusion 75

Chapter III 47

Levofloxacin-loaded Naturally Occurring Monoterpine-based Nanoemulgel: A Feasible Efficient System to Circumvent MRSA Ocular Infections 47

1. Introduction 76

Aim of the chapter 79

2. Materials and methods 80

2.1. Materials and culture 80

2.2. UV-VIS Spectrophotometric Assay of levofloxacin 80

2.3. Solubility study 80

2.4. Preparation of levofloxacin-loaded limonene-based SNEDS 80

2.5. Assessment of levofloxacin-loaded limonene-based SNEDS 81

2.5.1. Thermodynamic stability 81

2.5.2. Self-emulsification time 81

2.5.3. Robustness to dilution 81

2.5.4. Cloud point 81

2.6. Physiochemical characteristics of the levofloxacin-loaded SNEDS 81

2.7. Antibacterial activity of levofloxacin-loaded and unloaded SNEDS 82

2.7.1. Determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) 82

Page 8: Amina Tarek Mneimneh - repository.bau.edu.lb:8080

vi

2.7.2. Effect of limonene-based SNEDS on the activity of levofloxacin against biofilm-forming bacteria 82

2.7.3. Regrowth assay 83

2.8. Storage stability 83

2.9. Preparation of levofloxacin-loaded limonene-based in-situ nanoemulgel 83

2.10. Characterization of the levofloxacin-loaded limonene-based in-situ nanoemulgel 84

2.10.1. Determination of visual appearance, clarity and pH 84

2.10.2. Measurement of the gelation temperature 84

2.10.3. Rheological behavior 84

2.10.4. Refractive index 84

2.10.5. Transmission electron microscopy (TEM) 84

2.11. In-vitro release of levofloxacin from limonene-based in-situ nanoemulgel 85

2.12. Ocular irritation test by Hen's Egg Test Chorioallantoic Membrane (HET-CAM) Assay 85

2.13. Statistical analysis 86

3. Results 87

3.1. UV-VIS spectrophotometric Assay of Levofloxacin 87

3.2. Solubility study 88

3.3. Physiochemical characteristics and physical stability of Levofloxacin- loaded limonene-based SNEDS 88

3.4 . Antibacterial activity of levofloxacin-loaded and unloaded limonene-based SNEDS 91

3.4.1. In-vitro evaluation of the activity of levofloxacin-loaded and free limonene-based SNEDS 91

3.4.2. Effect of levofloxacin loaded and unloaded limonene-based SNEDS on the biofilm-forming ability of MRSA 91

3.4.3. Biofilm regrowth assay 93

3.5. Storage stability 94

3.6. Characterization of the levofloxacin-loaded limonene-based in-situ nanoemulgel 95

3.7. In-vitro release studies 97

3.8. Hen's Egg Test Chorioallantoic Membrane (HET-CAM) irritation test 98

4. Discussion 101

5. Conclusion 106

References 107

Page 9: Amina Tarek Mneimneh - repository.bau.edu.lb:8080

vii

List of tables Table 1: Lipid formulation classification system; characteristic features, advantages, and

disadvantages of the basic lipid formulations7 2

Table 2: Differences between nanoemulsions and microemulsions58,59 14

Table 3: Summary of some research articles describing different SNEDDS formulations 22

Table 4: Preliminary screening of different surfactants and co-surfactants based on their %

transmittance 33

Table 5: Analysis of variance of surfactants and co-surfactants screening 34

Table 6: Composition of SNEDS formulations constructing phase diagram 35

Table 7: Physiochemical characteristics of limonene-based SNEDS* 37

Table 8: Abou Zeit-Har ulcer scoring system 56

Table 9: Thermodynamic stability and self-emulsification time tadalafil-loaded and unloaded

limonene-based self-nanoemulsifying delivery system 59

Table 10: T-test values of the physiochemical characteristics of tadalafil-loaded and unloaded

limonene-based nanoemulsion 60

Table 11: T-test values of the mean dissolution rate of tadalafil from limonene-based SNEDS

and aqueous suspension 61

Table 12: Correlation coefficients and kinetics of drug release of tadalafil from limonene-

based self-emulsifying delivery system 62

Table 13: The effect of different treatment modalities on ethanol-induced gastric ulcer in

rats● 65

Table 14: Physical stability of tadalafil-loaded SNEDS at different storage temperatures for

three months* 68

Table 15: Scoring scheme for the Hen's Egg Test-chorioallantoic membrane test for

membrane irritation 86

Table 16: Physiochemical characteristics of Levofloxacin-loaded limonene based SNEDS 89

Table 17: T-test of the physiochemical characteristics of levofloxacin-loaded and unloaded

SNEDS 89

Table 18: MIC and MBC values of levofloxacin aqueous solution, levofloxacin-loaded and

unloaded limonene-based self-nanoemulsifying delivery system against 49 MRSA strain* 92

Table 19: T-test value for biofilm inhibition of free and loaded levofloxacin SNEDS 93

Page 10: Amina Tarek Mneimneh - repository.bau.edu.lb:8080

1

In the recent years, it has been evident that synthesizing new drug alone is not

sufficient to establish advancement in drug therapy. The conventional drug delivery

systems are destined to failure, due to many factors, mainly low drug solubility, poor

absorption, enzymatic degradation, rapid metabolism, cellular efflux and variability in

plasma concentration1. Poorly soluble drugs are a considerable challenge for researchers,

regarding their low aqueous solubility, bioavailability and high lipophilicity. So, a new

pharmaceutical delivery system or a drug carrier that acts as a reservoir is needed for the

optimal delivery of drug to the targeted site within appropriate time frame and effective

concentration. In-vivo fate of the drug isn’t influenced only by the properties of the drug

itself, but also by its carrier system characteristics, which could provide controlled or

localized release of the drug according to the desired therapy2. Lipids are the major

constituents of biological membranes. Incorporation of lipids in drug delivery has been a

trend in the past decades. Lipid based carriers are composed of phospholipids, cholesterol,

cholesterolesters and triglycerides among others3. The physiochemical diversity of lipids,

their biocompatibility and their resemblance to body tissue constituents offer a promising

system for poorly water soluble and lipophilic drugs4. Lipid carriers (LCs) provide several

advantages that enable it to be an ideal vehicle for drug delivery. Namely; it can be

manipulated according to product requirements whether its disease conditions, rout of

administration, stability, toxicity or efficacy. In addition, Lipid based formulations (LBFs)

can provide a controlled release delivery based on their biocompatibility with body tissue

after administration, it’s not susceptible to erosion phenomena, feasibility of scaling up5,

moreover, it provide enhanced drug loading, ability to carry both lipophilic and

hydrophilic drugs and stability. However, LCs face certain limitations such as, lipid

crystallization that leads to polymorphism with different drug loading capacity, different

shapes and various kinetic distributions. High pressure homogenization technique is most

commonly used and it might cause drug degradation in high molecular weight

compounds3. Lipid-based carriers are recognized as safe and efficient hence they have

been used as alluring candidates for pharmaceutical, as well as vaccines, diagnostics, and

nutraceutical formulations. Therefore, lipid-based drug delivery (LBDD) systems have

gained much importance in the recent years due to their ability to improve the solubility

and bioavailability of drugs with poor water solubility.

Page 11: Amina Tarek Mneimneh - repository.bau.edu.lb:8080

107

1. Zaro, J. L. (2015). Lipid-Based carriers for prodrugs to enhance delivery. 17, 83–

92

2. Mehnert, W. & Mäder, K. (2001). Solid lipid nanoparticles production,

characterization and applications. Adv. Drug Deliv. Rev. 47, 165–196

3. Rawat, M., Singh, D., Saraf, S. & Swarnlata, S. (2008). Lipid carriers: A versatile

delivery vehicle for proteins and peptides. Pharm. Soc. Japan 128, 269–280

4. Colin W.Pouton. (2006). Formulation of poorly water-soluble drugs for oral

administration: physicochemical and physiological issues and the lipid formulation

classification system. Eur. J. Pharm. Sci. 29, 278–287

5. Reithmeier, H., Herrmann, J. & Göpferich, A. (2001). Development and

characterization of lipid microparticles as a drug carrier for somatostatin. Int. J.

Pharm. 218, 133–143

6. Mehanna, M., Motawaa, A. & Samaha, M. (2012). Pharmaceutical particulate

carriers: lipid - based carriers. Natl. J. Physiol. Pharm. Pharmacol. 2, 10–22

7. Shrestha, H., Bala, R. & Arora, S. (2014). Lipid-based drug delivery systems. J.

Pharm. 2014, 1–10

8. Mishra, D. K., Ruchita, S. & Pradyumna, K. M. (2018). Lipid based nanocarriers: a

translational perspective. Nanomedicine Nanotechnology, Biol. Med. 14, 2023–

2050

9. Deshpande, P., Aditi, J., Bhushan, P., Biswas, S. & Torchilin, V. (2018).

Transferrin and octaarginine modified dual functional liposomes with improved

cancer cell targeting and enhanced intracellular delivery for the treatment of

ovarian cancer. Drug Deliv. 25, 517–532

10. Meng, J. et al. (2016). Combination therapy using co-encapsulated resveratrol and

paclitaxel in liposomes for drug resistance reversal in breast cancer cells in vivo.

Sci. Rep. 1–11

11. Wetzler, M. et al. (2014). Phase I/II trial of nanomolecular liposomal annamycin in

adult patients with relapsed/refractory acute lymphoblastic leukemia. Clin.

Lymphoma, Myeloma Leuk. 13, 430–434

12. Bulbake, U., Doppalapudi, S., Kommineni, N. & Khan, W. (2017). Liposomal

formulations in clinical use : an updated review development. Pharmaceutics 9, 1–

33

Page 12: Amina Tarek Mneimneh - repository.bau.edu.lb:8080

108

13. Food and Drug Adminstration. (2018). FDA approves a new antibacterial drug to

treat a serious lung disease using a novel pathway to spur innovation. Available at:

www.fda.gov.

14. Jyoti, K., Pandey, R. S., Madan, J. & Jain, U. K. (2016). Inhalable cationic

niosomes of curcumin enhanced drug delivery and apoptosis in lung cancer cells.

Indian J. Pharm. Educ. Res. 50, S23-31

15. Pandita, A. & Sharma, P. (2013). Pharmacosomes: an emerging novel vesicular

drug delivery system for poorly soluble synthetic and herbal drugs. Int. Sch. Res.

Not. Pharm. 2013, 1–10

16. Sailaja, A. K. (2016). Pharmacosomes : a novel carrier for drug delivery.

Innoriginal Int. J. Sci. 3, 1–10

17. Semalty, A., Semalty, M., Rawat, B. S., Singh, D. & Rawat, M. S. M. (2010).

Development and evaluation of pharmacosomes of aceclofenac. Indian J. Pharm.

Sci. 72, 576–581

18. Mirzaei, H. et al. (2017). Phytosomal curcumin: A review of pharmacokinetic,

experimental and clinical studies. Biomed. Pharmacother. 85, 102–112

19. Dubey, V., Mishra, D., Nahar, M. & Jain, N. K. (2007). Vesicles as tools for the

modulation of skin permeability. Expert Opin. Drug Deliv. 4, 579–594

20. Mehanna, M. M., Motawaa, A. M. & Samaha, M. W. (2014). Nanovesicular

carrier-mediated transdermal delivery of tadalafil : i- formulation and

physicochemical characterization. Drug Dev. Ind. Pharm. 41, 714–721

21. Bodade, S. S., Shaikh, K. S., Kamble, M. S. & Chaudhari, P. D. (2013). A study on

ethosomes as mode for transdermal delivery of an antidiabetic drug. Drug Deliv.

20, 40–46

22. Jain, S., Jain, V. & Mahajan, S. C. (2014). Lipid based vesicular drug delivery

systems. Adv. Pharm. 1–12

23. Sutariya, V. & Patel, P. (2012). Aquasomes: a novel carrier for drug delivery. Int.

J. Pharm. Sci. Res. 3, 688–694

24. Alavi, M., Karimi, N. & Safaei, M. (2017). Application of various types of

liposomes in drug delivery systems. Adv. Pharm. Bull. 7, 1–9

25. Abd-Elal, R. M. A., Shamma, R. N., Rashed, H. M. & Bendas, E. R. (2016). Trans-

nasal zolmitriptan novasomes: in-vitro preparation, optimization and in-vivo

evaluation of brain targeting efficiency. Drug Deliv. 23, 3374–3386

26. Thompson, K. L., Williams, M. & Armes, S. P. (2014). Colloidosomes : Synthesis ,

Page 13: Amina Tarek Mneimneh - repository.bau.edu.lb:8080

109

properties and applications. J. Colloid Interface Sci. 447, 217–228

27. Shah, R. K., Kim, J. & Weitz, D. A. (2010). Monodisperse stimuli-responsive

colloidosomes by self-assembly of microgels in droplets. Langmuir 26, 1561–1565

28. Nan, F. et al. (2014). Preparation of uniform-sized colloidosomes based on

chitosan-coated alginate particles and its application for oral insulin delivery. J.

Mater. Chem. B Mater. Biol. Med. 00, 1–7

29. Ghasemiyeh, P. & Mohammadi-Samani, S. (2018). Solid lipid nanoparticles and

nanostructured lipid carriers as novel drug delivery systems: applications,

advantages and disadvantages. Res. Pharm. Sci. 13, 288–303

30. Gasco, M. R. (2007). Lipid nanoparticles: perspectives and challenges. Adv. Drug

Deliv. Rev. 59, 377–378

31. Yuan, H. et al. (2007). Studies on oral absorption of stearic acid SLN by a novel

fluorometric method. Colloids Surfaces B Biointerfaces 58, 157–164

32. Pardeike, J., Hommoss, A. & Müller, R. . (2009). Lipid nanoparticles (SLN, NLC)

in cosmetic and pharmaceutical dermal products. Int. J. Pharm. 366, 170–184

33. Bunjes, H. (2010). Lipid nanoparticles for the delivery of poorly water-soluble

drugs. J. Pharm. Pharmacol. 62, 1637–1645

34. Anthony, A. A., Stephan, R. & Müller-Goymann, C. . (2008). Diclofenac sodium

delivery to the eye: In vitro evaluation of novel solid lipid nanoparticle formulation

using human cornea construct. Int. J. Pharm. 355, 307–313

35. Chime, S. & Onyishi, I. (2013). Lipid based drug delivery systems (LDDS): recent

advances and applications of lipids in drug delivery. African J. Pharm. Pharmacol.

7, 3034–3059

36. Dudala, T. B. et al. (2014). A perspective overview on lipospheres as lipid carrier

systems. Int. J. Pharmceutical Investig. 4, 149–155

37. Nasr, M., Mansour, S., Mortada, N. D. & El Shamy, A. A. (2008). Lipospheres as

carriers for topical delivery of Aceclofenac : preparation , characterization and in

vivo evaluation. AAPS PharmSciTech 9, 154–162

38. Patidar, A., Kumar, P., Verma, J. & Thakur, D. (2010). A review on novel lipid

based nanocarriers. Int. J. Pharm. Pharm. Sci. 2, 30–35

39. Mühlen, A. zur, Schwarz, C. & Wolfgang, M. (1998). Solid lipid nanoparticles

(SLN) for controlled drug delivery – drug release and release mechanism. Eur. J.

Pharm. Biopharm. 45, 149–155

40. Naseri, N., Valizadeh, H. & Zakeri-Milani, P. (2015). Solid lipid nanoparticles and

Page 14: Amina Tarek Mneimneh - repository.bau.edu.lb:8080

110

nanostructured lipid carriers: structure, preparation and application. Adv. Pharm.

Bull. 5, 305–313

41. Kelidari, H. R. et al. (2018). Improved delivery of voriconazole to Aspergillus

fumigatus through solid lipid nanoparticles as an effective carrier. Colloids

Surfaces A Physicochem. Eng. Asp. 558, 338–342

42. Dara, T. et al. (2019). Erythropoietin-loaded solid lipid nanoparticles: preparation,

optimization, and in vivo evaluation. Colloids Surfaces B Biointerfaces 178, 307–

316

43. Müller, R., Wissing, S. & Radtke, M. (2002). Nanostructured lipid matrices for

improved microencapsulation of drugs. Int. J. Pharm. 242, 121–128

44. Beloqui, A. et al. (2014). Biodistribution of nanostructured lipid carriers (NLCs)

after intravenous administration to rats: influence of technological factors. Eur. J.

Pharm. Biopharm. 84, 309–314

45. Shen, J. et al. (2010). Thiolated nanostructured lipid carriers as a potential ocular

drug delivery system for cyclosporine A: Improving in vivo ocular distribution. Int.

J. Pharm. 402, 248–253

46. Khuranaa, S., Jain, N. . & Bedi, P. M. . (2013). Development and characterization

of a novel controlled release drug delivery system based on nanostructured lipid

carriers gel for meloxicam. Life Sci. 93, 763–772

47. Fathi, H. A., Allam, A., Elsabahy, M., Fetih, G. & El-Badry, M. (2018).

Nanostructured lipid carriers for improved oral delivery and prolonged

antihyperlipidemic effect of simvastatin. Colloids Surfaces B Biointerfaces 162,

236–245

48. Salvi, V. R. & Pawar, P. (2019). Nanostructured lipid carriers ( NLC ) system : A

novel drug targeting carrier. J. Drug Deliv. Sci. Technol. 51, 255–267

49. Beloqui, A., Solinís, M. Á., Rodríguez-gascón, A., Almeida, A. J. & Préat, V.

(2016). Nanostructured lipid carriers : Promising drug delivery systems for future

clinics. Nanomedicine Nanotechnology, Biol. Med. 12, 143–161

50. Irby, D., Du, C. & Li, F. (2017). Lipid − drug conjugate for enhancing drug

delivery. Mol. Pharm. 14, 1325–1338

51. Bradley, M. O. et al. (2001). Tumor targeting by covalent conjugation of a natural

fatty acid to paclitaxel. Clin. Cancer Res. 7, 3229–3238

52. LU, G. W. & Gao, P. (2010). Emulsions and microemulsions for topical and

transdermal rug delivery. in Handbook of Non-Invasive Drug Delivery Systems 59–

Page 15: Amina Tarek Mneimneh - repository.bau.edu.lb:8080

111

94

53. Hoar, T. P. & Schulman, J. H. (1943). Transparent water-in-oil dispersions: the

oleopathic hydro-micelle. Nat. Int. J. Sci. 152, 102–103

54. Patil, N. H. & Devarajan, P. V. (2014). Colloidal carriers for noninvasive delivery

of insulin. in Colloid and Interface Science in Pharmaceutical Research and

Development 411–442

55. Patel, H., Parejiya, P., Shelat, P., Shukla, A. & Barot, B. S. (2013). Topical

delivery of clobetasol propionate loaded microemulsion based gel for effective

treatment of vitiligo: Ex vivo permeation and skin irritation studies. Colloids

Surfaces B Biointerfaces 102, 86–94

56. Shah, B. R. et al. (2016). Preparation and optimization of pickering emulsion

stabilized by chitosan-tripolyphosphate nanoparticles for curcumin encapsulation.

Food Hydrocoll. 52, 369–377

57. McClements, D. J. (2011). Edible nanoemulsions: fabrication, properties, and

functional performance. Soft Matter 2297–2316

58. Mcclements, D. J. (2012). Nanoemulsions versus microemulsions : terminology ,

differences , and similarities. Soft Matter 8, 1719–1729

59. Anton, N. & Vandamme, T. (2011). Nano-emulsions and Micro-emulsions:

Clarifications of the Critical Differences. Pharm. Res. 28, 978–985

60. Shafiq, S. et al. (2007). Development and bioavailability assessment of ramipril

nanoemulsion formulation. Eur. J. Pharm. Biopharm. 66, 227–243

61. Bali, V., Ali, M. & Ali, J. (2010). Study of surfactant combinations and

development of a novel nanoemulsion for minimizing variations in bioavailability

of ezetimibe. Colloids surfaces B Biointerfaces 76, 410–420

62. Wang, X. et al. (2008). Enhancing antiinflammation activity of curcumin through

O/W nanoemulsions. Food Chem. 108, 419–424

63. Patravale, V. B. & Mandawgade, S. D. (2008). Novel cosmetic delivery systems :

an application update. Int. J. Cosmet. Sci. 30, 19–33

64. Jasmina, H., Džana, O., Alisa, E., Edina, V. & Ognjenka, R. (2017). Preparation Of

nanoemulsions by high-energy and low energy emulsification methods. IFMBE

Proc. 62, 316–322

65. Kumari, C. T. L., Sowjanya, G. N., S.L.Sindhuri & P.Bandhavi. (2012).

Nanoemulsions an emerging trend: a review. Int. J. Pharm. Res. Dev. 4, 137–152

66. Gonçalves, A. et al. (2018). Production, properties, and applications of solid self-

Page 16: Amina Tarek Mneimneh - repository.bau.edu.lb:8080

112

emulsifying delivery systems (S-SEDS) in the food and pharmaceutical industries.

Colloids Surfaces APhysicochemical Eng. Asp. 538, 108–126

67. Maali, A. & Mosavian, M. T. H. (2013). Preparation and application of

nanoemulsions in the last decade (2000–2010). J. Dispers. Sci. Technol. 34, 92–

105

68. Shinoda, K. & Saito, H. (1968). The effect of temperature on the phase equilibria

and the types of dispersions of the ternary system composed of water, cyclohexane,

and nonionic surfactant. J. Colloid Interface Sci. 26, 70–74

69. Anton, N. et al. (2009). Aqueous-core lipid nanocapsules for encapsulating fragile

hydrophilic and/or lipophilic molecules. Langmuir 25, 11413–11419

70. Fernandes, C. et al. (2012). Investigation of the mechanisms underlying the

gastroprotective effect of cymbopogon citratus essential oil. J. Young Pharm. 4,

28–32

71. Maestro, A., Solè, I., González, C., Solans, C. & Gutiérrez, J. M. (2008). Influence

of the phase behavior on the properties of ionic nanoemulsions prepared by the

phase inversion composition method. Colloid Interface Sci. Pharm. Res. Dev. 327,

433–439

72. Shakeel, F., Baboota, S., Ahuja, A., Ali, J. & Shafiq, S. (2009). Celecoxib

nanoemulsion for transdermal drug delivery: characterization and invitro

evaluation. J. Dispers. Sci. Technol. 30, 834–842

73. Bouchemal, K., Briançon, S., Perrier, E. & Fessi, H. (2004). Nano-emulsion

formulation using spontaneous emulsification: solvent, oil and surfactant

optimisation. Int. J. Pharm. 280, 241–251

74. Mahajan, H. S., Mahajan, M. S., Nerkar, P. P. & Agrawal, A. (2014).

Nanoemulsion-based intranasal drug delivery system of saquinavir mesylate for

brain targeting. Drug Deliv. 21, 148–154

75. Oliveira, C. A. et al. (2018). Nanoemulsion containing 8-methoxypsoralen for

topical treatment of dermatoses : Development , characterization and ex vivo

permeation in porcine skin. Int. J. Pharm. 547, 1–9

76. Chauhan, S. & Batra, S. (2018). Development and in-vitro characterization of

nanoemulsion embedded thermosensitive in-situ ocular gel of diclofenac sodium

for sustained delivery. Int. J. Pharm. Sci. Res. 9, 2301–2314

77. Li, Y., Hu, X., Lu, X., Liao, D. & Tang, T. (2017). Nanoemulsion-based delivery

system for enhanced oral bioavailability and Caco-2 cell monolayers permeability

Page 17: Amina Tarek Mneimneh - repository.bau.edu.lb:8080

113

of berberine hydrochloride. Drug Deliv. 24, 1868–1873

78. Thakur, N., Garg, G., Sharma, P. K. & Kumar, N. (2012). Nanoemulsions : a

review on various pharmaceutical application. Glob. J. Pharmacol. 6, 222–225

79. Fofaria, N. M., Syed, H., Qhattal, S., Liu, X. & Srivastava, S. K. (2017).

Nanoemulsion formulations for anti-cancer agent piplartine – characterization,

toxicological, pharmacokinetics and efficacy studies. Int. J. Pharm. 498, 12–22

80. Ribeiro, R. C. de A. et al. (2015). Production and characterization of cosmetic

nanoemulsions containing Opuntia ficus-indica (L.) mill extract as moisturizing

agent. Molecules 20, 2492–2509

81. Gursoy, R. & Benita, S. (2004). Self-emulsifying drug delivery systems (SEDDS)

for improved oral delivery of lipophilic drugs. Biomed. Pharmacother. 58, 173–

182

82. Singh, B., Kapil, R., Singh, R., Katare, O. & Bandopadhyay, S. (2009). Self-

emulsifying drug delivery systems (SEDDS): formulation development,

characterization, and applications. Crit. Rev. Ther. Drug Carr. Syst. 26, 427-521

83. Khan, A., Ansari, S., Sharma, R., Ali, J. & Kotta, S. (2012). Potentials and

challenges in self-nanoemulsifying drug delivery systems. Expert Opin. 10, 1305–

1317

84. Chime, S. A., Kenechukwu, F. C. & Attama, A. A.(2013) Nanoemulsions —

advances in formulation,characterization and applications in drug delivery. in

Application of Nanotechnology in Drug Delivery, 77–126

85. Kohli, K., Chopra, S., Dhar, D., Arora, S. & Roop, K. K. (2010). Self-emulsifying

drug delivery systems: an approach to enhance oral bioavailability. Drug Discov.

Today 15, 958–968

86. Thomas, N., Graf, A., Rades, T. & Müllertz, A. (2012). Influence of lipid

composition and drug load on the in vitro performance of self-nanoemulsifying

drug delivery systems. J. Pharm. Sci. 101, 1721–1731

87. Shah, N. H., Patel, C. I., Nfeld, M. H., Malick, A. W. & Carvajal, M. (1994). Self-

emulsifying drug delivery systems (SEDDS) with polyglycolyzed glycerides for

improving in vitro dissolution and oral absorption of lipophilic drugs. Int. J.

Pharm. 106, 15–23

88. Date, A. A., Desai, N. & Nagarsenker, M. (2010). Self-nanoemulsifying drug

delivery systems : formulation insights , applications and advances. Nanomedicine

5, 1595–1616

Page 18: Amina Tarek Mneimneh - repository.bau.edu.lb:8080

114

89. Fahmy, U., Hosny, K. & Ahmed, O. (2014). Development and evaluation of

avanafil self-nanoemulsifying drug delivery system with rapid onset of action and

enhanced bioavailability. Am. Assoc. Pharm. Sci. 16, 53–58

90. Reiss, H. (1975). Entropy-induced dispersion of bulk liquids. J. Colloid Interface

Sci. 53, 61–70

91. Groves, M. & Galindez, D. de. (1976). The self-emulsifying action of mixed

surfactants in oil. Acta Pharm. Suec. 13, 361–372

92. Rehman, F. U., Shah, K. U., Shah, S. U. & Khan, I. U. (2016). From

nanoemulsions to self-nanoemulsions , with recent advances in self-

nanoemulsifying drug delivery systems ( SNEDDS ). Expert Opin. Drug Deliv.

5247, 1–16

93. Abd-Elhakeem, E., Teaima, M. H., Abdelbary, G. A. & El Mahrouk, G. M. (2019).

Bioavailability enhanced clopidogrel -loaded solid SNEDDS: development and in-

vitro/in-vivo characterization. J. Drug Deliv. Sci. Technol. 49, 603–614

94. Joshi, R. et al. (2013). SNEDDS curcumin formulation leads to enhanced

protection from pain and functional deficits associated with diabetic neuropathy:

An insight into its mechanism for neuroprotection. Nanomedicine Nanotechnology,

Biol. Med. 9, 776–785

95. Abo Enin, H. A. & Abdel-bar, H. M. (2016). Solid super saturated self-

nanoemulsifying drug delivery system ( sat-SNEDDS ) as a promising alternative

to conventional SNEDDS for improvement rosuvastatin calcium oral

bioavailability. Expert Opin. Drug Deliv. 5247, 1–29

96. Dash, R. N., Habibuddin, M., Humair, T. & Ramesh, D. (2015). Design,

optimization and evaluation of glipizide solid self-nanoemulsifying drug delivery

for enhanced solubility and dissolution. Saudi Pharm. J. 23, 528–540

97. Shakeel, F., Haq, N., El-badry, M., Alanazi, F. K. & Alsarra, I. A. (2013). Ultra

fine super self-nanoemulsifying drug delivery system ( SNEDDS ) enhanced

solubility and dissolution of indomethacin. J. Mol. Liq. 180, 89–94

98. Zhang, X. et al. (2013). Controlled release of cyclosporine a self-nanoemulsifying

systems from osmotic pump tablets: near zero-order release and pharmacokinetics

in dogs. Int. J. Pharm. 452, 233–240

99. Miao, Y., Ren, L., Pingkai, O. & Chen, G. (2016). Characterization and evaluation

of self-nanoemulsifying sustained-release pellet formulation of ziprasidone with

enhanced bioavailability and no food effect. Drug Deliv. 23, 2163–2172

Page 19: Amina Tarek Mneimneh - repository.bau.edu.lb:8080

115

100. Patil, P. R., Biradar, S. V. & Paradkar, A. R. (2009). Extended release felodipine

self-nanoemulsifying system. Am. Assoc. Pharm. Sci. 10, 515–523

101. Parmar, K., Patel, J. & Sheth, N. (2015). Self nano-emulsifying drug delivery

system for embelin: design, characterization and in-vitro studies. Asian J. Pharm.

Sci. 10, 396–404

102. Mohd, A. B., Sanka, K., Bandi, S. & Diwan, P. V. (2015). Solid self-

nanoemulsifying drug delivery system ( S-SNEDDS ) for oral delivery of

glimepiride : development and antidiabetic activity in albino rabbits. Drug Deliv.

22, 499–508

103. Beg, S., Swain, S., Singh, H. P., Patra, C. N. & Rao, M. B. (2012). Development,

optimization, and characterization of solid self-nanoemulsifying drug delivery

systems of valsartan using porous carriers. Am. Assoc. Pharm. Sci. 13, 1416–1427

104. Dünnhaupt S Waldner C, Kiparissides C, Bernkop-Schnürch A., K. O. (2015).

Nano-carrier systems: strategies to overcome the mucus gel barrier. Eur. J. Pharm.

Biopharm. 96, 447–453

105. Pund, S., Pawar, S., Gangurde, S. & Divate, D. (2015). Transcutaneous delivery of

leflunomide nanoemulgel : mechanistic investigation into physicomechanical

characteristics , in vitro anti-psoriatic and anti-melanoma activity. Int. J. Pharm.

487, 148–156

106. Badran, M. M., Taha, E. I., Tayel, M. M. & Al-Suwayeh, S. A. (2014). Ultra-fine

self nanoemulsifying drug delivery system for transdermal delivery of meloxicam:

Dependency on the type of surfactants. J. Mol. Liq. 190, 16–22

107. Alhakamy, N. A. & Hosny, K. M. (2019). Nano-vesicular delivery system loaded

by bifonazole: Preparation, optimization, and assessment of pharmacokinetic and

antifungal activity. J. Drug Deliv. Sci. Technol. 49, 316–322

108. Hauptstein, S., Bernkop-Schnürch, A. & Prüfert, F. (2015). Self-nanoemulsifying

drug delivery systems as novel approach for pDNA drug delivery. Int. J. Pharm.

487, 25–31

109. Sakloetsakun, D., Dünnhaupt, S., Barthelmes, J., Perera, G. & Bernkop-schnürch,

A. (2013). Combining two technologies : multifunctional polymers and self-

nanoemulsifying drug delivery system ( SNEDDS ) for oral insulin administration.

Int. J. Biol. Macromol. 61, 363–372

110. Garg, V. et al. (2017). Solid self-nanoemulsifying drug delivery systems for oral

delivery of polypeptide-k : formulation , optimization , in-vitro and in-vivo

Page 20: Amina Tarek Mneimneh - repository.bau.edu.lb:8080

116

antidiabetic evaluation. Eur. J. Pharm. Sci. 109, 297–315

111. El-Say, K. M., Ahmed, T. A., Ahmed, O. A. A., Hosny, K. M. & Abd-Allah, F. I.

(2017). Self-nanoemulsifying lyophilized tablets (SNELTs) for flash oral

transmucosal delivery of vitamin K: development and clinical evaluation. J.

Pharm. Sci. 106, 2447–2456

112. Pandey, M., Gupta, S., Chikara, S. & Debnath, M. (2011). Phytomedicine: An

ancient approach turning into future potential source of therapeutics. J.

Pharmacogn. Phyther. 3, 113–117

113. Gandhi, G. R. et al. (2019). Essential oils and its bioactive compounds modulating

cytokines: A systematic review on anti-asthmatic and immunomodulatory

properties. Phytomedicine 152854 In,

114. Sienkiewicz, M., Łysakowska, M., Denys, P. & Kowalczyk, E. (2012). The

antimicrobial activity of thyme essential oil against multidrug resistant clinical

bacterial strains. Microb. Drug Resist. 18, 137–148

115. Jongedijk, E. et al. (2016). Biotechnological production of limonene in

microorganisms. Appl. Microbiol. Biotechnol. 100, 2927–2938

116. Li, P.-H. & Lu, W.-C. (2016). Effects of storage conditions on the physical stability

of D-limonene nanoemulsion. Food Hydrocoll. 53, 218–224

117. Paul, E. & Viljoen, A. (2008). Limonene - a review: biosynthetic, ecological and

pharmacological relevance. Nat. Prod. Commun. 3, 1193–1202

118. Lis-Balchin, M., Ochocka, R. J., Deans, S., Asztemborska, M. & Hart, S. (1996).

Bioactivity of the enantiomers of limonene. Med. Sci. Res. 24, 309–310

119. Sun, J. (2007). D-limonene : safety and clinical applications. Altern. Med. Rev. 12,

259–264

120. Vieira, A. J., Beserra, F. P., Souza, M. C., Totti, B. M. & Rozza, A. L. (2018).

Limonene: aroma of innovation in health and disease. Chem. Biol. Interact. 283,

97–106

121. Espina, L., Gelaw, T. K., Lamo-Castellví, S. de, Pagán, R. & García-Gonzalo, D.

(2013). Mechanism of bacterial inactivation by (+)-Limonene and its potential use

in food preservation combined processes. PLoS One 8, 1–10

122. Chee, H. Y., Kim, H. & Lee, M. H. (2009). In vitro antifungal activity of limonene

against Trichophyton rubrum. Mycobiology 37, 243–246

123. Roberto, D., Sebastian, T., Graciela, F., Anesini, C. & Micucci, P. (2009).

Antioxidant activity of Limonene on normal murine lymphocytes: relation to H2O2

Page 21: Amina Tarek Mneimneh - repository.bau.edu.lb:8080

117

modulation and cell proliferation. Basic Clin. Pharmacol. Toxicol. 106, 38–44

124. Bacanlı, M., Başaran, N. & Başaran, A. . (2015). The antioxidant and antigenotoxic

properties of citrus phenolics limonene and naringin. Food Chem. Toxicol. 81,

160–170

125. D’Alessio, P. et al. (2013). Oral administration of D-limonene controls

inflammation in rat colitis and displays anti-inflammatory properties as diet

supplementation in humans. Life Sci. 92, 1151–1156

126. Yu, X. et al. (2018). D-limonene exhibits antitumor activity by inducing

autophagy and apoptosis in lung cancer. Onco. Targets. Ther. 11, 1833–1847

127. Zhang, X., Liu, D., Tang, G., Zhang, H. & Wang, L. (2014). Synergistic inhibitory

effect of berberine and D-limonene on human gastric carcinoma cell line

MGC803. J. Med. Food 17, 955–962

128. Ghasemi, S., Assadpour, E., Khomeiri, M. & Mahdi, S. J. (2018).

Nanoencapsulation of D-limonene within nanocarriers produced by pectin-whey

protein complexes. Food Hydrocoll. 77, 152–162

129. Rangsimawong, W., Opanasopit, P., Ngawhirunpat, T., Takayama, K. & Obata, Y.

(2018). Enhancement of galantamine HBr skin permeation using sonophoresis and

limonene-containing PEGylated liposomes. Am. Assoc. Pharm. Sci. 19, 1093–1104

130. Zahi, M., Liang, H., Yuan, Q. & El Hattab, M. (2017). Enhancing the antimicrobial

activity of D-limonene nanoemulsion with the inclusion of ε-polylysine. Food

Chem. 22, 18–23

131. Solans, C. & Solé, I. (2012). Nano-emulsions: formation by low-energy methods.

Curr. Opin. Colloid Interface Sci. 17, 246–254

132. Date, A. A. & Nagarsenker, M. S. (2007). Design and evaluation of self-

nanoemulsifying drug delivery systems(SNEDDS) for cefpodoxime proxetil. Int. J.

Pharm. 329, 166–172

133. Ahmad, J., Amin, S., Kohli, K. & Mir, S. R. (2013). Construction of pseudoternary

phase diagram and its evaluation: development of self-dispersible oral formulation.

Int. J. Drug Dev. Res. 5, 84–90

134. Elnaggar, Y. S. R., El-Massik, M. A. & Abdallah, O. Y. (2009). Self-

nanoemulsifying drug delivery systems of tamoxifen citrate: Design and

optimization. Int. J. Pharm. 380, 133–141

135. Gaikwad, N. M., Shaikh, K. S. & Chaudhari, P. D. (2017). Development and

evaluation of a system for colonic delivery of budesonide. Indian J. Pharm. Educ.

Page 22: Amina Tarek Mneimneh - repository.bau.edu.lb:8080

118

Res. 51, 551–561

136. Nasr, A., Gardouh, A. R., Ghonaim, H. M. & Abdelghany, E. (2016). Effect of

oils,surfactants and cosurfactants on phase behavior and physiochemical properties

of self-nanoemulsifying drug delivery system (SNEDDS) for Irbesartan and

Olmesartan. Int. J. Appl. Pharm. 8, 13–24

137. Singh, S., Pathak, K. & Bali, V. (2012). Product development studies on surface-

adsorbed nanoemulsion of olmesartan medoxomil as a capsular dosage form. Am.

Assoc. Pharm. Sci. 13, 1212–1221

138. Yadav, P. S., Yadav, E., Verma, A. & Amin, S. (2014). Development,

characterization, and pharmacodynamic evaluation of hydrochlorothiazide loaded

self-nanoemulsifying drug delivery systems. Sci. World J. 2014, 1–10

139. Drais, H. K. & Hussein, A. A. (2015). Formulation and characterization of

carvedilol nanoemulsion oral liquid dosage form. Int. J. Pharm. Pharm. Sci. 7,

210–216

140. Sureshkumar, R., Bhavani, P. & Gowthamarajan, K. (2015). Nanoemulsion for

lymphatic absorption: investigation of fenofibrate nanoemulsion system for

lymphatic uptake. Int. J. ChemTech Res. 7, 832–841

141. Bernardi, D. S. et al. (2011). Formation and stability of oil-in-water nanoemulsions

containing rice bran oil:in vitro and in vivo assessments. J. Nanobiotechnology 9,

1–9

142. Gupta, A., Eral, H. B., Hattona, T. A. & Doyle, P. S. (2016). Nanoemulsion:

formation,properties and applications. Soft Matter 12, 2826–2841

143. Chouhan, S., Sharma, K. & Guleria, S. (2017). Antimicrobial activity of some

essential oils — present status and future perspectives. MDPI:Medicines 4, 1–21

144. Singh, Y. et al. (2017). Nanoemulsion: concepts,development and applications in

drug delivery. J. Control. Release 252, 28–49

145. Azeem, A. et al. (2009). Nanoemulsion components screening and selection: a

technical note. Am. Assoc. Pharm. Sci. 10, 69–76

146. Pol, A., Hegde, D. & Patel, P. A. (2013). Peppermint oil based drug delivery

system of aceclofenac with improved anti-inflammatory activity and reduced

ulcerogenecity. Int. J. Pharma Biosci. Technol. 1, 89–101

147. Priya, S., Koland, M. & Suchetha, K. N. (2015). Nanoemulsion components

screening of quetiapine fumarate: effect of surfactant and co surfactant. Asian J.

Pharm. Clin. Res. 8, 136–140

Page 23: Amina Tarek Mneimneh - repository.bau.edu.lb:8080

119

148. Akhtar, J., Hussain, H. S., Badruddeen, Fareed, S. & Aqil, M. (2014).

Nanomulsion as a carrier for efficient delivery of metformin. Curr. Drug Deliv. 11,

243–252

149. Klang, V., Matsko, N. B., Valenta, C. & Hofer, F. (2012). Electron microscopy of

nanoemulsions: an essential tool for characterisation and stability assessment.

Micron 43, 85–103

150. Ozturka, B., Ozilgen, M., McClements, D. J. & Arginc, S. (2014). Formation and

stabilization of nanoemulsion-based vitamin E delivery systems using natural

surfactants: Quillaja saponin and lecithin. J. Food Eng. 142, 57–63

151. Nekkanti, V., Karatgi, P., Prabhu, R. & Pillai, R. (2010). Solid self-

microemulsifying formulation for candesartan cilexetil. Am. Assoc. Pharm. Sci. 11,

9–17

152. Elsheikh, M. A., Elnaggar, Y. S., Gohar, E. Y. & Abdallah, O. Y. (2012).

Nanoemulsion liquid preconcentrates for raloxifene hydrochloride : optimization

and in vivo appraisal. Int. J. Nanomedicine 7, 3787–3802

153. Gupta, S., Sawant, K. & Chavhan, S. (2011). Self-nanoemulsifying drug delivery

system for adefovir dipivoxil: design, characterization, in vitro and ex vivo

evaluation. Colloids Surfaces A Physicochem. Eng. Asp. 392, 145–155

154. Kallakunta, V. R., Bandari, S., Jukanti, R. & Veerareddy, P. R. (2012). Oral self

emulsifying powder of lercanidipine hydrochloride: formulation and evaluation.

Powder Technol. 221, 375–382

155. Cui, Y., Gu, J., Zhang, T., Zhang, L. & Li, L. (2011). Investigation of

microemulsion system for transdermal delivery of ligustrazine phosphate. African

J. Pharm. Pharmacol. 5, 1674–1681

156. Kazi, M., Al-swairi, M., Ahmad, A. & Raish, M. (2019). Evaluation of self-

nanoemulsifying drug delivery systems ( SNEDDS ) for poorly water-soluble

talinolol : preparation , in vitro and in vivo assessment. Front. Pharmacolgy 10, 1–

13

157. Mahmoud, H., Al-Suwayeh, S. & Elkadi, S. (2013). Design and optimization of

self nanoemulsifying drug delivery systems of simvastatin aiming dissolution

enhancement. African J. Pharm. Pharmacol. 7, 1482–1500

158. Honary, S., Zahir, F. & Honary S, Z. F. (2013). Effect of zeta potential on the

properties of nano-drug delivery systems - A review (Part 1). Trop. J. Pharm. Res.

12, 255–264

Page 24: Amina Tarek Mneimneh - repository.bau.edu.lb:8080

120

159. Bayindir, Z. & Yuksel, N. (2010). Characterization of niosomes prepared with

various nonionic surfactants for paclitaxel oral delivery. J. Pharm. Sci. 99, 2049–

2060

160. Dou, Y. et al. (2018). Self-nanoemulsifying drug delivery system of Bruceine D: a

new approach for anti-ulceratice colitis. Int. J. Nanomedicine 13, 5887–5907

161. Henry, J., Frith, W., Norton, I. & Fryer, P. (2010). The influence of phospholipids

and food proteins on the size and stability of model sub-micron emulsions. Food

Hydrocoll. 24, 66–71

162. Eid, A. M. M., ElMarzugi, N. A. & El-Enshasy, H. A. (2013). Preparation and

evaluation of olive oil nanoemulsion using sucrose monoester. Int. J. Pharm.

Pharm. Sci. 5, 434–440

163. Mustafa, M., Menon, J., Muiandy, R., Fredie, R. & Fariz, A. (2015). Risk factors,

diagnosis, and management of peptic ulcer disease. J. Dent. Med. Sci. 14, 40–46

164. Chen, H. et al. (2015). Protective effects of pogostone from Pogostemonis Herba

against ethanol-induced gastric ulcer in rats. Fitoterapia 100, 110–117

165. Milosavljevic T., Kostić-Milosavljević, M., Jovanović, I. & Krstić, M. (2011).

Complications of peptic ulcer disease. Dig. Dis. 29, 491–493

166. Bertleff, M. J. O. E. & Lange, J. F. (2010). Laparoscopic correction of perforated

peptic ulcer: first choice? A review of literature. Surg. Endosc. 24, 1231–1239

167. Forssell, H. (1988). Gastric mucosal defence mechanisms: a brief review. Scand. J.

Gastroenterol. 23, 23–28

168. Cheng, Y., Macera, A. . C., Davis, R. D. & Blair, N. S. (2000). Physical activity

and peptic ulcers. West. J. Med. 173, 101–107

169. Boligona, A. A. et al. (2014). Antiulcerogenic activityof Scutia buxifolia on gastric

ulcers induced by ethanol in rats. Acta Pharm. B 4, 358–367

170. Kim, H. U. (2015). Diagnostic and treatment approaches for refractory peptic

ulcers. Clin. Endosc. 48, 285–290

171. Lundell, L., Vieth, M., Gibson, F., Nagy, P. & Kahrilas, P. J. (2015). Systematic

review: the effects of long‐term proton pump inhibitor use on serum gastrin levels

and gastric histology. Aliment. Pharmacol. Ther. 42, 649–663

172. Park, J. U. et al. (2019). Gastroprotective effects of plants extracts on gastric

mucosal injury in experimental sprague-dawley rats. Biomed Res. Int. 2019, 1–11

173. Jidong Sun. (2007). D-limonene : safety and clinical applications. Altern. Med.

Rev. 12, 259–264

Page 25: Amina Tarek Mneimneh - repository.bau.edu.lb:8080

121

174. Rozza, A. L. et al. (2011). Gastroprotective mechanisms of Citrus lemon

(Rutaceae) essential oil and its majority compounds limonene and -pinene:

Involvement of heat-shock protein-70, vasoactive intestinal peptide, glutathione,

sulfhydryl compounds, nitric oxide and prostaglandin E2. Chem. Biol. Interact.

189, 82–89

175. De Souza, M. C. et al. (2018). Gastroprotective effect of limonene in rats:

influence on oxidative stress, inflammation and gene expression. Phytomedicine

53, 37–42

176. Miller, J. A. et al. (2014). Human breast tissue disposition and bioactivity of

limonene in women with early stage breast cancer. Cancer Prev. Res. 6, 577–584

177. Jaroenkit, P., Nisoa, M. & Matan, N. (2011). In vitro and in vivo activity of

citronella oil for the control of spoilage bacteria of semi dried round scad

(Decapterus maruadsi). Int. J. Med. Aromat. Plants 1, 234–239

178. Mehannaa, M. M., Domiati, S., Chmaisse, H. N. & El Mallah, A. (2018).

Antinociceptive effect of tadalafil in various pain models: involvement of opioid

receptors and nitric oxide cyclic GMP pathway. Toxicol. Appl. Pharmacol. 352,

170–175

179. Mostafa, T. (2016). Non-sexual implications of phosphodiesterase type 5

inhibitors. Sex. Med. Rev. 5, 1–30

180. Duffin, R., Shaw, C. A. & Rossi, A. G. (2008). Sildenafil reduces alcohol-induced

gastric damage:just say ‘NO’. Br. J. Pharmacol. 153, 623–624

181. Karakaya, K. et al. (2009). Mitigation of indomethacin-induced gastric mucosal

lesions by a potent specific type V phosphodiesterase inhibitor. World J.

Gastroenterol. 15, 5091–5096

182. Sawatzky, D. A., Megson, I. L. & Rossi, A. G. (2005). Sildenafil offers protection

against NSAID-induced gastric injury. Br. J. Pharmacol. 146, 477–478

183. Kolawole, A. & Francis, S. O. (2012). Effects of a type V phosphodiesterase

inhibitor (tadalafil) on indomethacin-induced gastric ulceration in rats. Int. J. Trop.

Med. 7, 111–117

184. Cheong, A. M. et al. (2018). Improvement of gastroprotective and anti-ulcer effect

of kenaf seed oil-in-water nanoemulsions in rats. Food Sci. Biotechnol. 27, 1175–

1184

185. Abdelwahab, S. et al. (2015). Thymoquinone-loaded nanostructured lipid carriers:

preparation, gastroprotection, in vitro toxicity, and pharmacokinetic properties after

Page 26: Amina Tarek Mneimneh - repository.bau.edu.lb:8080

122

extravascular administration. Int. J. Nanomedicine 2163–2172

186. Nasr, A., Gardouh, A. R., Ghonaim, H. M. & Ghorab, M. M. (2016). Design,

formulation and in-vitro characterization of Irbesartan solid self-nanoemulsifying

drug delivery system (S-SNEDDS) prepared using spray drying technique. J.

Chem. Pharm. Res. 8, 159–183

187. Saranya, S., Chandrasekaran, N. & Mukherjee, A. (2012). Antibacterial activity of

eucalyptus oil nanoemulsion against Proteus Mirabilis. Int. J. Pharm. Pharm. Sci.

4, 668–671

188. Jeevana, J. & K, S. (2011). Design and evaluation of self-nanoemulsifying drug

delivery system of flutamide. J. Young Pharm. 3, 4–8

189. Chrastina, A. et al. (2018). Plumbagin-loaded nanoemulsion drug delivery

formulation and evaluation of antiproliferative effect on prostate cancer cells.

Biomed Res. Int. 2018, 1–7

190. Khan, K. & Rhodes, C. (1972). Effect of compaction pressure on the dissolution

efficiency of some direct compression systems. Pharm. Acta Helv. 47, 594–607

191. Al-hamidi, H., Edwards, A. A., Mohammad, M. A. & Nokhodchi, A. (2010). To

enhance dissolution rate of poorly water-soluble drugs: glucosamine hydrochloride

as a potential carrier in solid dispersion formulations. Colloids Surfaces B

Biointerfaces 76, 170–178

192. Mehanna, M. M., Motawaa, A. M. & Samaha, M. W. (2010). In sight into tadalafil

– block copolymer binary solid dispersion: mechanistic investigation of dissolution

enhancement. Int. J. Pharm. 402, 78–88

193. Abou Zeit-har, M., Verimer, T. & Long, J. P. (1982). . Pharmazie 593–595

194. Sabiu, S., Garuba, T., Taofik Olatunde Sunmonu, A. O. S. & Ismail, N. O. (2016).

Indomethacin-induced gastric ulceration in rats: ameliorative roles of spondias

mombin and ficus exasperata. Pharm. Biol. 54, 180–186

195. Mehanna, M. M., Alwattar, J. K. & Elmaradny, H. A. (2015). Optimization,

physicochemical characterization and in vivo assessment of spray dried emulsion: a

step toward bioavailability augmentation and gastric toxicity minimization. Int. J.

Pharm. 496, 766–779

196. Moleiro, F. C. et al. (2009). Mouriri elliptica : validation of gastroprotective ,

healing and anti- Helicobacter pylori effects. J. Ethnopharmacol. 123, 359–368

197. Mehanna, M. M., Motawaa, A. M. & Samaha, M. W. (2011). Tadalafil inclusion in

microporous silica as effective dissolution enhancer: optimization of loading

Page 27: Amina Tarek Mneimneh - repository.bau.edu.lb:8080

123

procedure and molecular state characterization. J. Pharm. Sci. 100, 1805–1818

198. Shakeel, F. & Faisal, M. S. (2010). Nanoemulsion: A promising tool for solubility

and dissolution enhancement of celecoxib. Pharm. Dev. Technol. 15, 53–56

199. Nasr, A., Gardouh, A. & Mamdouh, G. (2016). Novel solid self-nanoemulsifying

drug delivery system (s-snedds) for oral delivery of olmesartan medoxomil: design,

formulation, pharmacokinetic and bioavailability evaluation. Pharmaceutics 8, 1–

29

200. Moon-Jeong, R. & Clarence A., M. (1999). Spontaneous emulsification of oils

containing hydrocarbon, nonionic surfactant, and oleyl alcohol. J. Colloid Interface

Sci. 209, 179–192

201. Subramanian, P. & Siddalingam, R. (2017). Self-nanoemulsifying drug delivery

systems of poorly soluble drug dutasteride: formulation and in-vitro

characterization. J. Appl. Pharm. Sci. 7, 11–22

202. Bali, V., Ali, J. & Ali, M. (2011). Nanocarrier for the enhanced bioavailability of a

cardiovascular agent: In vitro,pharmacodynamic, pharmacokinetic and stability

assessment. Int. J. Pharm. 403, 46–56

203. Dash, R., Mohammed, H., Touseef, H. & Devi, R. (2015). Design, optimization

and evaluation of glipizide solid self-nanoemulsifying drug delivery for enhanced

solubility and dissolution. Saudi Pharm. J. 23,

204. Avachat, A. M. & Patel, V. G. (2015). Self nanoemulsifying drug delivery system

of stabilized ellagic acid – phospholipid complex with improved dissolution and

permeability. Saudi Pharm. J. 23, 276–289

205. Ali, H. H. & Hussein, A. A. (2017). Oral nanoemulsions of candesartan cilexetil:

formulation, characterization and in vitro drug release studies. Am. Assoc. Pharm.

Sci. 3, 1–16

206. Yi, Z. et al. (2010). Self-nanoemulsifying drug delivery system (SNEDDS) for oral

delivery of Zedoary essential oil: formulation and bioavailability studies. Int. J.

Pharm. Pharm. 383, 170–177

207. El-Badry, M., Haq, N., Fetih, G. & Shakeel, F. (2014). Solubility and dissolution

enhancement of tadalafil using self-nanoemulsifying drug delivery system. J. Oleo

Sci. 63, 567–576

208. Varshosaz, J., Taymouri, S., Hamishehkar, H., Razieh, V. & Yaghubi, S. (2017).

Development of dry powder inhaler containing tadalafil-loaded PLGA

nanoparticles. Res. Pharm. Sci. 12, 222–232

Page 28: Amina Tarek Mneimneh - repository.bau.edu.lb:8080

124

209. Dorota, W., Krzak, J., Macikowski, B. & Berkowski, R. (2019). Evaluation of the

release kinetics of a pharmacologically active substance from model intra-articular

implants replacing the cruciate ligaments of the knee. MDPI:Materials 12, 1–13

210. Alvarez-Suarez, J. M. et al. (2011). Strawberry polyphenols attenuate ethanol-

induced gastric lesions in rats by activation of antioxidant enzymes and attenuation

of MDA increase. PLoS One 6, 1–11

211. Chandranath, S., Bastaki, S. & Singh, J. (2002). A comparative study on the

activity of lansoprazole, omeprazole and pd‐136450 on acidified ethanol‐ and

indomethacin‐induced gastric lesions in the rat. Clin. Exp. Pharmacol. Physiol. 29,

173–180

212. Guzmán-Gómez, O. et al. (2018). Amelioration of ethanol induced gastric ulcers in

rats pretreated with Phycobiliproteins of Arthrospira (Spirulina) Maxima. Nutrients

10, 1–15

213. Shin, J. M. & Kim, N. (2013). Pharmacokinetics and pharmacodynamics of the

proton pump inhibitors. J. Neurogastroenterol. Motil. 19, 25–35

214. Yandrapu, H. & Sarosiek, J. (2016). Protective factors of the gastric and duodenal

mucosa an overview protective factors of the gastric and duodenal mucosa : an

overview. Curr. Gastroenterol. Rep. 17, 1–8

215. Thabrew, M. & Arawwawala, L. (2016). An overview of in vivo and in vitro

models that can be used for evaluating anti-gastric ulcer potential of medicinal

plants. Austin Biol. 1, 1–9

216. Oliveira, F. de A., Andrade, L. N., De Sousa, É. B. V. & De Sousa, D. P. (2014).

Anti-ulcer activity of essential oil constituents. Molecules 19, 5717–5747

217. Hibbitts, A. & O’Leary, C. (2018). Emerging nanomedicine therapies to counter

the rise of methicillin-resistant staphylococcus aureus. MDPI:Materials 11, 321

218. Weiner, L. et al. (2016). Antimicrobial-resistant pathogens associated with

healthcare-associated infections: summary of data reported to the national

healthcare safety network at the centers for disease control and prevention, 2011–

2014. Infect. Control Hosp. Epidemiol. 174, 1–14

219. Dakheel, K. H. et al. (2016). Methicillin-resistant staphylococcus aureus biofilms

and their influence on bacterial adhesion and cohesion. Biomed Res. Int. 2016, 1–

14

220. Rather, I. A., Kim, B., Bajpai, V. K. & Park, Y. (2017). Self-medication and

antibiotic resistance : crisis , current challenges , and prevention. Saudi J. Biol. Sci.

Page 29: Amina Tarek Mneimneh - repository.bau.edu.lb:8080

125

24, 808–812

221. Bjarnsholt, T. (2013). The role of bacterial biofilms in chronic infections. APMIS J.

Pathol. Microbiol. Immunol. 121, 1–58

222. Arciola, C. R., Campoccia, D., Speziale, P., Montanaro, L. & Costerton, J. W.

(2012). Biofilm formation in Staphylococcus implant infections. a review of

molecular mechanisms and implications for biofilm-resistant materials.

Biomaterials 33, 5967–5982

223. Golan, Y. (2019). Current treatment options for acute skin and skin- structure

infections. Clin. Infect. Dis. 68, 206–212

224. Bispo, P. J. M., Haas, W. & Gilmore, M. S. (2015). Biofilms in infections of the

eye. Pathogens 4, 111–136

225. Saraswathi, P. & Beuerman, W. R. (2015). Corneal biofilms: from planktonic to

microcolony formation in an experimental keratitis infection with Pseudomonas

Aeruginosa. Ocul. Surf. 13, 331–345

226. Chang, V. S. et al. (2016). Antibiotic resistance in the treatment of Staphylococcus

aureus keratitis: a 20-year review. Cornea. 34, 698–703

227. Erik, T. & Webster, T. J. (2011). Reducing infections through nanotechnology and

nanoparticles. Int. J. Nanomedicine 6, 1463–1473

228. Ahmed, K., Swetha, S., Aravind, S., Ganapathy, V. & Anbazhagan, V. (2014).

Preparation of Gold nanoparticles using Salicornia Brachiata plant extract and

evaluation of catalytic and antibaterial activity. Spectrochim. Acta, Part A Mol.

Biomol. Spectrosc. 130, 54–58

229. Priyanka, R. & Bhattacharyya, S. (2018). A review on promising antibiotic therapy

by novel delivery systems. Asian J. Pharm. Clin. Res. 11, 18–24

230. Linette, S. et al. (2012). Liposomal encapsulation of vancomycin improves killing

of methicillin-resistant Staphylococcus aureus in a murine infection model. J.

Antimicrob. Chemother. 67, 2191–2194

231. Muppidi, K., Jeffrey, W., Betageri, G. & Pumerantz, A. S. (2011). PEGylated

liposome encapsulation increases the lung tissue concentration of vancomycin.

Antimicrob. Agents Chemother. 55, 4537–4542

232. Kalhapure, R. S. et al. (2015). Solid lipid nanoparticles of clotrimazole silver

complex : an efficient nano antibacterial against Staphylococcus aureus and

MRSA. Colloids Surfaces B Biointerfaces 136, 651–658

233. Khan, M., Ali, M. & Ali, M. (2019). Curcumin-loaded self-emulsifying drug

Page 30: Amina Tarek Mneimneh - repository.bau.edu.lb:8080

126

delivery system ( cu-SEDDS ): a promising approach for the control of primary

pathogen and secondary bacterial infections in cutaneous leishmaniasis. Appl.

Microbiol. Biotechnol. 1–10

234. Phumat, P., Khongkhunthian, S., Rades, T., Müllertz, A. & Okonogi, S. (2019).

Development of 4-Allylpyrocatechol loaded self-nanoemulsifying drug delivery

system for enhancing water solubility and antibacterial activity against oral

pathogenic bacteria. Int. J. Pharmacol. Pharm. Sci. 13, 2019

235. Akram, A., Majed, S. & Miaad, S. (2018). The antidiabetic and antioxidant

properties of some phenolic phytochemicals: A review study. Diabetes Metab.

Syndr. Clin. Res. Rev. 13, 854–857

236. Naveet, P. & Archana, B. (2018). Resveratrol: from enhanced biosynthesis and

bioavailability to multitargeting chronic diseases. Biomed. Pharmacother. 109,

2237–2251

237. Sun, Y., Zheng.G-J, Feng.B & Zhang.Y.Q. (2018). Phytochemicals: current

strategy to sensitize cancer cells to cisplatin. Biomed. Pharmacother. 110, 518–527

238. Cui.H, Li.C, Lin.L & Zhang.C. (2018). Antimicrobial mechanism of clove oil on

listeria monocytogenes. Food Control 94, 140–146

239. Panatieri, L. F. et al. (2016). Nanoemulsions containing a coumarin-rich extract

from Pterocaulon balansae ( Asteraceae ) for the treatment of ocular Acanthamoeba

keratitis. AAPS PharmSciTech 18, 721–728

240. Vuuren, S. F. Van & Viljoen, A. M. (2007). Antimicrobial activity of limonene

enantiomers and 1 , 8-cineole alone and in combination. Flavour Fragr. J. 22, 540–

544

241. Khan, A. W., Ansari, S. H., Sharma, R. K., Ali, J. & Kotta, S. (2015). Self-

nanoemulsifying drug delivery system (SNEDDS) of the poorly water-soluble

grapefruit flavonoid Naringenin: design, characterization, in vitro and in vivo

evaluation. Drug Deliv. 22, 552–561

242. Weinstein, M. P. (2018). Methods for Dilution Antimicrobial Susceptibility Tests

for Bacteria That Grow Aerobically. The Clinical & Laboratory Standards Institute

(CLSI) 112

243. Tre-Hardy, M., Traore, H., Devleeschouwer, M. J. & Vanderbist, F. (2008). In

vitro activity of antibiotic combinations against Pseudomonas aeruginosa biofilm

and planktonic cultures. Int. J. Antimicrob. Agents 31, 329–336

244. Abdelaziz, A. A., Sonbol, F. l, Gamaleldin, N. M., Maghraby, G. M. EL &

Page 31: Amina Tarek Mneimneh - repository.bau.edu.lb:8080

127

Elbanna, T. E. (2014). Optimization of niosomes for enhanced antibacterial activity

and reduced bacterial resistance: in vitro and in vivo evaluation. Expert Opin. Drug

Deliv. 12, 163–180

245. Liu, R. et al. (2016). Thermosensitive in situ nanogel as ophthalmic delivery

system of curcumin: development, characterization, in vitro permeation and in vivo

pharmacokinetic studies. Pharm. Dev. Technol. 21, 576–582

246. Ammar, H. O., Salama, H. A., Ghorab, M. & Mahmoud, A. A. (2010).

Development of dorzolamide hydrochloride in situ gel nanoemulsion for ocular

delivery. Drug Dev. Ind. Pharm. 36, 1330–1339

247. Patel, N. et al. (2016). Development of loteprednol etabonate-loaded cationic

nanoemulsified in-situ ophthalmic gel for sustained delivery and enhanced ocular

bioavailability. Drug Deliv. 23, 3712–3723

248. Miyazaki, S. et al. (2001). In situ gelling xyloglucan formulations for sustained

release ocular delivery of pilocarpine hydrochloride. Int. J. Pharm. 229, 29–36

249. Varshosaz, J., Tabbakhian, M. & Salmani, Z. (2008). Designing of a

thermosensitive chitosan/poloxamer in situ gel for ocular delivery of ciprofloxacin.

Open Drug Deliv. J. 2, 61–70

250. Luepke, N. P. & Kemper, F. H. (1986). The HET-CAM Test: an alternative to the

draize eye test. Food Chem. Toxicol. 24, 495–496

251. Freire, P. L. et al. (2015). Action of silver nanoparticles towards biological

systems: Cytotoxicity evaluation using hen’s egg test and inhibition of

Streptococcus mutans biofilm formation. Int. J. Antimicrob. agents 45, 183–187

252. Mahmoud, D., Shukr, M. H. & Bendas, E. R. (2014). In vitro and in vivo

evaluation of self-nanoemulsifying drug delivery systems of cilostazol for oral and

parenteral administration. Int. J. Pharm. 476, 60–69

253. Rajapandiyan, K. et al. (2018). Antimicrobial activity of nanoemulsion on drug-

resistant bacterial pathogens. Microb. Pathog. 120, 85–96

254. Vatsraj, S., Chauhan, K. & Pathak, H. (2014). Formulation of a novel

nanoemulsion system for enhanced solubility of a sparingly water soluble

antibiotic, clarithromycin. J. Nanosci. 2014, 1–9

255. Ranjini, D., Parthiban, S., Kumar, G. S. & Tamizh, M. (2017). Development of

levofloxacin loaded nano-niosomes as nanoscale drug delivery for effective

treatment of tuberculosis. World J. Pharm. Pharm. Sci. 6, 1819–1828

256. Debnath, U., Satayanarayana & Kumar, G. V. (2010). Nanoemulsion-a method to

Page 32: Amina Tarek Mneimneh - repository.bau.edu.lb:8080

128

improve the solubility of lipophilic drugs. An Int. J. Adv. Pharm. Sci. 2, 71–83

257. Galindo-Alvarez, J. et al. (2011). Enhanced stability of nanoemulsions using

mixtures of non-ionic surfactant and amphiphilic polyelectrolyte. Colloids Surfaces

A Physicochem. Eng. Asp. 389, 237–245

258. Shakeel, F., Haq, N., Alanazi, F. K. & Alsarra, I. A. (2014). Polymeric solid self-

nanoemulsifying drug delivery system of glibenclamide using coffee husk as a low

cost biosorbent. Powder Technol. 256, 352–360

259. Abouhussein, D. M. N., Bahaa, D. & Din, E. (2019). Design of a liquid nano-sized

drug delivery system with enhanced solubility of rivaroxaban for venous

thromboembolism management in paediatric patients and emergency cases. J.

Liposome Res. 1–14

260. Choi, K.-O., Aditya, N. & Ko, S. (2014). Effect of aqueous pH and electrolyte

concentration on structure, stability and flow behavior of non-ionic surfactant

based solid lipid nanoparticles. Food Chem. 147, 239–244

261. Kassem, A. A., Mohsen, A. M., Ahmed, R. S. & Essam, T. M. (2016). Self-

nanoemulsifying drug delivery system ( SNEDDS ) with enhanced solubilization of

nystatin for treatment of oral candidiasis : Design , optimization , in vitro and in

vivo evaluation. J. Mol. Liq. 218, 219–232

262. Jerobin, J. et al. (2015). Antibacterial activity of neem nanoemulsion and its

toxicity assessment on human lymphocytes in vitro. Int. J. Nanomedicine 10, 77–

86

263. Li, Z.-H., Cai, M., Liu, Y.-S., Sun, P.-L. & Luo, S.-L. (2019). Antibacterial activity

and mechanisms of essential oil from citrus medica l.var.sarcodactylis. Molecules

24, 1–10

264. Moghimi, R., Ghaderi, L., Rafati, H., Aliahmadi, A. & McClements, D. J. (2016).

Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil

against E.coli. Food Chem. 194, 410–415

265. Song, Z. et al. (2016). Enhanced efficacy and anti-biofilm activity of novel

nanoemulsions against skin burn wound multi-drug resistant MRSA infections.

Nanomedicine Nanotechnology, Biol. Med. 12, 1543–1555

266. Ramalingam, K. & Lee, V. A. (2018). Antibiofilm activity of an EDTA-containing

nanoemulsion on multidrug-resistant Acinetobacter baumannii. Artif. Cells,

Nanomedicine, Biotechnol. 46, S737–S743

267. Gadad, A. P., Wadklar, P. D., Dandghi, P. & Patil, A. (2016). Thermosensitive In

Page 33: Amina Tarek Mneimneh - repository.bau.edu.lb:8080

129

situ gel for ocular delivery of Lomefloxacin. Pharm. Res. 50, S96-105

268. Yumei, W. et al. (2019). Research progress of in-situ gelling ophthalmic drug

delivery system. Asian J. Pharm. Sci. 14, 1–15

269. Yumei, W. et al. (2019). Research progress of in-situ gelling ophthalmic. Asian J.

Pharm. Sci. 14, 1–15

270. Makwana, S. B., Patel, V. A. & Parmar, S. J. (2016). Development and

characterization of in-situ gel for ophthalmic formulation containing cipro fl oxacin

hydrochloride. Results Pharma Sci. 6, 1–6

271. Srividya, B., Cardoza, R. M. & Amin, P. D. (2001). Sustained ophthalmic delivery

of ofloxacin from a pH triggered in situ gelling system. J. Control. Release 73,

205–211

272. Morsi, N., Ghorab, D., Refai, H. & Teba, H. (2016). Ketoroloac tromethamine

loaded nanodispersion incorporated into thermosensitive in situ gel for prolonged

ocular delivery. Int. J. Pharm. 506, 57–67

273. Laddha, U. D. & Mahajan, H. S. (2017). An insight to ocular in situ gelling

systems. Int. J. Adv. Pharm. 06, 31–40

274. Derakhshandeh, K., Fashi, M. & Seifoleslami, S. (2010). Thermosensitive

Pluronic® hydrogel: prolonged injectable formulation for drug abuse. Drug Des.

Devel. Ther. 4, 255–262

275. Sina, J. F. & Gautheron, P. D. (1994). A Multitest Approach to Evaluating Ocular

Irritation in Vitro. Toxicol. methods 4, 41–49

276. Chaiyana, W. et al. (2017). Inhibition of 5α-reductase, il-6 secretion, and oxidation

process of equisetum debile roxb. Ex vaucher extract as functional food and

nutraceuticals ingredients. Nutrients 9, 1–17