Aman Technical_Handbook.pdf

download Aman Technical_Handbook.pdf

of 70

Transcript of Aman Technical_Handbook.pdf

  • 8/16/2019 Aman Technical_Handbook.pdf

    1/70

  • 8/16/2019 Aman Technical_Handbook.pdf

    2/701

    Oman Cables Industry (SAOG)

    In a journey spanning over two decades, Oman Cables Industry

    (SAOG) has always strived towards excellence and quality in all its

    activities. The various awards won by OCI bear testimony to this, be

    it being the five-time winner of His Majesty’s trophies for the best

    industry or the various Flame of Excellence and Exporter of the Yearawards. OCI exports its products across the globe to Europe, UK, Far

    East, Asia, Middle East and the Pacific Rim. Having started with just

    10 employees and sales of 0.2 million USD in 1984, today OCI is

    proud of the fact that it employs 52% Omani nationals amongst its

    600 employees, and has a sales turnover of 800 million USD.

    (´.´.Ω.¢T) á«fɪ©dG äÓHɵdG áYÉæ°U ácô°TIÒ°ùe ‘ ¬à≤≤M Éà á«æW h ¬cô°ûc IQƒîa á«fɪ©dG äÓHɵdG áYÉæ°U ácô°T ∞≤J

    øeõdG øe øjó≤Y.äRÉa √ójóY õFGƒéH êƒJ õ«ªàdG ƒëf ÜhD hódG »©°ùdG h ìÉéædG ¿G¿É£∏°ùdG ádÓ÷G ÖMÉ°U IõFÉéH RƒØdGÉ¡ªgG øe ¿Éc h á∏jƒ£dG É¡JÒ°ùe ‘ ácô°ûdG É¡H

    á«dÉààe äGƒæ°S ¢ùªÿ áYÉæ°üdG π°†aC’ ¬∏dG ¬¶ØM ¢SƒHÉb, ôjó°üà∏d ΩÉ©dG IõFÉL h.⁄ Q’hO ¿ƒ«∏e 0^2 ™«Hh 1984 ΩÉY ‘ ÚØXƒe Iô°û©H á©°VGƒàŸG ácô°ûdG ájGóH ¿GÚæWGƒŸG øe % 52 º¡æe ∞Xƒe 600 `H Ωƒ«dG h á«ŸÉ©∏d √Gó©J πH á«∏fi ô°üëàj

    »µjôeCG Q’hO ¿ƒ«∏e 800 äÉ©«ÑŸG ºéM ≠∏H Ú«fɪ©dG.AÉëfCG ™«ª÷ á«ŸÉ©dG IOƒ÷G äGP É¡JÉéàæe á«fɪ©dG äÓHɵdG áYÉæ°U ácô°T Qó°üJ¿Gó∏ÑdGh §°Sh’G ¥ô°ûdGh É«°SBGh ≈°übC’G ¥ô°ûdGh IóëàŸG áµ∏ªŸG ‹G ¢üN’ÉHh ⁄É©dG

    ÇOÉ¡dG §«ÙG ≈∏Y á∏£ŸG.

  • 8/16/2019 Aman Technical_Handbook.pdf

    3/70

  • 8/16/2019 Aman Technical_Handbook.pdf

    4/703

    Table of Contents

    Sr. No. Details Page

    1 Product Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

    2 Criteria for selection of Cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

    3 Conductor details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

    4 Electric Field in MV cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

    5 General characteristics of Insulating Materials . . . . . . . . . . . . . . . . . . . . . . . . .15

    6 General characteristics of Sheathing Materials . . . . . . . . . . . . . . . . . . . . . . . .16

    7 Continuous Current Ratings and rating factors . . . . . . . . . . . . . . . . . . . . . . . .20

    8 Short Circuit Current ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41

    9 Cables Storage and Installation Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43

    10 Testing of Cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46

    11 Insulation Resistance Test and significance . . . . . . . . . . . . . . . . . . . . . . . . . . .50

    12 Voltage drop – utility and values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53

    13 Earthing and Bonding methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56

    14 PVC vs XLPE cables – Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

    15 Overhead Conductor – Characteristics and Applications . . . . . . . . . . . . . . . . .61

    16 Frequently Asked Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62

    17 Conversion Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64

  • 8/16/2019 Aman Technical_Handbook.pdf

    5/704

    OCI Product Range

    Oman Cables offers a wide range of cables for demands made upon electrical, mechanical and

    thermal qualities. The products listed below are the most popular ones. However, OCI can meet

    a customer’s special requirements.

    1) Electric Wires:

    a) Building wires from 1.5 mm2 to 630 mm2

    b) Single core PVC and LSF insulated wires 450/750 Volts to BS 6004, BS 7211, IEC60227

    c) Multicore 300/500 Volts Circular, PVC Insulated, PVC Sheathed Wires to BS 6004,

    IEC 60227

    d) 2 Core, 3 Core Flat Wires with and without earth continuity conductor to BS 6004

    e) PVC Insulated Flexible Cords to IEC 60227

    f) 300/500 Volts Flexible Cables BS 6500, IEC 60227

    2) 0.6/1 kv, XLPE and PVC insulated, PVC and LSF Sheathed Cables to IEC 60502-

    1, BS 6346, BS 7889, BS 5467, BS 6724 and specific customer requirements

    with:

    a) Copper and Stranded Aluminium Conductors

    b) Single core and multicore cables

    c) Unarmoured cables

    d) Aluminium wire armoured single core cables

    e) Galvanized Steel Wire and Galvanized Steel Tape armoured multicore cables.

    f) Control cables with and without armour, with and without screen (copper

    tape/copper wire).

  • 8/16/2019 Aman Technical_Handbook.pdf

    6/70

    3. Medium Voltage XLPE insulated cables to IEC 60502-2, BS 6622, BS 7835, BS

    7870 and specific customer requirements up to and including 46 kV:

    Copper and Aluminium Conductors:

    a) Single core cables 25 mm2 to 1000 mm2

    b) Three core cables 25 mm2 to 500 mm2

    c) Single core and Three core un-armoured cables with copper tape/copper wire screen.

    d) Aluminium wire armoured single core cables.

    e) Galvanized Steel Wire and Galvanized Steel Tape armoured multicore cables.

    We can offer cables with Optional Features such as:

    Watertight Conductors

    Bonded or Strippable Insulation Screen

    Copper Wire/Copper Tape Screen

    Cables with longitudinal water barriers at screen and armour level.

    Cables with Radial water barrier (PE Laminated Aluminium Tape).

    Cables with LLDPE, MDPE, HDPE, FRRT, FRLS Outer Sheath.

    4) Overhead Conductors to IEC, BS, ASTM, DIN, VDE, AS Standards

    a) Bare and PVC/XLPE Insulated Hard Drawn Copper Conductors

    b) Bare and PVC/XLPE insulated all Aluminium conductors (AAC, AAC/PVC,

    AAC/XLPE).

    c) All Aluminium Alloy conductors (AAAC)

    d) Aluminium Conductors Steel Reinforced (ACSR)

    e) Aluminium Conductors Aluminium Clad Steel Reinforced (ACSR/AW).

    f) Aluminium Conductors Aluminium Alloy Reinforced (ACAR).

    g) Aluminium Alloy Conductor Steel Reinforced (AACSR).

    5

  • 8/16/2019 Aman Technical_Handbook.pdf

    7/70

    h) Galvanized Steel and Alumoweld Earth Wires.

    i) Aerial Bundle Cables (Duplex, Triplex, Quadruplex).

    5. Special Cables

    a) Watertight Cables

    b) Fire Retardant Cables to IEC 60332-3-24, IEC 60332-3-23, IEC 60332-3-22.

    c) Cables with LLDPE, MDPE, HDPE, FRRT, FRLS Outer Sheath.

    d) Cable with Oil Resistant and/or Termite Resistant and/or FRRT and/or FRLS Outer

    Sheath.

    e) Instrumentation Cables.

    6) PVC Compounds for Insulation and Sheathing of Electric Cables. To name a few:

    Type A,T11, T13, Type 6, Type 9, Type ST2, FR, FRLS, FRRT, ATR etc.

    6

  • 8/16/2019 Aman Technical_Handbook.pdf

    8/707

    Criteria for selection of Power Cables

    Cable Type and Size should be selected keeping in the view the following:1) Application

    2) Working Voltage, Earthed or Unearthed System

    3) Load Current, Duty Cycle, Frequency

    4) Installation methods and conditions

    5) Short time duty and system protection

    6) Acceptable Voltage drop

    7) Economics

    How do these factors influence the choice of cables?

    1) Application of the cable determines the basic factors for choice of cable type.

    a) Conductor material – Copper is the virtually unchallenged material as a conductor.

    Aluminium, can also be used as Conductor material as it is very economical.

    b) Insulating Material – good insulating material should have low thermal resistivity and

    low dielectric losses. Please refer to the chart for major characteristics of different

    materials.

    c) Power cables are usually with armour to carry earth fault current and to give

    mechanical protection against damage during installation and service. For higher fault

    rating and higher tensile strength steel wires are used in multicore cables. Single core

    in AC circuits, use non magnetic material. Stainless steel is difficult to justify on cost

    grounds and Aluminium is the normal choice.

    d) External covering/sheaths are used over the armour. Polyethylene or PVC is material

    most often used. Please refer to the chart for properties of sheathing material.

    2) System voltage determines Voltage class of cables.

    3) Current rating and intermittent load is the decisive factor for fixing conductor size. Factors

    such as Ground & Air temperature, thermal resistivity of soil, depth of laying, number of

    cables in circuit etc. affect specified current ratings.

    4) Chemical substances in the environment might need special requirements on outer

    covering. Cables are vulnerable to termite and rodent attacks.

  • 8/16/2019 Aman Technical_Handbook.pdf

    9/70

    5) The short circuit current and its duration determines the size of conductor and thermal

    requirement of insulation.

    6) Voltage drop is also major factor in deciding the conductor size of the cable. Voltage drop

    of the cable for a given route length should not exceed the statutory requirements.

    7) The design of the cable for a particular application must be optimised taking into account

    all the above factors. In case expert guidance is desired, please contact OCI.

    8

  • 8/16/2019 Aman Technical_Handbook.pdf

    10/709

    Class of Conductors:

    Class 1: Solid Conductor - used in cables for fixed installations.

    Class 2: Started Conductor - used in cables for fixed installations.

    Class 5: Flexible conductor - used in flexible cables and cords.

    Class 6: Flexible Conductor - used in flexible cables and cords. Conductors are more

    flexible than Class 5 when more flexibility is required

    Table – Class 1 solid conductors for single core and multicore cables

    1 2 3 4

    Nominal Maximum resistance of conductor at 20˚C

    cross Circular, annealed copper Aluminium and aluminium

    sectional conductors alloy conductors, circular

    area Plain Metal-Coated or shaped

    m2 Ω /km   Ω /km   Ω /km

    0.5 36.0 36.7 –

    0.75 24.5 24.8 –

    1.0 18.1 18.2 –1.5 12.1 12.2 –

    2.5 7.41 7.56 –

    4 4.61 4.70 –

    6 3.08 3.11 –

    10 1.83 1.84 3.08(a

    16 1.15 1.16 1.91(a

    25 0.727(b – 1.20(a

    35 0.524(b – 0.868(a

    50 0.387(b – 0.641

    70 0.268(b – 0.443

    95 0.193(b – 0.320(d

    120 0.153(b – 0.253(d

    150 0.124(b – 0.206(d

    185 0.101(b – 0.164(d

    240 0.0775(b – 0.125(d

    300 0.0620

    (b

    – 0.100

    (d

  • 8/16/2019 Aman Technical_Handbook.pdf

    11/70

    Table – Class 1 solid conductors for single core and

    multicore cables

    1 2 3 4

    Nominal Maximum resistance of conductor at 20˚C

    cross Circular, annealed copper Aluminium and aluminium

    sectional conductors alloy conductors, circular

    area Plain Metal-Coated or shape

    m2 Ω /km   Ω /km   Ω /km

    400 0.0465(b – 0.0778

    500 – – 0.0605

    630 – – 0.0469800 – – 0.0367

    1000 – – 0.0291

    1200 – – 0.0247

    a) Aluminium conductors 10 mm2 to 35 mm2 circular only.

    b) Solid copper conductors having nominal cross-sectional areas of 25mm2 and above are

    used for particular types of cable e.g., mineral insulated, and not for general purpose.

    c) For solid aluminium alloy conductors having the same nominal cross-sectional area as

    an aluminium conductor, the resistance value should be multiplied by 1.162 unlessotherwise agreed between manufacturer and purchaser.

    d) For single core cables, four sectoral shaped conductors may be assembled into a single

    circular conductor. The maximum resistance to the assembled conductor should be

    25% of that of the individual component conductors.

    10

  • 8/16/2019 Aman Technical_Handbook.pdf

    12/7011

    mm2 Ω/km   Ω/km   Ω/km

    0.5 7 – – – 36.0 36.7 –

    0.75 7 – – – 24.5 24.8 –1.0 7 – – – 18.1 18.2 –

    1.5 7 – 6 – 12.1 12.2 –

    2.5 7 – 6 – 7.41 7.56 –

    4 7 – 6 – 4.61 4.70 –

    6 7 – 6 – 3.08 3.11 –

    10 7 7 6 6 – 1.83 1.84 3.08

    16 7 7 6 6 – 1.15 1.16 1.91

    25 7 7 6 6 6 6 0.727 0.734 1.20

    35 7 7 6 6 6 6 0.524 0.529 0.868

    50 19 19 6 6 6 6 0.387 0.391 0.641

    70 19 19 12 12 12 12 0.268 0.270 0.443

    95 19 19 15 15 15 15 0.193 0.195 0.320

    120 37 37 18 15 18 15 0.153 0.154 0.253

    150 37 37 18 15 18 15 0.124 0.126 0.206

    185 37 37 30 30 30 30 0.0991 0.100 0.164

    240 37 37 34 30 34 30 0.0754 0.0762 0.125

    300 61 61 34 30 34 30 0.0601 0.0607 0.100

    400 61 61 53 53 53 53 0.0470 0.0475 0.0778

    500 61 61 53 53 53 53 0.0366 0.0369 0.0605

    630 91 91 53 53 53 53 0.0283 0.0286 0.0469

    800 91 91 53 53 – – 0.0221 0.0224 0.03671000 91 91 53 53 – – 0.0176 0.0177 0.0291

    1200 b) – – 0.0151 0.0151 0.0247

    1400 a b) 0.0129 0.0129 0.0212

    1600 b) 0.0113 0.0113 0.0186

    1800 a b) 0.0101 0.0101 0.0165

    2000 b) 0.0090 0.0090 0.0149

    2500 b) 0.0072 0.0072 0.0127

    a) These sizes are non-preferred. Other non-preferred sizes are recognized for some specialized applications but are

    not within the scope of this standard

    b) The minimum number of wires for these sizes is not specified. These sizes may be constructed from 4, 5 or 6

    equal segments (Milliken)

    c) For stranded aluminium alloy conductors having the same nominal cross-sectional area as an aluminium conductor

    the resistance value should be agreed between the manufacturer and the purchaser.

    Class 2 stranded conductors for single-core and multi-core cables

    1 2 3 4 5 6 7 8 9 10

    Nominal

    cross-

    section

    al area

    Minimum number of wires in

    the conductor

    CircularCircular

    Compacted Shaped Annealed copper

    conductor

    Plain

    wiresMetal-coated

    wires

    Aluminium or

    aluminium alloy

    conductors

    Plain wires

    Maximum resistance of conductor at 20˚C

    Cu Al Cu Al Cu Al

  • 8/16/2019 Aman Technical_Handbook.pdf

    13/70

    Class 5 flexible copper conductors for single core

    and multi-core cables

    1 2 3 4

    Nominal Maximum diameter of wires in Maximum resistance of

    cross- conductor (mm) conductor at 20˚C

    sectional area

    Class 5 Class 6 Plain wires Metal-coated wires

    mm2 Ω/km   Ω/km

    0.5 0.21 0.16 39.0 40.1

    0.75 0.21 0.16 26.0 26.7

    1.0 0.21 0.16 19.5 20.0

    1.5 0.26 0.16 13.3 13.7

    2.5 0.26 0.16 7.98 8.21

    4 0.31 0.16 4.95 5.09

    6 0.31 0.21 3.30 3.39

    10 0.41 0.21 1.91 1.95

    16 0.41 0.21 1.21 1.24

    25 0.41 0.21 0.780 0.795

    35 0.41 0.21 0.554 0.565

    50 0.41 0.31 0.386 0.393

    70 0.51 0.31 0.272 0.277

    95 0.51 0.31 0.206 0.210

    120 0.51 0.31 0.161 0.164

    150 0.51 0.31 0.129 0.132

    185 0.51 0.41 0.106 0.108

    240 0.51 0.41 0.0801 0.0817

    300 0.51 0.41 0.0641 0.0654

    400 0.51 0.0486 0.0495

    500 0.61 0.0384 0.0391

    630 0.61 0.0287 0.0292

    12

  • 8/16/2019 Aman Technical_Handbook.pdf

    14/7013

    Electric Field in Medium Voltage XLPE Cables

    As shown in the figure below, the electric field is the highest at conductor surface, reducingtowards the outer surface of the insulation.

    Field distribution within a high voltage XLPE cable

    Purpose of Semiconducting screens for such cables –

    Conductor Screening:-

    1. To provide uniform stress over the relatively rough stranded conductor surface.

    2. To provide close bonding between the conductor and adjacent insulation so as to exclude

    any interspersed voids that may constitute sources of partial discharge.

    Insulation Screening

    1. With the outer shield grounded, the electric field of the conductor attains radial symmetry

    and is confined to Insulation for safety consideration.2. To distribute electrical stress uniformly along the periphery of the cable

    3. Intimate contact between Insulation and semiconducting layer prevents partial discharge.

    4. To prevent surface discharges and reduce electrical interferences

    Please see the difference between shape of Electric field of shielded (screened) cable and

    unshielded cable

    Non-Shielded Shielded

  • 8/16/2019 Aman Technical_Handbook.pdf

    15/7014

    Outer Covering materials selection chart

    Mechanical PVC Polyethylene

    Abrasion Resistance Good Excellent

    Tensile Strength Excellent Excellent

    Elongation Good Excellent

    Compression Resistance Good Excellent

    Flexibility Good Fair

    Environmental – –

    Flame Good Poor

    Moisture – –

    Fresh or salt water Good Exceptional

    Petroleum oils – –Motor oil – Excellent

    Fuel oil Good (Slight swelling

    Crude oil – above 60˚C)

    Creosote Poor Good

    Paraffinic Hydrocarbons – –

    Gasoline Good Excellent

    Kerosene – (Slight swelling at

    higher temperatures)

    Alcohols – –

    Isopropyl – –

    Wood Fair Good

    Grain – –

    Mineral Acids – –

    Sulfuric Acid – –

    Nitric Acid Excellent Excellent

    Hydrochloric Acid – –

    Fixed Alkalis Sodium hydroxide (lye) – –

    Potassium hydroxide (potash) – –

    Calcium hydroxide (lime) Good Excellent

    Ketones – –

    Acetone – –

    Methyl ethyl ketone (MEK) Poor Good

    Esters – –

    Ethyl Acetate – –

    Most lacquer thinners Poor Good

    Halogenated Hydrocarbons – –

    Chloroform – –

    Carbon Tetrachloride – –

    Methyl Chloride Poor Poor

    General

    Leaves protective residue after combustion Yes No

    Oxygen Index (ASTM D-2863) 23-30% 17-18%

    Halogen content – % Wt. 26 0

    Minimum installation temperature 14˚F (-10˚C) -40˚F (-40˚C)Dimensional stability under heat Fair Fair

    Maximum operating temperature 80˚C 80˚C

  • 8/16/2019 Aman Technical_Handbook.pdf

    16/7015

    Insulation Material Characteristics

    Sl. Description Unit PVC XLPE LSF

    No. (Type A) (0.6/1 kV) (0.45/.75 kV)1 Tensile Strength and Elongation at break

    Min. tensile strength N/mm2 12.5 12.5 10Min. elongation at break % 150 200 125

    2 Accelerated ageing for specified period atspecified temp. followed by Tensile Strength andElongation at breakNo. of days ageing Days 7 7 7Ageing temperature ˚C 100±2 135±3 135±3Max. variation of tensile strength from N/mm2 12.5 – –unaged specimen % ±25 ±25 ±30Max. variation of elongation from % 150 – –

    unaged specimen % ±25 ±25 ±303 Hot Set Test:– Temperature ˚C N/A 200±3 200±3– Time under load Minutes N/A 15 15– Mechanical stress N/cm2 N/A 20 20Max. elongation under load % N/A 175 100Max. permanent elongation after cooling % N/A 15 25

    4 Low temperature bend test:Temperature at which specimen shall not crack ˚C -15±2 N/A -15±2

    5 Low temperature elongation test:Test temperature ˚C -15±2 N/A -15±2Minimum Elongation % 20 N/A 30

    6 Low temperature impact test:

    Temperature at which specimen shall not crack ˚C N/A N/A -15±27 Pressure test at high temperature:

    Test temperature ˚C 80±2 N/A 110±2Maximum indentation % 50 N/A 50

    8 Loss of Mass (only for T11 insulation as per BS)Ageing: Number of days Days 7 N/A N/AAgeing Temperature ˚C 80±2 N/A N/AMaximum loss of mass mg/cm2 2.0 N/A N/A

    9 Resistance to cracking (Heat shock test)Temperature at which the specimen shall not crack ˚C 150±2 N/A N/A

    10 Water absorption – electrical methodTemperature at which specimen shall not crack ˚C 70±2 85±2 N/A

    Duration Hours 240 336 (14 days) N/AMaximum variation of mass mg/cm2 – 1.0 N/A

    11 Maximum permissible shrinkage:– Temperature ˚C N/A 130±3 N/A– Duration Hours N/A 1 N/AMaximum permissible shrinkage % N/A 4 N/A

    12 Insulation Resistance const (Ki) at max. rated temp. M.Ohm.Km 0.037 (70˚C) 3.67 (90˚C) 0.002 (90˚C)

    13  Volume Resistivity at maximum rated temperature Ohm.cm 1010(70˚C) 1012(90˚C) 1011(20˚C)

    14 Ozone Resistance testTemperature at which specimen shall not crack ˚C N/A N/A 25±2Duration Hours N/A N/A 24Ozone Concentration ppm N/A N/A 250 to 300

    15  Acidic (corrosive) gases evolvedLevel of HCl % N/A N/A

  • 8/16/2019 Aman Technical_Handbook.pdf

    17/70

    Sheathing Material

    Characteristics

    Sl. Description Unit PVC LSFNo. (ST2/Type 9)

    1 Tensile Strength and Elongation at break

    Min. tensile strength N/mm2 12.5 10

    Min. elongation at break % 150 100

    2 Accelerated ageing for specified period at specified temp.

    followed by Tensile Strength and Elongation at break

    No. of days ageing Days 7 7

    Ageing temperature ˚C 100±2 100±2

    Minimum tensile strength after ageing N/mm2 12.5 10

    Max. variation of tensile strength from unaged specimen % ±25 40

    Minimum Elongation % 150 100Max. variation of elongation from unaged specimen % ±25 40

    3 Low temperature bend test:

    Temperature at which specimen shall not crack ˚C -15±2 -15±2

    4 Low temperature elongation test:

    Test temperature ˚C -15±2 -15±2

    Minimum Elongation % 20 30

    5 Low temperature impact test:

    Temperature at which specimen shall not crack ˚C -15±2 -15±2

    6 Pressure test at high temperature:

    Test temperature ˚C 90±2 80±2

    Maximum indentation % 50 50

    7 Resistance to cracking (Heat shock test)

    Temperature at which the specimen shall not crack ˚C 150±2 N/A

    8 Loss of Mass

    Ageing: Number of days Days 7 N/A

    Ageing Temperature ˚C 100±2 N/A

    Maximum loss of mass mg/cm2 1.5 N/A

    9 Water absorption

    No. of days ageing Hours N/A 24

    Aging Temperature ˚C N/A 70±2

    Maximum increase in mass mg/cm2 N/A 10

    10 Tear Resistance test to B5 6469 (sec 99.1)Minimum Value N/mm N/A 5

    11 Water immersion test to BS 6469 (sec. 99.1)

    Aging temperature ˚C N/A 7

    Number of days aging Days N/A 70±2

    Max variation in tensile strength % N/A 30

    Max. variation in elongation at break % N/A 30

    12  Acidic (corrosive) gases evolved

    Level of Hcl % N/A

  • 8/16/2019 Aman Technical_Handbook.pdf

    18/7017

    Special PVC Compounds with additional requirements

    provided by OCI:

    Property Material

    FR FRLS FRRT

    Oxygen Index (Min.) 30 30 30

    Temperature Index (Min) 250 250 250

    Smoke Density (Max.) – 60 –

    Acid Gas Generation (Max.) – 20% 17%

    Flammability Test* IEC 60332-1 and IEC 60332-1 and IEC 60332-1 and

    IEC 60332-3-24 IEC 60332-3-24 IEC 60332-3-24

    *Based on specific requests, we can provide compounds which can meet flammability requirements of IEC 60332-3-23 and

    IEC 60332-3-22

    Properties of Polyethylene Sheathing Material:

    Properties LDPE MDPE HDPE

    Dissipation factor

    60 Hz 0.0002 0.0002 0.0002

    103 Hz 0.0002 0.0002 0.0002106 Hz 0.0002 0.0002 0.0002

    Arc resistance, s (ASTM D495) Melts Melts > 125

    Density, g/cm3 0.910-0.925 0.926-0.940 0.941-0.965

    Modulus of elasticity in tension, psi x 105 0.17-0.35 0.25-0.55 0.8-1.5

    Percent elongation, % (ult.) (Max.) 300 300 400

    Tensile strength, yield, psi x 102 14-19 19-26 26-45

    Compressive strength, psi x 103 – – 2.4

    Rockwell hardness R10 R15 R30-R50

    Impact strength, ft-Ib/in. – – 1-23Heat distortion temperature (at 66 psi), ̊ F 105-121 120-150 140-185

    Thermal conductivity, cal/cm.s. ˚C x 10-4 8 – 11-12

    Thermal expansion, in./in. per ˚C x 10-5 11-30 15-30 15-30

    Water absorption, %

  • 8/16/2019 Aman Technical_Handbook.pdf

    19/70

    OCI can supply installing cables with special requirements

    for the following

    Utility Voltage Rating Requirement

    SEC-EOA 35 KV * Swellable tape under and over metallic screen.

    * Metal polyethylene laminate over metallic screen.

    * Polyethylene or PVC Outer Sheath.

     ARAMCO 10 kV to 35 kV Optional Requirement:

    * Watertight Conductor with TR-XLPE Insulation

    * Semi-conducting water blocking swellable tapes under

    and over the metallic screen or concentric neutral.

    * Plastic coated laminated aluminium or copper tape underthe outer jacket and firmly bonded to it.

    SABIC 5 to 35 kV * Water swellable tape over copper tape screen

    * Water Swellable tape over 3 core assembly

    * Polyethylene bedding under Armour and PVC Outer

    Sheath

    DEWA  11 and 33 kV Single Core:

    * Watertight Conductor

    * Swellable tape in metallic screen region.

    * Metal polyethylene laminate in metallic screen region.

    * Polyethylene Outer Sheath.

    Multi Core:

    * Watertight Conductor

    * Swellable tape in metallic screen region.

    * Metal polyethylene laminate in metallic screen region.

    * Polyethylene Outer Sheath over steel wire armour

    FEWA  33 kV Single Core:

    * Watertight Conductor

    * Water swellable tape over insulation screen

    * Non-conductive water swellable tape over copper screen

    * Copolymer Coated Laminated Tape

    * Polyethylene Outer Sheath ADWEA  33 kV 33 kV Cables 3 Core Cables:

    * Watertight conductor

    * TR-XLPE insulation.

    * Polyethylene inner sheath

    * Polyethylene outer sheath over steel tape armour

    KAHRAMAA  0.6/1 kV * Armour: Galvanized steel + tinned copper wires.

    Conductivity of copper wires alone shall be at least 50%

    of any phase conductor at normal working temperature

    and shall not be less than 25% of the total number of

    armour wires.

    * Armour to be embedded and covered by material suitable

    to prevent movement of water traversely.

    18

  • 8/16/2019 Aman Technical_Handbook.pdf

    20/7019

    Utility  Voltage Rating Requirement

    KAHRAMAA  11 KV * Fillers of non-hygroscopic material to inhibit flow of water.

    * Armour to be embedded in or overlaid by substance ormaterial to inhibit flow of water.

    KUWAIT 11 kV * 3 Core 11 kV Cable without Metallic Screen over

    individual cores.

    * Steel Wire armour over Semi-conductivity bedding.

    SYRIA  12 to 20 kV * Swellable tape under and over insulation screen

    * PVC outer sheath

    IRAQ  11 to 33 kV Single Core:

    * Waterproof tape over metallic screen

    * PVC outer sheath

    Three core:* Extruded EPR fillers

    * Waterproof tape over bedding.

    * PVC outer sheath over steel tape armour

    JORDAN 33 kV Single Core

    * Swellable tapes over metallic screen

    * PE (ST7) outer sheath

    TUNISIA  10 to 30 kV Single Core:

    * Longitudinally watertight at metallic screen

    * Radial Watertightness to be ensured by Outer sheath.

  • 8/16/2019 Aman Technical_Handbook.pdf

    21/70

    Current Ratings for Voltage grade

    from 6 kV to 30 kV

    Basic Assumption:- Conductor Material – Copper Single Core Cables (Unarmoured)

    Ground Temperature – 20˚C

    Air Temperature – 30˚C

    Thermal resistivity of soil – 150˚C-cm/w

    Depth of Laying – 800 mm

    Double point bonding, Flat spacing – 2 OD from centre to centre

    Ground In Single way Duct In Air

    Single core, Unarmoured Single core, Unarmoured Single core, Unarmoured

    Size Amp Amp Amp Amp Amp AmpTrefoil Flat spaced Trefoil Flat Touching Trefoil Flat Touching

    duct

    25 140 144 132 133 163 167

    35 166 172 157 159 198 203

    50 196 203 186 188 238 243

    70 239 246 227 229 296 303

    95 285 293 271 274 361 369

    120 323 332 308 311 417 426

    150 361 366 343 347 473 481

    185 406 410 387 391 543 550

    240 469 470 447 453 641 647

    300 526 524 504 510 735 739

    400 590 572 564 571 845 837

    500 649 680 617 647 952 1000

    630 718 766 683 728 1067 1154

    800 796 842 757 801 1221 1310

    1000 865 918 823 873 1346 1454

    20

  • 8/16/2019 Aman Technical_Handbook.pdf

    22/7021

    Current Ratings for Voltage grade from

    6 kV to 30 kV

    Basic Assumption:- Conductor Material – Copper Single Core Cables (Armoured)

    Ground Temperature – 20˚C

    Air Temperature – 30˚C

    Thermal resistivity of soil – 150˚C-cm/w

    Depth of Laying – 800 mm

    Double point bonding, Flat spacing – 2 OD from centre to centre

    Ground In Single way Duct In Air

    Single core, Armoured Single core, Armoured Single core, Armoured

    Size Amp Amp Amp Amp Amp Amp

    Trefoil Flat spaced Trefoil Flat spaced Trefoil Flat spaced

    25 126 130 119 120 147 150

    35 149 155 141 143 178 183

    50 176 183 167 169 214 219

    70 215 221 204 206 266 273

    95 257 264 244 247 325 332

    120 291 299 277 280 375 383

    150 325 329 309 312 426 433

    185 365 369 348 352 489 495

    240 422 423 402 408 577 582

    300 473 472 454 459 662 665

    400 531 515 508 514 761 753

    500 584 612 556 582 857 900

    630 646 689 615 656 961 1039

    800 717 758 681 721 1099 1179

    1000 779 826 741 786 1212 1309

  • 8/16/2019 Aman Technical_Handbook.pdf

    23/7022

    Current Ratings for Voltage grade

    from 6 kV to 30 kV

    Basic Assumption:- Conductor Material – Aluminium Single Core Cables (Unarmoured)

    Ground Temperature – 20˚C

    Air Temperature – 30˚C

    Thermal resistivity of soil – 150˚C-cm/w

    Depth of Laying – 800 mm

    Double point bonding, Flat spacing – 2 OD from centre to centre

    Ground In Single way Duct In Air

    Single core, Unarmoured Single core, Unarmoured Single core, Unarmoured

    Size Amp Amp Amp Amp Amp Amp

    Trefoil Flat spaced Trefoil Flat Touching Trefoil Flat Touching

    duct

    25 108 112 102 103 127 130

    35 129 134 122 123 154 157

    50 152 157 144 146 184 189

    70 186 192 176 178 230 236

    95 221 229 210 213 280 287

    120 252 260 240 242 324 332150 281 288 267 271 368 376

    185 317 324 303 307 424 432

    240 367 373 351 356 502 511

    300 414 419 397 402 577 586

    400 470 466 451 457 673 676

    500 527 540 501 514 760 799

    630 588 616 559 586 875 932

    800 666 691 633 657 1019 1077

    1000 735 766 699 728 1144 1221

  • 8/16/2019 Aman Technical_Handbook.pdf

    24/7023

    Current Ratings for Voltage grade

    from 6 kV to 30 kV

    Basic Assumption:- Conductor Material – Aluminium Single Core Cables (Armoured)

    Ground Temperature – 20˚C

    Air Temperature – 30˚C

    Thermal resistivity of soil – 150˚C-cm/w

    Depth of Laying – 800 mm

    Double point bonding, Flat spacing – 2 OD from centre to centre

    Ground In Single way Duct In Air

    Single core, Armoured Single core, Armoured Single core, Armoured

    Size Amp Amp Amp Amp Amp Amp

    Trefoil Flat spaced Trefoil Flat spaced Trefoil Flat spaced

    25 97 101 92 93 114 117

    35 116 121 110 111 139 141

    50 137 141 130 131 166 170

    70 167 173 158 160 207 212

    95 199 206 189 192 252 258

    120 227 234 216 218 292 299

    150 253 259 240 244 331 338

    185 285 292 273 276 382 389

    240 330 336 316 320 452 460

    300 373 377 357 362 519 527

    400 423 419 406 411 606 608

    500 474 486 451 462 684 719

    630 529 554 503 527 788 839

    800 599 622 570 591 917 969

    1000 662 689 629 656 1030 1099

  • 8/16/2019 Aman Technical_Handbook.pdf

    25/70

    Current Ratings for Voltage grade

    from 6 kV to 30 kV

    Basic Assumption:- Conductor Material – Copper Three Core Cables

    Ground Temperature – 20˚C  Armoured/Unarmoured

    Air Temperature – 30˚C

    Thermal resistivity of soil – 150˚C-cm/w

    Depth of Laying – 800 mm

    Double point bonding

    Ground In Single way Duct In Air

    Size Amp Amp Amp Amp Amp Amp

    Unarmoured  Armoured Unarmoured  Armoured Unarmoured  Armoured

    25 129 129 112 112 142 143

    35 153 154 133 134 170 172

    50 181 181 158 158 204 205

    70 221 220 193 194 253 253

    95 262 263 231 232 304 307

    120 298 298 264 264 351 352

    150 334 332 297 296 398 397

    185 377 374 336 335 455 453

    240 434 431 390 387 531 529

    300 489 482 441 435 606 599

    400 553 541 501 492 696 683

    24

  • 8/16/2019 Aman Technical_Handbook.pdf

    26/7025

    Current Ratings for Voltage grade from 6 kV to 30 kV

    Basic Assumption:- Conductor Material – Aluminium Three Core Cables

    Ground Temperature – 20˚C  Armoured/Unarmoured

    Air Temperature – 30˚C

    Thermal resistivity of soil – 150˚C-cm/w

    Depth of Laying – 800 mm

    Double point bonding

    Ground In Single way Duct In Air

    Size Amp Amp Amp Amp Amp Amp

    Unarmoured  Armoured Unarmoured  Armoured Unarmoured  Armoured

    25 100 100 87 87 110 111

    35 119 119 103 104 132 133

    50 140 140 122 123 158 159

    70 171 171 150 150 196 196

    95 203 204 179 180 236 238

    120 232 232 205 206 273 274

    150 260 259 231 231 309 309

    185 294 293 262 262 355 354

    240 340 338 305 304 415 415

    300 384 380 346 343 475 472

    400 438 432 398 393 552 545

  • 8/16/2019 Aman Technical_Handbook.pdf

    27/7026

    0.6/1 kV - 1C & 2 Core Copper, XLPE insulated

     Armoured/Unarmoured Cables

    Thermal Resistivity of Soil: 1.5 K.m/WGround temperature: 20˚C

    Depth of laying: 0.8 m

     Ambient Air temperature: 30˚C

    Area In Air In Ground In Duct

    mm2Single core Trefoil Two Core

    Single coreTwo core

    Single coreTwo core

    Trefoil Trefoil

    Unarmoured Armoured Unarm Armoured Armoured Armoured Armoured Armoured

    1.5 27 27 27 30 28 34 27 29

    2.5 37 37 37 39 38 43 37 38

    4 48 48 48 53 50 57 48 49

    6 60 60 62 67 63 71 61 62

    10 82 82 82 91 83 95 82 82

    16 112 112 119 121 109 123 106 106

    25 151 151 150 157 141 160 140 135

    35 178 178 185 194 166 190 159 162

    50 214 222 226 234 198 224 200 19370 273 283 286 294 241 272 241 237

    95 338 348 353 363 288 326 283 286

    120 396 403 412 420 327 371 317 322

    150 456 464 471 479 365 416 343 362

    185 529 533 546 553 411 469 375 411

    240 632 628 651 653 473 541 419 476

    300 731 715 752 744 528 607 458 535

    400 852 817 875 856 573 670 486 604

    500 986 924 635 527

    630 1139 1041 698 569

    800 1293 1131 737 593

    1000 1443 1227 782 623

  • 8/16/2019 Aman Technical_Handbook.pdf

    28/7027

    0.6/1 kV - 1C & 2 Core Aluminium, XLPE insulated

     Armoured/Unarmoured Cables

    Thermal Resistivity of Soil: 1.5 K.m/WGround temperature: 20˚C

    Depth of laying: 0.8 m

     Ambient Air temperature: 30˚C

     Area In Air In Ground In Duct

    mm2Single core Trefoil Two Core

    Single coreTwo core

    Single coreTwo core

    Trefoil Trefoil

    Unarmoured Armoured Unarm Armoured Armoured Armoured Armoured Armoured

    1.5 21 21 22 22 22 23 22 21

    2.5 29 29 29 29 31 32 31 27

    4 37 37 37 37 40 41 38 35

    6 48 48 48 48 50 51 47 44

    10 64 64 64 64 65 70 65 58

    16 88 88 89 91 85 95 83 81

    25 115 115 111 117 110 121 107 102

    35 144 144 136 143 128 143 128 123

    50 158 166 165 173 152 170 154 14670 203 212 210 218 185 206 187 180

    95 251 260 259 268 220 247 221 216

    120 292 301 288 288 251 268 249 243

    150 337 348 329 329 280 306 273 269

    185 393 400 377 377 317 351 300 308

    240 469 474 445 445 367 408 340 352

    300 544 543 500 500 403 453 375 391

    400 596 596 575 575 412 488 351 442

    500 658 658 438 376

    630 747 747 497 427

    800 844 844 562 483

    1000 948 948 631 542

  • 8/16/2019 Aman Technical_Handbook.pdf

    29/7028

    0.6/1 kV - 3 and 4 Core Copper and Aluminium XLPE insulated cables

    Thermal Resistivity of Soil: 1.5 K.m/W

    Ground temperature: 20˚CDepth of laying: 0.8 m

     Ambient Air temperature: 30˚C

     Area In Air In Ground In Duct

    mm2Unarmoured Armoured Armoured Armoured

    Copper Aluminium Copper Aluminium Copper Aluminium Copper Aluminium

    1.5 23 18 25 18 28 21 24 18

    2.5 33 25 34 25 37 27 32 23

    4 41 32 45 32 49 36 41 29

    6 53 41 57 41 60 45 52 38

    10 71 55 79 55 81 59 69 50

    16 103 78 103 78 104 80 89 68

    25 129 97 134 102 133 102 113 87

    35 158 119 165 124 158 120 136 103

    50 193 145 201 151 188 143 162 123

    70 246 184 252 190 228 174 199 152

    95 303 228 311 234 273 209 240 183

    120 354 266 361 272 311 238 271 208

    150 406 304 413 311 348 266 305 234

    185 469 353 475 360 392 302 345 266

    240 559 420 561 426 453 350 399 309

    300 645 487 639 488 507 395 448 349

    400 749 514 735 514 560 425 515 372

  • 8/16/2019 Aman Technical_Handbook.pdf

    30/7029

    0.6/1 kV - 1C & 2 Core Copper, PVC insulated cables

    Thermal Resistivity of Soil: 1.5 K.m/W

    Ground temperature: 20˚CDepth of laying: 0.8 m

     Ambient Air temperature: 30˚C

     Area In Air In Ground In Duct

    mm2Single core Trefoil Two Core

    Single coreTwo core

    Single coreTwo core

    Trefoil Trefoil

    Unarmoured Armoured Unarm Armoured Armoured Armoured Armoured Armoured

    1.5 23 23 23 23 25 28 23 24

    2.5 31 31 31 31 33 36 32 31

    4 40 40 40 41 43 48 42 41

    6 51 51 52 53 55 59 53 51

    10 69 69 68 72 72 79 71 69

    16 94 94 91 96 95 102 92 89

    25 127 127 122 128 123 135 122 115

    35 150 150 149 156 144 161 139 138

    50 173 181 182 189 170 191 169 164

    70 219 228 229 237 206 232 204 20195 273 280 284 293 246 279 239 242

    120 318 326 330 338 280 316 264 273

    150 365 371 378 384 312 354 290 306

    185 423 425 436 445 351 401 315 348

    240 505 500 519 525 403 462 352 402

    300 583 571 598 598 450 517 385 451

    400 679 649 695 685 488 569 410 508

    500 782 729 536 439

    630 900 817 586 473

    800 1018 881 614 493

    1000 1134 949 648 516

  • 8/16/2019 Aman Technical_Handbook.pdf

    31/7030

    0.6/1 kV - 1C & 2 Core Aluminium, PVC insulated cables

    Thermal Resistivity of Soil: 1.5 K.m/W

    Ground temperature: 20˚CDepth of laying: 0.8 m

     Ambient Air temperature: 30˚C

     Area In Air In Ground In Duct

    mm2Single core Trefoil Two Core

    Single coreTwo core

    Single coreTwo core

    Trefoil Trefoil

    Unarmoured Armoured Unarm Armoured Armoured Armoured Armoured Armoured

    16 74 74 70 72 74 78 72 68

    25 97 97 90 92 96 101 93 86

    35 121 121 110 113 111 120 111 103

    50 129 133 134 136 129 142 133 122

    70 164 166 169 174 156 175 163 152

    95 202 205 209 213 188 210 192 182

    120 236 239 242 242 213 233 216 212

    150 271 272 276 276 239 266 240 234

    185 315 317 316 316 271 305 262 267

    240 376 375 374 374 313 355 298 306

    300 436 431 420 420 352 394 329 340

    400 500 500 483 483 359 425 305 384

    500 552 552 381 327

    630 627 627 432 371

    800 709 709 489 420

    1000 796 796 549 472

  • 8/16/2019 Aman Technical_Handbook.pdf

    32/7031

    0.6/1 kV - 3C and 4 Core Copper and Aluminium PVC insulated cables

    Thermal Resistivity of Soil: 1.5 K.m/W

    Ground temperature: 20˚CDepth of laying: 0.8 m

     Ambient Air temperature: 30˚C

     Area In Air In Ground In Duct

    mm2Unarmoured Armoured Armoured Armoured

    Copper Aluminium Copper Aluminium Copper Aluminium Copper Aluminium

    1.5 20 15 20 15 23 18 20 16

    2.5 28 21 26 21 30 23 26 20

    4 35 26 36 26 41 31 34 26

    6 45 35 45 35 51 39 43 33

    10 59 46 62 46 67 51 58 43

    16 79 59 82 61 87 66 75 56

    25 103 78 109 80 113 86 96 72

    35 128 96 133 98 135 102 115 87

    50 156 117 162 120 159 121 137 104

    70 197 149 205 151 195 148 170 129

    95 243 183 252 188 234 179 204 156

    120 284 212 291 218 266 204 230 176

    150 324 243 334 248 298 228 258 197

    185 374 281 383 288 336 259 293 225

    240 446 336 451 344 388 302 338 264

    300 512 387 514 396 434 341 379 299

    400 593 431 589 431 477 370 433 323

  • 8/16/2019 Aman Technical_Handbook.pdf

    33/70

    Table 1 – Correction factors for ambient

    air temperatures other than 30˚C

    Maximum

    conductor Ambient air temperature

    temperature ˚C

    ˚C20 25 35 40 45 50 55 60

    90 1,08 1,04 0,96 0,91 0,87 0,82 0,76 0,71

    Table 2 – Correction factors for ambient ground

    temperatures other than 20˚C

    Maximum conductor Ground temperature

    temperature ˚C

    ˚C10 15 25 30 35 40 45 50

    90 1,07 1,04 0,96 0,93 0,89 0,85 0,80 0,76

    Table 3 – Correction factors for depth of laying

    Other than 0.8 m for direct buried cables

    Single-core cables

    Depth of laying Nominal conductor size Three-core

    m cables

    ≤185 mm2 >185 mm2

    0,5 1,04 1,06 1,04

    0,6 1,02 1,04 1,03

    1 0,98 0,97 0,98

    1,25 0,96 0,95 0,96

    1,5 0,95 0,93 0,95

    1,75 0,94 0,91 0,94

    2 0,93 0,90 0,93

    2,5 0,91 0,88 0,91

    3 0,90 0,86 0,90

    32

  • 8/16/2019 Aman Technical_Handbook.pdf

    34/7033

    Table 4 – Correction factors for depths of laying

    other than 0.8 m for cables in ducts

    Single-core cables

    Depth of laying Nominal conductor size Three-core

    m cables

    ≤185 mm2 >185 mm2

    0,5 1,04 1,05 1,03

    0,6 1,02 1,03 1,02

    1 0,98 0,97 0,99

    1,25 0,96 0,95 0,97

    1,5 0,95 0,93 0,96

    1,75 0,94 0,92 0,95

    2 0,93 0,91 0,94

    2,5 0,91 0,89 0,93

    3 0,90 0,88 0,92

    Table 5 – Correction factors for soil thermal resistivities

    other than 1,5 K.m/W for direct buried single-core cables

    Nominal area Values of soil thermal resistivity

    of conductor K.m/W

    mm20,7 0,8 0,9 1 2 2.5 3

    16 1,29 1,24 1,19 1,15 0,89 0,82 0,75

    25 1,30 1,25 1,20 1,16 0,89 0,81 0,75

    35 1,30 1,25 1,21 1,16 0,89 0,81 0,75

    50 1,32 1,26 1,21 1,16 0,89 0,81 0,74

    70 1,33 1,27 1,22 1,17 0,89 0,81 0,74

    95 1,34 1,28 1,22 1,18 0,89 0,80 0,74

    120 1,34 1,28 1,22 1,18 0,88 0,80 0,74

    150 1,35 1,28 1,23 1,18 0,88 0,80 0,74

    185 1,35 1,29 1,23 1,18 0,88 0,80 0,74

    240 1,36 1,29 1,23 1,18 0,88 0,80 0,73

    300 1,36 1,30 1,24 1,19 0,88 0,80 0,73

    400 1,37 1,30 1,24 1,19 0,88 0,79 0,73

  • 8/16/2019 Aman Technical_Handbook.pdf

    35/70

    Table 6 – Correction factors for soil thermal resistivities

    other than 1,5 K.m/W single-core cables in buried ducts

    Nominal area Values of soil thermal resistivity

    of conductor K.m/W

    mm20,7 0,8 0,9 1 2 2.5 3

    16 1,20 1,17 1,14 1,11 0,92 0,85 0,79

    25 1,21 1,17 1,14 1,12 0,91 0,85 0,79

    35 1,21 1,18 1,15 1,12 0,91 0,84 0,79

    50 1,21 1,18 1,15 1,12 0,91 0,84 0,78

    70 1,22 1,19 1,15 1,12 0,91 0,84 0,7895 1,23 1,19 1,16 1,13 0,91 0,84 0,78

    120 1,23 1,20 1,16 1,13 0,91 0,84 0,78

    150 1,24 1,20 1,16 1,13 0,91 0,83 0,78

    185 1,24 1,20 1,17 1,13 0,91 0,83 0,78

    240 1,25 1,21 1,17 1,14 0,90 0,83 0,77

    300 1,25 1,21 1,17 1,14 0,90 0,83 0,77

    400 1,25 1,21 1,17 1,14 0,90 0,83 0,77

    Table 7 – Correction factors for soil thermal resistivitiesother than 1,5 K.m/W for direct buried three-core cables

    Nominal area Values of soil thermal resistivity

    of conductor K.m/W

    mm20,7 0,8 0,9 1 2 2.5 3

    16 1,23 1,19 1,16 1,13 0,91 0,84 0,78

    25 1,24 1,20 1,16 1,13 0,91 0,84 0,78

    35 1,25 1,21 1,17 1,13 0,91 0,83 0,78

    50 1,25 1,21 1,17 1,14 0,91 0,83 0,77

    70 1,26 1,21 1,18 1,14 0,90 0,83 0,77

    95 1,26 1,22 1,18 1,14 0,90 0,83 0,77

    120 1,26 1,22 1,18 1,14 0,90 0,83 0,77

    150 1,27 1,22 1,18 1,15 0,90 0,83 0,77

    185 1,27 1,23 1,18 1,15 0,90 0,83 0,77

    240 1,28 1,23 1,19 1,15 0,90 0,83 0,77

    300 1,28 1,23 1,19 1,15 0,90 0,82 0,77

    400 1,28 1,23 1,19 1,15 0,90 0,82 0,76

    34

  • 8/16/2019 Aman Technical_Handbook.pdf

    36/7035

    Table 8 – Correction factors for soil thermal resistivities

    other than 1,5 K.m/W for three-core cables in ducts

    Nominal area Values of soil thermal resistivity

    of conductor K.m/W

    mm20,7 0,8 0,9 1 2 2.5 3

    16 1,12 1,11 1,09 1,08 0,94 0,89 0,84

    25 1,14 1,12 1,10 1,08 0,94 0,89 0,84

    35 1,14 1,12 1,10 1,08 0,94 0,88 0,84

    50 1,14 1,12 1,10 1,08 0,94 0,88 0,84

    70 1,15 1,13 1,11 1,09 0,94 0,88 0,8395 1,15 1,13 1,11 1,09 0,94 0,88 0,83

    120 1,15 1,13 1,11 1,09 0,93 0,88 0,83

    150 1,16 1,13 1,11 1,09 0,93 0,88 0,83

    185 1,16 1,14 1,11 1,09 0,93 0,87 0,83

    240 1,16 1,14 1,12 1,10 0,93 0,87 0,82

    300 1,17 1,14 1,12 1,10 0,93 0,87 0,82

    400 1,17 1,14 1,12 1,10 0,92 0,86 0,81

    Table 9 – Correction factors for groups of three-core cablesIn horizontal formation laid direct in the ground

    Number of Spacing between cable centres

    cables in mm

    groupTouching 200 400 600 800

    2 0,80 0,86 0,90 0,92 0,94

    3 0,69 0,77 0,82 0,86 0,89

    4 0,62 0,72 0,79 0,83 0,87

    5 0,57 0,68 0,76 0,81 0,856 0,54 0,65 0,74 0,80 0,84

    7 0,51 0,63 0,72 0,78 0,83

    8 0,49 0,61 0,71 0,78 –

    9 0,47 0,60 0,70 0,77 –

    10 0,46 0,59 0,69 – –

    11 0,45 0,57 0,69 – –

    12 0,43 0,56 0,68 – –

  • 8/16/2019 Aman Technical_Handbook.pdf

    37/70

    Table 10 – Correction factors for groups of three-phase circuits

    of single-core cables laid direct in the ground

    Number of Spacing between group centres

    cables in mm

    groupTouching 200 400 600 800

    2 0,73 0,83 0,88 0,90 0.92

    3 0,60 0,73 0,79 0,83 0,86

    4 0,54 0,68 0,75 0,80 0,84

    5 0,49 0,63 0,72 0,78 0,82

    6 0,46 0,61 0,70 0,76 0,81

    7 0,43 0,58 0,68 0,75 0,80

    8 0,41 0,57 0,67 0,74 –

    9 0,39 0,55 0,66 0,73 –

    10 0,37 0,54 0,65 – –

    11 0,36 0,53 0,64 – –

    12 0,35 0,52 0,64 – –

    Table 11 – Correction factors for groups of three-core cablesIn single way ducts in horizontal formation

    Number of Spacing between duct centres

    cables in mm

    groupTouching 200 400 600 800

    2 0,85 0,88 0,92 0,94 0,95

    3 0,75 0,80 0,85 0,88 0,91

    4 0,69 0,75 0,82 0,86 0,89

    5 0,65 0,72 0,79 0,84 0,87

    6 0,62 0,69 0,77 0,83 0,87

    7 0,59 0,67 0,76 0,82 0,86

    8 0,57 0,65 0,75 0,81 –

    9 0,55 0,64 0,74 0,80 –

    10 0,54 0,63 0,73 – –

    11 0,52 0,62 0,73 – –

    12 0,51 0,61 0,72 – –

    36

  • 8/16/2019 Aman Technical_Handbook.pdf

    38/7037

    Table 12 – Correction factors for groups of three-phase circuits

    of single-core cables in single-way ducts

    Number of Spacing between duct group centres

    cables in mm

    groupTouching 200 400 600 800

    2 0,78 0,85 0,89 0,91 0,93

    3 0,66 0,75 0,81 0,85 0,88

    4 0,59 0,70 0,77 0,82 0,86

    5 0,55 0,66 0,74 0,80 0,84

    6 0,51 0,64 0,72 0,78 0,83

    7 0,48 0,61 0,71 0,77 0,82

    8 0,46 0,60 0,70 0,76 –

    9 0,44 0,58 0,69 0,76 –

    10 0,43 0,57 0,68 – –

    11 0,42 0,56 0,67 – –

    12 0,40 0,55 0,67 – –

  • 8/16/2019 Aman Technical_Handbook.pdf

    39/70

    Table 13 – Reduction factors for groups of more than one multi-

    core cable in air – To be applied to the current-carrying capacity

    for one multi-core cable in free air

    Method of Installation Number Number of cables

    of trays 1 2 3 4 6 9

    Touching 1 1,00 0,88 0,82 0,79 0,76 0,73

    Cables on 2 1,00 0,87 0,80 0,77 0,73 0,68

    perforated trays 3 1,00 0,86 0,79 0,76 0,71 0,66

    Spaced 1 1,00 1,00 0,98 0,95 0,91 –

    2 1,00 0,99 0,96 0,92 0,87 –3 1,00 0,98 0,95 0,91 0,85 –

    Touching 1 1,00 0,88 0,82 0,78 0,73 0,72

    2 1,00 0,88 0,81 0,76 0,71 0,70

    Cables on vertical

    perforated trays

    1 1,00 0,91 0,89 0,88 0,87 –Spaced 2 1,00 0,91 0,88 0,87 0,85 –

    Touching 1 1,00 0,87 0,82 0,80 0,79 0,78

    2 1,00 0,86 0,80 0,78 0,76 0,73

    Cables on ladder 3 1,00 0,85 0,79 0,76 0,73 0,70

    supports, cleats

    etc. Spaced 1 1,00 1,00 1,00 1,00 1,00 –

    2 1,00 0,99 0,98 0,97 0,96 –

    3 1,00 0,98 0,97 0,96 0,93 –

    NOTE 1: Values given are averages for the cable types and range of conductor sizes considered. The

    spread of values is generally less than 5%.

    NOTE 2: Factors apply to single layer groups of cables as shown above and do not apply when cables

    are installed in more than one layer touching each other. Values for such installations may be

    significantly lower and must be determined by an appropriate method.

    NOTE 3: Values are given for vertical spacing between trays of 300 mm and at least 20 mm between

    trays and wall. For closer spacing, the factors should be reduced.

    NOTE 4: Values are given for horizontal spacing between trays of 225 mm with trays mounted back to

    back. For closer spacing, the factors should be reduced.

    38

  • 8/16/2019 Aman Technical_Handbook.pdf

    40/7039

    Table 14 – Reduction factors for groups of more than one circuit of

    single-core cables (Note 2) –

    To be applied to the current-carrying capacity for one circuit ofsingle-core cables in free air

    Method of Installation Number ofNumber of three-phase Use as a

    trayscircuits (Note 5) multiplier to

    1 2 3 rating for

    Touching 1 0,98 0,91 0,87 Three cables

    Perforated trays in horizontal

    (Note 3) 2 0,96 0,87 0,81 formation

    3 0,95 0,85 0,78

    Touching 1 1,00 0,97 0,96

    Ladder Three cables

    supports, 2 0,98 0,93 0,89 in horizontal

    cleats etc. formation

    (Note 3) 3 0,97 0,90 0,86

    Perforated 1 1,00 0,98 0,96

    trays 2 0,97 0,93 0,89

    (Note 3) 3 0,96 0,92 0,86

    Vertical 1 1,00 0,91 0,89

    Perforated Three cables

    trays 2 1,00 0,90 0,86 in trefoil

    (Note 4)Spaced

    formation

    Ladder 1 1,00 1,00 1,00

    supports.

    cleats, etc. 2 0,97 0,95 0,93

    (Note 3)

    3 0,96 0,94 0,90

    NOTE 1: Values given are averages for the cable types and range of conductor sizes considered. The

    spread of values is generally less than 5%.

    NOTE 2: Factors are given for single layers of cables (or trefoil groups) as shown in the table and do

    not apply when cables are installed in more than one layer touching each other. Values for such

    installations may be significantly lower and should be determined by an appropriate method.

    NOTE 3: Values are given for vertical spacings between trays of 300 mm. For closer spacing, the factors

    should be reduced.

    NOTE 4: Values are given for horizontal spacing between trays of 225 mm with trays mounted back to

    back. For closer spacing, the factors should be reduced.

    NOTE 5: For circuits having more than one cable in parallel per phase, each three phase set of

    conductors should be considered as a circuit for the purpose of this table.

  • 8/16/2019 Aman Technical_Handbook.pdf

    41/70

    Permissible short-circuit temperatures and rated short-time current

    densities

    1 2 3 4 5 6 7 8 9 10

    Permissible short circuit Conductor temperature at the beginning of short circuit in ˚C

    temperature in ̊C 90 80 70 60 50 40 30 20

    Rated short-time current density in A/mm2 for a rated

    short-circuit duration of 1 second

    Copper Conductors 250 143 149 154 159 165 170 176 181

    Aluminium Conductors 250 94 98 102 105 109 113 116 120

    1 2 3 4 5 6 7 8 9 10

    Permissible short circuit Conductor temperature at the beginning of short circuit in ˚C

    temperature in ̊C 90 80 70 60 50 40 30 20

    Rated short-time current density in A/mm2 for a rated

    short-circuit duration of 1 second

    ≤ 300 mm2 160 – – 115 122 129 136 143 150

    300 mm2 140 – – 103 111 118 126 133 140

    40

    Cables with

    (PVC Insulation)

    Copper Conductor

    Cables with

    (XLPE Insulation)

  • 8/16/2019 Aman Technical_Handbook.pdf

    42/7041

    Permissible Short Circuit current of XLPE

    insulated power cables (copper conductors)

  • 8/16/2019 Aman Technical_Handbook.pdf

    43/7042

    Permissible Short Circuit current of XLPE

    insulated power cables (Aluminum conductors)

  • 8/16/2019 Aman Technical_Handbook.pdf

    44/7043

    Recommended Cables Storage Practices

    Storage and Storage Maintenance:

    1. Finished cables have no established shelf-life. Moisture and atmospheric conditions can

    cause exposed conductors to oxidize and discolor. Uncovered/unsheltered cable will

    degrade due to exposure to direct sunlight and/or the elements. If the cables are

    protected, there should be no degradation of the insulation.

    2. In general, any cable for use indoors should be stored indoors. Any cable suitable for

    installation outdoors is suitable for storage outdoors. Cables stored outdoors should

    have the ends sealed to prevent moisture ingress into the cable.

    3. Cables should be stored in a sheltered area. While on the reel, cable should be covered

    with Masonite or a dark film wrap (to block the sun’s rays and shield them from the

    elements).

    4. Cable reels must remain in an upright position. Cable reels must not be stored on their

    sides.Reels must not be stacked.

    5. Cable reels should be stored with the protective covering or lagging in place. If a length

    of cable has been cut from the reel, the cable end should be immediately resealed to

    prevent moisture from entering it. If a part length is returned to storage, the reel’s

    protective covering should be restored.

    6. Wooden reels should be stored off the ground to prevent rotting. Reels should be stored

    on a flat, hard surface so that the flanges do not sink into the earth. The weight of the

    reel and cable must be carried at all times by the reel flanges.7. Cable reels and lagging must not be stored in direct contact with water or dampness

    for extended periods of time. Timbers or metal supports must be placed under the reel

    flanges to provide elevated storage of the reels away from direct contact with water or

    damp soil.

    8. Reels should be stored in an area where construction equipment, falling or flying

    objects or other materials will not touch the cable.

    9. Cable should be stored in an area where chemicals or petroleum products will not be

    spilled or sprayed on the cables.

    10. Cables should be stored in an area away from open fires or sources of high heat.

    11. If the cables are stored in a secure area and not exposed to the effects of the weather,

    an annual inspection should be satisfactory.

    12. Where the reels are exposed to the weather, a bi-monthly inspection should be

    performed to observe any sign of deterioration.

    13. If the reels are exposed in a non-secure area, policing of the area at frequent intervals

    may be required depending on circumstances.

    14. Records of delivery date, manufacturer, installation date, any extenuating

    circumstances, along with all test reports should be kept on file.

  • 8/16/2019 Aman Technical_Handbook.pdf

    45/70

    Guideline for permissible pulling force for laying of low voltage

    and medium voltage cables:

    Means of pulling Type of Cables Formula Factor

    With pulling head All types of Cables P = σ . A   σ  = 50 N/mm2 (Copper Conductor)

    attached to conductor   σ  = 30 N/mm2 (Aluminium Conductor)

    With pulling stocking Unarmoured cable1) P =  σ . A   σ  = 50 N/mm2 (Copper Conductor)

    σ  = 30 N/mm2 (Aluminium Conductor)

    All Wire armoured Cables P = K.D2 K = 9 N/mm2

    1) when laying 3 single core cables simultaneously with a common pulling stocking, the same

    maximum pulling force applies, whereas the pulling force for 3 laid-up single core cables is 3times that of a single-core and for 3 non-laid-up single core cables is 2 times that of a single

    core.

    P = Pull in Newtons

    A = total cross-sectional area in mm2 of all conductors (screen/concentric conductor not to be

    included)

    D = Overall diameter of cable

    σ  = permissible tensile stress of conductor in N/mm2

    K = empirically derived factor in N/mm2.

    44

  • 8/16/2019 Aman Technical_Handbook.pdf

    46/7045

    Minimum Installation Bending Radius

    Cables for fixed wiring up to and including 450/750 V:

    Insulation Conductors Construction Overall diameter Minimum

    (mm) radius

    XLPE or PVC Copper and Aluminium, Unarmoured Upto 10 mm 3Da

    Solid or Stranded circular 10 to 25 mm 4Db

    Above 25 mm 6D

    D = overall diametera 2D for single-core cables with circular stranded conductors installed in conduits, ducting or

    trunking.b 3D for single-core cables with circular stranded conductors installed in conduits, ducting or

    trunking.

    XLPE and PVC insulated cables rated 0.6/1 kV and 1.9/3.3 kV:

    Conductor Construction Minimum

    radius

    Circular Copper Both Armoured and Unarmoured 6D

    Shaped Copper Both Armoured and Unarmoured 8D

    Solid Alumiuium Both Armoured and Unarmoured 8D

    XLPE and insulated cables 6.6 kV to 33 kV:

    Type of Cable Minimum Radius

    During Laying Adjacent to joints or

    terminations

    Single Core:(a) Unarmoured 20D 15D

    (b) Armoured 15D 12D

    Three Core:

    (c) Unarmoured 15D 12D

    (d) Armoured 12D 10D

  • 8/16/2019 Aman Technical_Handbook.pdf

    47/70

    D.C. Voltage Test:The purpose of the test is to check that the cable laying has been done correctly. The cable

    may, for example, have been accidentally damaged during shipping, handling, storing, pullingand backfilling. Since it can be assumed that the cable insulation has not been damaged as long

    as the jacket is intact, the same can be checked by a d.c. voltage-withstand test.

    A direct voltage of 4 kV per millimeter of specified thickness of extruded oversheath shall be

    applied with a maximum of 10 kV for a period of 1 minute between each metal sheath or

    metallic screen and the ground.

    For the test to be effective, it is necessary that the ground makes good contact with all of the

    outer surfaces of the oversheath. A conductive layer on the oversheath can assist in this

    regard.

    Electrical tests after installation

     Voltage Test after installation:

    1) Insulation test:

    a) Test for 5 minutes with the phase to phase voltage of the system applied between the

    conductor and the metallic screen/sheath.

    b) Test for 24 hours with the normal operating voltage of the system.

    2) DC Testing:

    As an alternative to a.c. test, a d.c. test as per IEC 60502-2 OR BS 6622 mentioned below

    may be applied for 15 minutes.

    These tests are intended for cables immediately after installation and not for cables that

    have been in service.

    The test voltage is to be applied between each conductor and the armour and/or screens

    after all terminating and jointing has been completed, but before connection to the

    system.

    Cable Voltage Designation D.C. Voltage D.C. Voltage

    as per IEC 60502 (4Uo) as per BS 6622

    kV kV kV

    3.5/6 kV (IEC), 3.8/6.6 kV (BS) 14 15

    6/10 kV (IEC), 6.35/11 kV (BS) 24 25

    8.7/15 kV (IEC), 8.7/15 kV (BS) 35 37

    12/20 kV (IEC) 12.7/22 kV (BS) 48 50

    18/30 kV (IEC), 19/33 kV (BS) 72 76

    Note 1: A d.c. test may endanger the insulation system under test.

    Note 2: For installations which have been in use, lower voltages and/or shorter durations may be used.Values should be negotiated taking into account the age, environment, history of breakdowns and the

    purpose of carrying out the test.

    46

  • 8/16/2019 Aman Technical_Handbook.pdf

    48/7047

    Definition of Tests for Cables1) Routine Tests:

    Tests made by the manufacturer on each manufactured length of cable to check that eachlength meets the specified requirements.

    Tests:

    a) Measurement of electrical resistance of conductors

    b) Voltage tests

    c) Partial Discharge test (for XLPE cables with rated voltages 6 kV and above)

    2) Sample Tests:

    Tests made by the manufacturer on samples of completed length or components taken

    from a completed cable, at a frequency, to verify that the finished product meets the

    specified requirements.

    Tests:

    a) Conductor examination

    b) Check of dimensions

    c) 4 hour voltage test for cables with rated voltage 6 kV and above

    d) Hot set test for XLPE insulation.

    3) Type Tests:

    Tests made before supplying on a general commercial basis, a type of cable covered by IEC

    standard, in order to demonstrate satisfactory performance characteristics to meet the

    intended application.

    Note: These tests are such that, after they have been made, need not be repeated, unless

    changes are made in the cable materials or manufacturing processes which might change

    the performance characteristics.

    Tests: Shall be as per attached Table for Cables.

  • 8/16/2019 Aman Technical_Handbook.pdf

    49/7048

    List of Routine, Sample and Type tests for LV Cables

    Test Designation

    No. Description of the Test Routine Sample Type

    Elec. Non

    Elec.

    1 Measurement of electrical resistance of conductor  

    2 Voltage test (2.5Uo + 2 kV)  

    3 Measurement of thickness of insulation and non-metallic sheaths  

    4 Measurement of Cable armour dimensions 

    5 Measurement of Cable overall diameter  

    6 Hot set test for XLPE insulation  

    7 Insulation resistance measurement at normal and operating temp.  

    8 Measurement of volume resistivity for XLPE insulation  

    9 4 hours voltage test (4Uo)  

    10 Determining the mechanical properties of insulation before and

    after ageing  

    11 Determining the mechanical properties of non-metallic sheath

    before and after ageing.  

    12 Ageing tests on pieces of complete cable to check compatibility  

    13 Loss of mass test on PVC sheath  

    14 Pressure test at high temperature on sheaths  

    15 Heat shock test for PVC sheaths  

    16 Tests on PVC sheaths at low temperature  

    17 Water absorption test for XLPE insulation  

    18 Shrinkage test for XLPE insulation  

    19 Carbon black content of PE sheaths  

    20 Test under fire conditions (if required)  

    21 Smoke emission test for Halogen free cables  

    22 Acid Gas emission test for Halogen free cables  

    23 pH, conductivity, fluorine content test for Halogen free cables 

    24 Water absorption test for halogen free sheath  

  • 8/16/2019 Aman Technical_Handbook.pdf

    50/7049

    List of Routine, Sample and Type tests for MV Cables

    Test Designation

    No. Description of the Test Routine Sample Type

    Elec. Non

    Elec.

    1 Measurement of electrical resistance of conductor  

    2 Partial discharge test  

    3 Voltage test (3.5Uo)  

    4 Measurement of thickness of insulation and non-metallic sheaths  

    5 Measurement of armour dimensions  

    6 Measurement of Cable overall diameter  

    7 Hot set test for XLPE insulation  

    8 Bending test followed by partial discharge  

    9 Tangent Delta Measurement  

    10 Heating cycle voltage test, followed by partial discharge test  

    11 Impulse withstand test followed by a power frequency voltage test  

    12 4 hours Voltage test (4Uo)  

    13 Resistivity of semiconducting layers  

    14 Insulation resistance measurement at normal and operating temp.  

    15 Determining the mechanical properties of insulation before

    and after ageing  

    16 Determining the mechanical properties of non-metallic sheath

    before and after ageing  

    17 Ageing tests on pieces of complete cable to check compatibility  

    18 Loss of mass test on PVC sheath  

    19 Pressure test at high temperature on sheaths 

    20 Heat shock test for PVC sheaths  

    21 Tests on PVC sheaths at low temperature  

    22 Water absorption test for XLPE insulation  

    23 Shrinkage test for XLPE insulation  

    24 Shrinkage test for PE outer sheath  

    25 Strippability test (for strippable insulation screen only)  

    26 Carbon black content of PE sheaths  

    27 Test under fire conditions (if required)  

    28 Water penetration test (if required)  

  • 8/16/2019 Aman Technical_Handbook.pdf

    51/70

    Insulation Resistance – Significance and Use

    Insulation Resistance (IR) evaluates Insulation integrityIR is used as:

    a) A Quality Tool at the time of manufacturing of cable

    b) After installation, to check proper installation.

    c) As a preventive maintenance task

    d) For Trouble shooting

    Method of Measurement

    IR is measured by applying voltage (generally stabilised DC) cross a dielectric, measuring the

    amount of current flowing through the dielectric and then calculating resistance.

    Let’s clarify our use of the term “current.” We’re talking about leakage current. The resistance

    measurement is in megohms.

    After connection, the test voltage is applied for 1 min. (This is a standard industry parameter

    that allows the client to make relatively accurate comparisons of reading from past tests done

    by other technicians.) During this interval, the resistance reading should drop or remain

    relatively steady. Larger insulation systems will show a steady decrease; smaller systems will

    remain steady because the capacity and absorption currents drop to zero faster than on large

    systems. After 1 minute the reading should be recorded.

    Precautions –

    1) When performing insulation resistance testing, consistency must be maintained because

    electrical insulation will exhibit dynamic behavior during the course of the test; whether the

    dielectric is “good” or “bad” To evaluate a number of test results on the same piece of

    equipment, the test should be conducted the same way and under the relatively same

    environmental parameters, each and every time.

    2) Insulation resistance is temperature-sensitive. When temperature increases, insulation

    resistance decreases, and vice versa.

    For a cable length of L,

    IR = VR x Loge

    D

    2πL d

    Where VR = Volume Resistivity of Insulation in ohm – cm

    D = Outer dia over insulation (mm)

    d = Inner dia of insulation. (mm)

    L = Length of cable in cm.

    IR = Insulation Resistance in ohms.

    50

    ( )

  • 8/16/2019 Aman Technical_Handbook.pdf

    52/7051

    Calculated Minimum Insulation Resistance

     Values for

    0.6/1 kV XLPE Insulated and PVC Insulated Cables:

    Size PVC Insulated Cables XLPE Insulated Cables

    mm2 (M.ohm-km) at 20˚C (M.ohm-km) at 20˚C

    1.5 10 895

    2.5 9 840

    4 8 700

    6 7 590

    10 7 475

    16 6 385

    25 5 390

    35 5 335

    50 5 320

    70 5 295

    95 5 255

    120 5 245

    150 5 260

    185 5 265

    240 5 245

    300 5 230

    400 5 230

    500 5 225

    630 5 235

  • 8/16/2019 Aman Technical_Handbook.pdf

    53/70

    Calculated Minimum Insulation Resistance Values for Medium

     Voltage XLPE Insulated Cables:

    Size

    Minimum Insulation Resistance at 20˚C

    (mm2)6 kV 10 kV 15 kV 20 kV 30 kV

    M.ohm-km M.ohm-km M.ohm-km M.ohm-km M.ohm-km

    25 845 1060 1300 – –

    35 765 970 1185 1365 –

    50 680 870 1075 1240 1590

    70 600 770 955 1110 1435

    95 530 685 855 995 1300

    120 480 625 785 910 1205

    150 445 580 730 855 1130

    185 405 530 670 785 1045

    240 370 470 600 705 945

    300 360 430 550 650 875

    400 345 385 495 590 795

    500 330 350 450 535 725

    630 295 310 400 480 655

    52

  • 8/16/2019 Aman Technical_Handbook.pdf

    54/7053

    What is voltage drop?

    A voltage drop in an electrical circuit normally occurs when current is passed

    through the wire.

    The greater the resistance of the circuit, the higher the voltage drop.

    How much voltage drop is acceptable?

    The National Electrical Code states that a voltage drop of 4% at the furthest

    receptacle in a branch wiring circuit is acceptable for normal efficiency. In a

    120 volt 15 ampere circuit, this means that there should be no more than a

    4.8 volt drop (115.2 volts)

    What causes “excess voltage drop” in a branch circuit?

    The cause is usually:

    1. High resistance connections at wiring junctions or outlet terminals,

    usually caused by:-

    • poor splices anywhere in the circuit

    • loose or intermittent connections anywhere in the circuit

    • corroded connections anywhere in the circuit

    • Inadequate seating of wire in the slot connection on backwired “push-

    in-type” receptacles and switches.

    2. The wire does not meet code standards (not heavy enough gauge for the

    length of the run).

    What are the consequences of “excess” voltage drop in a circuit?

    Excess voltage drop can cause the following conditions:

    1. Low voltage to the equipment being powered, causing improper, erratic,

    or no operation – and damage to the equipment.

    2. Poor efficiency and wasted energy.

    3. Heating at a high resistance connection/splice may result in a fire at high

    ampere loads.

     At what % of voltage drop, does a circuit become hazardous?

    That would depend on how much current is flowing through the high

    resistance connector; resistance of connector, and the following factors:-

    1. Is the high resistance connection in contact with a combustible material?

    2. Is there air flow to dissipate the heat?

    3. Is the area around the connection insulated, so that heat cannot escape.

  • 8/16/2019 Aman Technical_Handbook.pdf

    55/70

     Voltage Drop

    The size of every bare conductor or cable conductor should be such that the drop in voltagefrom consumer’s terminals to any point in the installation does not exceed 4% of the declared

    or nominal voltage when the conductors are carrying full load, but disregarding the starting

    conditions. This requirement shall not apply to wiring fed from extra low voltage secondary of

    a transformer. The approximate voltage drop in average circuits such as lighting and domestic

    heating loads for XLPE insulated cables is:

    Conductor cross- Permissible Voltage Permissible Voltage Permissible Voltage

    sectional area Drop (Vp) Drop (Vp) Drop (Vp)

    (Single Core Cables) (Two Core Cables) (3 & 4 Core Cables)

    mm2 mV/A/m mV/A/m mV/A/m

    1.5 – 30.86 26.72

    2.5 – 18.9 16.36

    4 – 11.76 10.18

    6 – 7.86 6.804

    10 4.05 4.67 4.04

    16 2.55 2.94 2.54

    25 1.618 1.86 1.612

    35 1.173 1.348 1.166

    50 0.874 1.0 0.866

    70 0.616 0.702 0.607

    95 0.456 0.516 0.446

    120 0.373 0.418 0.362

    150 0.316 0.351 0.304

    185 0.267 0.295 0.255

    240 0.223 0.244 0.211300 0.197 – 0.185

    400 0.179 – 0.165

    500 0.165 – 0.151

    630 0.162 – 0.142

    800 0.15 – –

    1000 0.144 – –

    54

  • 8/16/2019 Aman Technical_Handbook.pdf

    56/7055

    Selection of Cable Size Based on Voltage Drop:

    Based on the required ampacity and installation conditions, a suitable cable size is chosen,cross-checked with the voltage drop as follows:

    Vp x 1000 x VVcal =

    I x L x 100

    where:

    Vp = Max. permissible voltage drop (say 4%)

    V = System voltage (say 415 V)

    L = Length in meters

    I = Current in Amps

    Suppose a 300 meters 3 core XLPE insulated cable is to carry 100 Amps and the supply voltage

    is 415 V then Vcal = 4 x 1000 x 415 = 0.553 mV/A/m. Therefore a cable size whose voltage

    100 x 300 x 100

    drop is less than 0.553 is to be selected. Hence, for the case above , cable size 95 mm2 may

    be selected.

  • 8/16/2019 Aman Technical_Handbook.pdf

    57/70

    Bonding and

    Earthing Methods

    Method Induced Voltage at Sheath voltage Application

    Cable ends limiters required

    Both Ends Bonded No No Substations, short lengths

    Single point bonded Yes Yes circuit length upto 1 Km.

    Cross Bonding Only at cross Yes Long length circuits

    bonding points

    Both Ends Bonded Single point bonded

    Surge arrester

    Earth continuity wire

    Induced Voltage Distribution Induced Voltage Distribution

    Most safe but due to circulating More ampacity. Surge arrester required at open end.

    current ampacity reduces Induced voltage is proportional to length of cable andso limitations on circuit length.

    Cross Bonding

    Induced Voltage Distribution

    Most popular system of earthing for long circuits.

    Ampacity is like single point bonded system but costly installations due to requirement of

    more number of Surge limiters, each at crossing.

    56

  • 8/16/2019 Aman Technical_Handbook.pdf

    58/7057

    Comparison of XLPE & PVC Insulated Power Cables

    PVC XLPE1. Operating Conductor Temperature: 70˚C Operating Conductor Temperature: 90˚C

    2. Lower current carrying capacity. Higher current carrying capacity.

    3. Maximum Temperature Limit under Maximum Temperature Limit under

    short circuit: 160˚C short circuit: 250˚C

    4. Lower emergency overload capacity. Higher emergency overload capacity.

    5. Lower moisture resistance High moisture resistance.

    6. Insulation Resistance Lower Insulation Resistance almost 1000 times

    higher

    7. Inferior properties to withstand vibration & Higher properties to withstand vibrationheat impacts. and heat impacts.

    8. Heavier as specific gravity is 1.42, Lighter as specific gravity is 0.92 and

    therefore more difficult to install. easier to install.

    9. Heat dissipation slower as Thermal Insulation dissipation heat faster as

    Resistivity is 7˚C m/w. Thermal Resistivity is 3.5˚Cm/w.

    10. Higher “Loss angle” of 0.01 Lower “Loss angle” of 0.004

    11. Installation Technique: simple Installation Technique: simple.

  • 8/16/2019 Aman Technical_Handbook.pdf

    59/70

    Nominal thickness of PVC/A insulation

    as per IEC 60502-1

    Nominal cross-sectional Nominal thickness of insulation at rated voltage

    area of conductor Uo/U (Um)

    0,6/1 (1,2) kV 1,8/3 (3,6) kv

    mm2 mm mm

    1,5 and 2,5 0,8 –

    4 and 6 1,0 –

    10 and 16 1,0 2,2

    25 and 35 1,2 2,2

    50 and 70 1,4 2,2

    95 and 120 1,6 2,2150 1,8 2,2

    185 2,0 2,2

    240 2,2 2,2

    300 2,4 2,4

    400 2,6 2,6

    500 to 800 2,8 2,8

    1000 3.0 3,0

    Note: Any conductor cross-section smaller than those given in this table is not recommended

    Nominal thickness of XLPE Insulation as per IEC 60502-1

    Nominal cross-sectional Nominal thickness of insulation at rated voltage

    area of conductor Uo/U (Um)

    0,6/1 (1,2) kV 1,8/3 (3,6) kv

    mm2 mm mm

    1,5 and 2,5 0,7 –

    4 and 6 0,7 –

    10 and 16 0,7 2,0

    25 and 35 0,9 2,0

    50 1,0 2,070 and 95 1,1 2,0

    120 1,2 2,0

    150 1,4 2,0

    185 1,6 2,0

    240 1,7 2,0

    300 1,8 2,0

    400 2,0 2,0

    500 2,2 2,2

    630 2,4 2,4

    800 2,6 2,6

    1000 2,8 2,8

    NOTE: Any conductor cross-section smaller than those given in this table is not recommended

    58

  • 8/16/2019 Aman Technical_Handbook.pdf

    60/7059

    Nominal thickness of XLPE insulation

    as per IEC 60502-2

    Nominal cross Nominal thickness of insulation at rated voltage

    sectional area of Uo/U (Um)

    conductor 3,6/6 (7,2) kV 6/10 (7,2) kV 8,7/15 (17,5) kV 12/20 (24) kV 18/30 (36) kV

    mm2 mm mm mm mm mm

    10 2,5 – – – –

    16 2,5 3,4 – – –

    25 2,5 3,4 4,5 – –

    35 2,5 3,4 4,5 5,5 –

    50 to 185 2,5 3,4 4,5 5,5 8,0240 2,6 3,4 4,5 5,5 8,0

    300 2,8 3,4 4,5 5,5 8,0

    400 3,0 3,4 4,5 5,5 8,0

    500 to 1000 3,2 3,4 4,5 5,5 8,0

    Note: Any smaller conductor cross-section than those given in this table is not 

    recommended. However, if a smaller cross-section is needed, either the diameter of the 

    conductor shall be increased by a conductor screen, or the insulation thickness shall be 

    increased in order to limit, at the values calculated with the smallest conductor size given 

    in this table, the maximum electrical stresses applied to the insulation under test voltage.

  • 8/16/2019 Aman Technical_Handbook.pdf

    61/70

    Old and New Core BS Core Colours

    BS 6004 (PVC insulated PVC Sheathed Cables)

    Cable Type Old Core Colour New Core Colour

    Single Core Red or Black Brown or Blue

    Two Core Red, Black Brown, Blue

    Three Core Red, Yellow, Blue Brown, Black, Grey

    BS 6500

    Cable Type Old Core Colour New Core Colour

    Two Core Blue, Brown No Change

    Three Core Green-Yellow, Blue, Brown No Change

    Four Core Green-Yellow, Black, Blue, Brown Green-Yellow, Brown, Black, Grey

    or Green-Yellow, Blue, Brown,

    Black

    Five Core Green-Yellow, Black, Blue, Brown, Green and Yellow, Blue, Brown,

    Black Black, Grey

    BS 6346, BS 5467, BS 6724

    Cable Type Old Core Colour New Core Colour

    Single Core Red or Black Brown or Blue

    Two Core Red, Black Brown, Blue

    Three Core Red, Yellow, Blue Brown, Black, Grey

    Four Core Red, Yellow, Blue, Black Blue, Brown, Black, Grey

    Five Core Red, Yellow, Blue, Black, Green/Yellow, Blue, Brown

    Green/Yellow Black, Grey

    60

  • 8/16/2019 Aman Technical_Handbook.pdf

    62/7061

    Overhead conductors are manufactured in a variety of sizes and strandings and several different

    materials. This range of choices enables selection of specific line conductors with

    characteristics such as conductance, diameter, strength, weight & coefficient of thermal

    expansion, stress strain, creep & thermal less of strength characteristics. Proper conductor

    selection takes into account the interaction of these characteristics with requirements of

    lines its voltage, capacity, load factor etc. These material are compared in the table given

    below:

    Material AAC AAAC ACSR Copper

    Conductivity %IACS 61 53 20 97

    Temperature co-efficient

    for Resistance OHM-MM2/KM 0.00403 0.0036 0.0051 0.00331

    Co-efficient of linear 10-6 23 23 12.96 17

    expansion per ˚C

    Ultimate tensile strength Mpa 160-200 295 1100-1344 414

    Modulus of elasticity Gpa 70 70 162 125

    Typical applications Short ACSR Low sag and Maximum

    Span replacement high tensile current

    with for strength capacity

    maximum corrosive Severe

    current atmosphere loading

    capacity conditions

    For Current ratings, size and dimensions, please refer to our catalogue. We also provide covered

    conductors. Covered conductors with insulation are good for environments carrying pollution

    and can withstand contact with conducting materials.

  • 8/16/2019 Aman Technical_Handbook.pdf

    63/7062

    Frequently Asked Questions

    Cables can be divided into a large number of types based on a combination of classificationsas follows:

    Voltage ratings low voltage, high voltage, extra high voltage cables, etc.

    Conductor material Copper conductor or Aluminium conductor.

    Insulating material Paper Insulated, PVC insulated, Rubber insulated, XLPE insulated, etc.

    Armoured or Unarmoured cables.

    Sheathing material as PVC Sheathed, Rubber Sheathed, Lead Sheathed, Aluminium Sheathed,

    etc.

    Number of cores as single core, two core, three core, three-and-a-half core, four core, multicore,

    etc.

    Cross-section of the conductor.

    Type of conductor, solid, stranded, sector shaped, etc.

    The details of various cable types can be checked in catalogues.

    Should cables be single core or 3-core?

    Single core cables can be cost-effective where impedance earthed systems are used which

    require relatively small screen sizes so that the cost for three core cables is economical. This is

    also true for large conductor sized cables. Single core cables are more easily water-blacked.

    For 10/11 kV systems the trend is for 3-phase cables. At higher voltages and higher fault levels,

    this issue of circulatory current in large screens of single core cables is a significant factor. The

    subject therefore of 3-core vs single core is an important issue.

    Which is best system, direct-buried or in-conduit, and what is its impact on cable

    design?

    In-conduit systems might enable simpler, low-cost cable designs to be used. In many densely

    populated cities conduit systems are the only appropriate form of cabling, as it is impossible totake advantage of longer drum lengths with direct-buried systems. Due to frequent presence of

    water in ducts, it becomes necessary to apply water barriers into the cable. On the other hand,

    there is an increasing interest in direct-burying using modern installation methods.

    What are the factors which reduce cable life?

     Voltage surges

    As with any electrical insulation, life expectancy is reduced when the insulation is subjected to

    “over voltage”, in the form of surges and impulses. It is recommended that appropriate

    protection devices be installed and the nature and frequency of all such occurrences be

    monitored and recorded, so that protective measures can be installed.

  • 8/16/2019 Aman Technical_Handbook.pdf

    64/7063

    Excess operating temperatures

    The cables are designed for a maximum operating temperature with limited overload periods as

    defined in the relevant Standard. Changes in the environment, depth of cover, adjacent servicesand micro biological effects in the soil, can increase operating temperatures and thus reduce

    cable life time. The circuit protection system also needs to ensure adequate protection from

    excess current loading. The nature of frequency of all such occurrences should be monitored

    and recorded.

    To protect the investment and ensure the life of the cable, continuous monitoring of all key

    circuits is required.

     Adverse environmental conditions

    Environmental conditions can adversely affect the conditions for the cable. Microbiological

    effects from fungus and bacteria can induce increases in soil temperature thus affecting thetemperature of the cable and causing unseen overloads. Increases in the thermal conductivity

    of the soil must be monitored and recorded.

    Poor installation practices

    The lifetime of cables is dependent on the cable being installed correctly. Poor

    supervision/management and adverse installation conditions may cause the cable to be

    damaged, over tensioned, twisted, bendings radii exceeded, excessive sidewall pressure

    induced, over compaction of backfill and other life threatening factors.

    Compatibility of design for cable and accessories

    Poor co-ordination of designs will result in incorrect/incompatible accessories, fixing methods,

    stresses induced by mechanical vibration, thermal movement and lack of compensation for

    seismic conditions. It is essential that correct methods of fixing and environmental assessment

    be undertaken to ensure the materials are not subjected to unforseen or unexpected stresses

    in service.

  • 8/16/2019 Aman Technical_Handbook.pdf

    65/7064

    Conversion Tables

    To Convert: Multiply by:

    Mils to millimetres (1,000 mils=one inch).......................................................................................0.0254Inches to centimetres ...............................................................................................................................2.540

    Centimetres to inches ............................................................................................................................0.3937

    Feet to metres..........................................................................................................................................0.3048

    Metres to feet .............................................................................................................................................3.281

    Yards to metres........................................................................................................................................0.9144

    Metres to yards........................................................................................................................................1.0936

    Miles to kilometres.....................