Alloy Design Using FactSage

114
www.factsage.com Alloy Design Basics and Advanced -Mg Liquid Mg 2 Sn Mg 17 Al 12 Al 8 Mn 5 PHI Temperature ( o C) phase distribution (log wt.%) 200 300 400 500 600 700 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 Mg 2 Sn-rich Mg 2 Si-rich -Mg Liquid Mg 17 Al 12 Al 8 Mn 5 PHI Temperature ( o C) phase distribution (log wt.%) 200 300 400 500 600 700 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 -Mg Mg 2 Sn-rich Mg 3 Sb 2 Liquid Mg 17 Al 12 Mg 2 Si-rich Al 8 Mn 5 PHI Temperature ( o C) phase distribution (log wt.%) 200 300 400 500 600 700 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 Mg-Sn alloy Mg-Sn + Si alloy Mg-Sn + Si + Sb alloy

Transcript of Alloy Design Using FactSage

Page 1: Alloy Design Using FactSage

www.factsage.com

Alloy Design

Basics and Advanced

-Mg

Liquid

Mg2Sn

Mg17Al12

Al8Mn5

PHI

Temperature (oC)

ph

ase

dis

trib

uti

on

(lo

g w

t.%

)

200 300 400 500 600 700

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Mg2Sn-rich

Mg2Si-rich

-Mg

Liquid

Mg17Al12

Al8Mn5

PHI

Temperature (oC)

ph

ase

dis

trib

uti

on

(lo

g w

t.%

)

200 300 400 500 600 700

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

-Mg

Mg2Sn-richMg3Sb2

Liquid

Mg17Al12

Mg2Si-rich

Al8Mn5

PHI

Temperature (oC)

ph

ase

dis

trib

uti

on

(lo

g w

t.%

)200 300 400 500 600 700

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Mg-Sn alloy Mg-Sn + Si alloy Mg-Sn + Si + Sb alloy

Page 2: Alloy Design Using FactSage

www.factsage.com

Alloy Design using FactSage

All materials processes involve

“Thermodynamics” and “Kinetics”.

Thermodynamics (Equilibrium) tells where we go.

Kinetics tells how fast we can go.

FactSage can provide Thermodynamic calculations for:

- Multicomponent (< 48 elements) Chemical reaction equilibria

- Phase diagrams up to 8 component systems

- Thermodynamic properties such as heat balance, G, H, S, etc.

Alloy Design Basics 1

Page 3: Alloy Design Using FactSage

www.factsage.com

Gas, Oxide, Salt and Alloy databases

Equilibrium Calculation

Equilibrium reactions

as annealed microstructure

Alloy design

Alloy Design Concept using FactSage Calculations

Phase diagram

Scheil Cooling Calculation

as cast microstructure

Multicomponent

phase diagram section

Data mining program

(FactOptimal)

Alloy Design Basics 2

Page 4: Alloy Design Using FactSage

www.factsage.com

Material Processing and FactSage

Process What can we do with FactSage

Extraction / Refining /

Recycling Gas/Slag/Matte/Salt/Metal/Refractory reactions

Casting Scheil cooling calculation (as-cast microstructure)

Solidification software

Annealing /

Homogenization

Multicomponent equilibrium calculations

Secondary phase precipitation

Solidification software

TMP / Forming

Final treatment:

Oxidation / Corrosion

/ Surface treatment

Oxidation phase diagram, E-pH diagram, Gas corrosion

reactions

Thermodynamic

properties

All kinds of thermodynamic properties:

Heat balance, G, H, S, activity, partial pressure of gases,

etc..

Alloy Design Basics 3

Page 5: Alloy Design Using FactSage

www.factsage.com

Alloy design (I): Phase diagram calculation

to find out final target composition

Mg + Al8Mn5

Mg + Mn4Al11

Mg + Mg17Al12 + MnAl4

Mg + Mg17Al12 + Al99Mn23

Mg + MnAl 4

L + Mg + Mn4Al11

L + Mg + Al8Mn5

Liquid (L)

Mg +

Mn

L + Mg

L + Al8Mn5

Mg - Al - 1%Zn - 0.3%Mn

wt% Al

Tem

per

atu

re,

oC

0 1 2 3 4 5 6 7 8 9 10

100

200

300

400

500

600

700

Alloy Design Basics 4

Page 6: Alloy Design Using FactSage

www.factsage.com

T1

T2

T3

Te

T1

T2

T3

T<Te

L1

L2 L3

L2

L3

L1

Scheil

Cooling

Equilib.

Cooling

Alloy design (II): Estimating of as-cast microstructure to find out

whether solidification can be reasonable.

Alloy Design Basics 5

Page 7: Alloy Design Using FactSage

www.factsage.com

Scheil cooling calculation of AZ31 alloy

Mg17Al12

Liqui

d

PhiAl8Mn5

Temperature, oC

ph

ase

dis

trib

uti

on

(w

t%)

300 350 400 450 500 550 600 650 700 750

0

1

2

3

4

5

6

7

8

9

10

Mg

Liquid

Mg17Al12

Eu

tecti

c t

em

pera

ture

(en

d o

f so

lid

ific

ati

on

)Temperature,

oC

ph

ase

dis

trib

uti

on

(w

t%)

300 350 400 450 500 550 600 650 700 750

0

10

20

30

40

50

60

70

80

90

100

Alloy Design Basics 6

Page 8: Alloy Design Using FactSage

www.factsage.com

Microstructure of as-cast AZ31

Liquid

Mg17Al12

PHI

Alpha-Mg

Temperature, oC

am

ou

nt

of

each

ph

ase

(w

t%)

300 350 400 450 500 550 600 650 700

0

10

20

30

40

50

60

70

80

90

100

Scheil Cooling calculation

Eutectic Mg Dendrite

Solidification path calculation: AZ31

Scheil cooling calculations tell us the solidification path

• Primary phase, precipitation, and eutectic reaction.

• Dendrite boundary (eutectics, segregation)

-> Estimation of as-cast microstructure

Scheil cooling calculation: as cast microstructure

Alloy Design Basics 7

Page 9: Alloy Design Using FactSage

www.factsage.com

Liquid - Al

Liquid - Zn

alpha Mg - Al

alpha Mg - Zn

Temperature, oC

wei

gh

t p

erce

nt

300 350 400 450 500 550 600 650 700

0

10

20

30

40

50

(B)

boundary

(A)

Mg dendrite

B

A

Corning effect of Mg dendrite: AZ31

change of composition

In dendrite & boundary

Scheil cooling calculation: as cast microstructure

Alloy Design Basics 8

Page 10: Alloy Design Using FactSage

www.factsage.com

Mg17Al12

Liq

uid

Al8Mn5

Al11Mn4

Al4Mn

Mg

Temperature, oC

ph

ase

dis

trib

uti

on

(w

t%)

100 150 200 250 300 350 400 450 500 550 600 650 700 750

0

1

2

3

4

5

Alloy design (III): Calculate the final target microstructure AZ31

Mg Liquid

Mg17Al12

Temperature, oC

ph

ase

dis

trib

uti

on

(w

t%)

100 150 200 250 300 350 400 450 500 550 600 650 700 750

0

10

20

30

40

50

60

70

80

90

100

Alloy Design Basics 9

Page 11: Alloy Design Using FactSage

www.factsage.com

FTlite database

Thermodynamic data & parameters for:

* 114 solution phases

HCP(HCP_A3) Ag, Al, Be, Ca, Ce, Cr, Cu, Fe, In, Li, Mg, Mn, Mo, Na, Ni, Sb, Sc, Si, Sn, Sr, Ta, Ti, Y, Zn, Zr, RE

Liquid As HCP + hydrogen, carbon, boron

BCC & FCC Similar list as HCP

Gamma (-Al12Mg17) Mg, Al, Zn, Li

Al8Mn5 Al, Cu, Fe, Mn, Si

AlxMny with Fe (x=4 & y=1; x=11 & y =4)

Tau- & Phi- ternary Mg-Al-Zn phases

Laves C14, C15, C36 Al, Ba, Ca, Mg, Sr, Zn, (RE) (being updated)

LC14: Laves_C14: Mg2Zn, Mg2Y, CaLi2, Mg2Ca, Mg2Sr, Mg2Ba

LC15: Laves_C15: MgCu2, Mg2Ce, Mn2Y, Al2Y, Al2Ce, Al2Ca, Al2Sc, Al2Sr

LC36: Laves_C36: MgNi2

Mg2X (X = Si,Sn,Ge,Pb) Mg2Si, Mg2Sn, Mg2Ge, Mg2Pb

– …

* 488 pure compounds

* Thousands of gaseous species (from the FACT53 Database)

– Volumetric data & parameters

For the Mg-Al-Zn-Mn-(Fe) system

Alloy Design Basics 10

Page 12: Alloy Design Using FactSage

www.factsage.com

The elements included in the FactSage FSstel steel database are:

Al, B, Bi, C, Ca, Ce, Co, Cr, Cu, Fe, La, Mg, Mn, Mo, N, O, Nb, Ni,

P, Pb, S, Sb, Si, Sn, Ti, V, W, Zr

FCC: Fe / Carbide / Nitride are all treated as FCC phase

- > Fe with N and C should use J option (3-miscibility gaps).

-> Fe with N or C should use I option (2-miscibility gaps).

-> Also recommend to use I option for BCC phase

For example, Fe-Ti-Nb-C-N calculations.

FCC ordered phase (FCC_L12) and BCC ordered phase (BCC_B2)

significantly slow down the calculations. If you are not really interested in

order/disorder transition, we recommend not to select this phase. (these

ordered phases are necessary in Al-Ni rich system)

Carbon: When C content is lower than ~ 1%, Fe3C (metastable) phase

normally forms instead of C (stable). So, in the selection for solid phase,

unselect “C” solid phase.

Alloy Design Basics 11

FSStel database

Page 13: Alloy Design Using FactSage

www.factsage.com

Alloy database: Others

Alloy Design Basics 12

• FSCopp: Copper alloy development (all binary Cu-X systems

• FSlite: Old database for FTlite

• FSupsi: High purity Si database for solar cell grade Si production

• FSnobl: Noble alloy database for Ag, Au, Ir, Os, Pd, Pt, Rh, Ru refining

• SGnobl: Similar to FSnobl

• SGsold: Solder alloy database

• SGTE 2007: developed by SGTE (www.sgte.org): Applicable to all

general alloy system. But less accurate than other dedicated databases for

specific region.

Page 14: Alloy Design Using FactSage

www.factsage.com

Calculation examples for Alloy design

EX1. Binary phase diagram: Mg-Al (how to read the phase diagram)

EX2. Target (Transition, Formation, Precipitation): Mg-Al

EX3. Equilibrium phase fraction / phase fraction vs temperature diagram: Mg-Al

EX4. Simple as-cast microstructure simulation / Scheil cooling calculation: Mg-Al

EX5. I option (miscibility gap): Al-Zn phase diagram

EX6. Isothermal Ternary phase diagram: Mg-Al-Zn

EX7. Projection calculation (Liquidus projection): Mg-Al-Zn

EX8. Scheil cooling calculation for AZ31 alloy (Mg-3Al-1Zn-0.3Mn)

EX9. Equilibrium calculation for AZ31 alloy (Mg-3Al-1Zn-0.3Mn)

EX10. Complex phase diagram: AZ31 – Sr rectangular phase diagram

EX11. Complex phase diagram: AZ31 – Sr – Ca rectangular isothermal section

EX12-1. Complex phase diagram: Mg-Al-Zn + 1% Sr triangle isothermal section

EX12-2. Complex phase diagram: Mg-Al-Zn + 1% Sr rectangular isothermal section

EX13. Metastable phase: Fe-C binary phase diagram with/without C (Fe3C)

EX14. J option (3 possible miscibility gap): Fe-Nb-Ti-C-N system

EX15-1. Phase diagram PO2 – T: oxidation of pure Fe

EX15-2. Phase diagram PO2 – X: oxidation of Fe-Cr

EX15-3. Phase diagram PO2 – T: oxidation of Fe-1%Mn-1%Si

EX16. <A> option: Simple counter-cross inter-diffusion calculation <A>Al-Mg // <1-A>Mg-Al-Zn

EX17. Oxidation of AHSS in tunnel furnace: Dew point control, stream, primary/secondary oxidation

EX18. Interfacial oxidation: variation of oxygen partial pressure: remelting/oxidation of Zn coating.

EX19. Composition target: carburization and decarburization of steel

EX20. Open calculation: Refining of B and P for High purity Si production

EX21. Heat balance (H): Initial condition, heat evolution (T evolution) during fluxing, alloying, heating, casting

EX22. Thermodynamic property calculations: G, H, S, iso-activity lines

EX23. Solidus projection

EX24. Precipitation during the solidification: Non-metallic inclusions

Alloy Design Basics 13

Page 15: Alloy Design Using FactSage

www.factsage.com

(2)

(1)

(3)

(4)

(1) Entering elements/components (2) Database selection

(3) Phases (compounds and solutions) selection (4) Calculation conditions (T, X, P, etc.)

EX1. Binary phase diagram: Mg-Al binary system

Alloy Design Basics 14

Page 16: Alloy Design Using FactSage

www.factsage.com

Liquid

Gamma

HCP_A3 + Gamma

HCP_A3

Liquid + HCP_A3

Gamma + Beta_AlMg

FCC_A1 + Beta_AlMg

FCC_A1

Liquid + FCC_A1

Mg - Al

mole Al/(Mg+Al)

T(C

)

0 0.2 0.4 0.6 0.8 1

0

140

280

420

560

700

liquidus

solidus

Eutectic rxn

Tie-line

(lever rule)

Alloy Design Basics 15

Page 17: Alloy Design Using FactSage

www.factsage.com

EX2. Target calculations

(a)Transitions (EX2-1):

do calculation between initial and final temperature and find all phase transition

between them

To learn more, go to ??

Liquid

Gamma

HCP_A3 + Gamma

HCP_A3

Liquid + HCP_A3

Gamma + Beta_AlMg

FCC_A1 + Beta_AlMg

FCC_A1

Liquid + FCC_A1

Gamma + Al30

Mg23

(s)

Mg - Al

FactSage

mole Al/(Mg+Al)

T(C

)

0 0.2 0.4 0.6 0.8 1

0

140

280

420

560

700

(c) Formation target (EX-2-3): find the temperature

at which the targeted phase begin to form

(b) Precipitation target (EX2-2): find temperature at which any other

phase begins to precipitate out from the targeted phase

Alloy Design Basics 16

Page 18: Alloy Design Using FactSage

www.factsage.com

(1) Select the compositions

(2) Select “transitions” instead of “normal”

EX2-1. Transition calculation

Range of temperature: “initial final interval”

Calculate Initial (0 oC) to final (700oC) temperature with interval of 10 oC

Alloy Design Basics 17

Page 19: Alloy Design Using FactSage

www.factsage.com

elemental composition of gamma phase

What is this complex thing ?

-> model structure in database

-> output for modeling people

Calculation results at every 100oC intervals

input composition

Alloy Design Basics 18

Page 20: Alloy Design Using FactSage

www.factsage.com

activity (a) of this phase = 0.45598

a = 1: stable phase, a < 1: unstable

Phase transition happens at this temperature

Although the amount of Gamma phase is zero,

the activity (a = 1) tells Gamma phase begins to

form at this temperature

Alloy Design Basics 19

Page 21: Alloy Design Using FactSage

www.factsage.com

EX2-2. Precipitation target calculation

Liquid is selected as precipitation target phase (P). Then, FactSage will calculate

liquidus temperature of a given composition

For target calculation, this

temperature should remain blank

automatic default estimated value

Alloy Design Basics 20

Page 22: Alloy Design Using FactSage

www.factsage.com

EX2-3. Formation target calculation

Liquid is selected as formation target phase (F). Then, FactSage will calculate

solidus temperature of a given composition

For target calculation, this

temperature should remain blank

automatic default estimated value

Alloy Design Basics 21

Page 23: Alloy Design Using FactSage

www.factsage.com

EX3. Variation of phase fraction with temperature (equilibrium)

Transition calculation from 700oC to 200oC with 10oC interval

Alloy Design Basics 22

Page 24: Alloy Design Using FactSage

www.factsage.com

(1)

Click to plot the results

Click to select X, Y axes (3)

(2)

(4)

Click to setup axes

Select the phase to plot

Selection of phases (5)

Alloy Design Basics 23

Page 25: Alloy Design Using FactSage

www.factsage.com

Tip for

“phase fraction vs. temperature diagram”

All phases which have amount > 0 in “Pure Solids”

and “SOLUTIONS” should be selected.

Pure compounds such as Mg, Al, intermetallic compounds

Solutions such as liquid, hcp, fcc, gamma phases

Special care is required for the phase selection

Alloy Design Basics 24

Page 26: Alloy Design Using FactSage

www.factsage.com

Liqu#1

Liqu#1

HCP#1

HCP#1

HCP#1

Gama

0.91 Mg + 0.09 Al

c:\FactSage61\Equi0.res 5May10

T(C)

gra

m

200 300 400 500 600 700

0

0.20

0.40

0.60

0.80

1.00

Liquidus Solidus

Alloy Design Basics 25

Page 27: Alloy Design Using FactSage

www.factsage.com

If we want to plot the compositional variation inside of

solution phases, we have to select the elements in this

“ELEMENTS” section.

For example, if we want to plot the variation of Al and

Mg concentrations in liquid phase with temperature, we

have to select Al_Liq#1 and Mg_Liq#1.

Alloy Design Basics 26

Page 28: Alloy Design Using FactSage

www.factsage.com

EX4. Variation of phase fraction with temperature (Scheil cooling)

Temperature:

(i) starting temperature and final temperature

(ii) starting temperature: program will automatically calculate the final

solidification temperature

Scheil cooling

Cooling step: In most of cases,

5 degree is enough to simulate

solidification process

This cooling step is not directly

related to solidification rate

(cooling speed)

Alloy Design Basics 27

Page 29: Alloy Design Using FactSage

www.factsage.com

Liqu#1Liqu#1

Liqu#1

Liqu#1

HCP#1

HCP#1

0.91 Mg + 0.09 Al

c:\FactSage61\Equi0.res 5May10

T(C)

gra

m

200 300 400 500 600 700

0

0.20

0.40

0.60

0.80

1.00

Liqu#1

Liqu#1

HCP#1

HCP#1

HCP#1

Gama

0.91 Mg + 0.09 Al

c:\FactSage61\Equi0.res 5May10

T(C)

gra

m

200 300 400 500 600 700

0

0.20

0.40

0.60

0.80

1.00

Equilibrium calc.

Scheil cooling calc.

End of solidification

Scheil cooling calculation is terminated when liquid phase disappears

Alloy Design Basics 28

Page 30: Alloy Design Using FactSage

www.factsage.com

EX5. I option (miscibility gap)

“I” Option: when the phase has a miscibility gap (solid state or liquid state phase

separation), I option should be selected to do more accurate calculations.

For example, fcc phase in Al-Zn system has a solid state miscibility gap as in this

example. Liquid oxide slag has a miscibility gap in high SiO2 region.

Alloy Design Basics 29

Page 31: Alloy Design Using FactSage

www.factsage.com

Liquid

FCC_A1

FCC_A1 + FCC_A1#2

FCC_A1 + HCP_Zn

FCC_A1 + HCP_Zn

Liquid + FCC_A1

HCP_Zn

Al - Zn

mole Zn/(Al+Zn)

T(C

)

0 0.2 0.4 0.6 0.8 1

0

140

280

420

560

700

Miscibility gap

Alloy Design Basics 30

Page 32: Alloy Design Using FactSage

www.factsage.com

EX6. Isothermal Ternary phase diagram: Mg-Al-Zn

Alloy Design Basics 31

Page 33: Alloy Design Using FactSage

www.factsage.com

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.10.20.30.40.50.60.70.80.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Mg

Zn Almass fraction

HCP_A3

Gamma

Beta_AlMg

AlMgZn_Tau

Liquid + HCP_A3

Liquid

FCC_A1

FCC_A1 + AlMgZn_Tau

Liquid

Mg - Al - Zn

400oC

Alloy Design Basics 32

Page 34: Alloy Design Using FactSage

www.factsage.com

EX7. Projection calculation (Liquidus projection): Mg-Al-Zn

“O” option for the target projection phase

(Liquid in most of cases)

Step: interval of isothermal

temperature liquidus lines

Alloy Design Basics 33

Page 35: Alloy Design Using FactSage

www.factsage.com

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.10.20.30.40.50.60.70.80.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Zn

Mg Almole fraction

T(min) = 340.89 oC, T(max) = 660.31

oCFour-Phase Intersection Points with Liquid

AlMgZn_Tau / FCC_A1#1 / Laves_C14#1AlMgZn_Tau / Beta_AlMg / Gamma

AlMgZn_Tau / Beta_AlMg / FCC_A1#1AlMgZn_Tau / Laves_C14#1 / Mg2Zn3AlMgZn_Tau / Gamma / PhiGamma / HCP_A3#1 / PhiFCC_A1#1 / Laves_C14#1 / Mg2Zn11

AlMgZn_Tau / Mg2Zn3 / MgZnFCC_A1#1 / HCP_Zn / Mg2Zn11HCP_A3#1 / Mg51Zn20_<mg7zn3>_oi1 / MgZnAlMgZn_Tau / HCP_A3#1 / PhiAlMgZn_Tau / HCP_A3#1 / MgZn

1:2:

3:4:5:6:7:

8:9:

10:11:12:

A = Zn, B = Mg, C = AlX(A) X(B) X(C)

oC

0.35365 0.18471 0.46164 467.780.04094 0.37786 0.58120 447.570.04248 0.36009 0.59743 446.26

0.33110 0.60810 0.06080 428.120.16296 0.66052 0.17652 385.070.16267 0.69979 0.13755 364.350.80148 0.07683 0.12168 360.170.25899 0.69007 0.05094 353.590.85034 0.05789 0.09177 347.54

0.28328 0.71522 0.00150 345.230.23357 0.70211 0.06432 342.670.24168 0.70263 0.05570 340.89

1:2:3:

4:5:6:7:8:9:

10:11:12:

1

2 3

4

56

7

8

9

10

1112

Laves_C14

AlMgZn_Tau FCC_A1

GammaBeta_AlMg

HCP_A3

Phi

HCP_Zn

Mg2Zn11

Mg2Zn3

MgZn

Al - Mg - Zn

Data from FTlite - FACT light alloy databases

Univariant line

(phase boundary)

Isotherms

(liquidus)

Alloy Design Basics 34

Page 36: Alloy Design Using FactSage

www.factsage.com

EX8. Scheil cooling calculation for AZ31 alloy (Mg-3Al-1Zn-0.3Mn)

Alloy Design Basics 35

Page 37: Alloy Design Using FactSage

www.factsage.com

MnAl4(s)Mn4Al11(s)Mn4Al11(s)

Liqu#1

Liqu#1

Liqu#1Liqu#1

HCP#1

HCP#1

HCP#1HCP#1

Gama AL8MAL8MAL8M

95.7 Mg + 3 Al + Zn + 0.3 Mn

c:\Workshop\Equi0.res 30Apr10

T(C)

gra

m

100 200 300 400 500 600 700

0

20

40

60

80

100

MnAl4(s)Mn4Al11(s)Mn4Al11(s)

Liqu#1

Gama

AL8MAL8MAL8M

95.7 Mg + 3 Al + Zn + 0.3 Mn

c:\Workshop\Equi0.res 30Apr10

T(C)

gra

m

300 400 500 600 700

0

0.50

1.00

1.50

2.00

2.50

3.00

Close-up view

Alloy Design Basics 36

Page 38: Alloy Design Using FactSage

www.factsage.com

EX9. Equilibrium calculation for AZ31 alloy (Mg-3Al-1Zn-0.3Mn)

Alloy Design Advanced 37

Page 39: Alloy Design Using FactSage

www.factsage.com

MnAl4(s) Mn4Al11(s)

Liqu#1

HCP#1 HCP#1 HCP#1

HCP#1

AL8M AL8M

95.7 Mg + 3 Al + Zn + 0.3 Mn

c:\Workshop\Equi0.res 30Apr10

T(C)

gra

m

100 200 300 400 500 600 700

0

20

40

60

80

100

MnAl4(s)

Mn4Al11(s)

AL8M

AL8M

95.7 Mg + 3 Al + Zn + 0.3 Mn

c:\Workshop\Equi0.res 30Apr10

T(C)

gra

m

100 200 300 400 500 600 700

0

0.50

1.00

1.50

2.00

Close-up view

Alloy Design Advanced 38

Page 40: Alloy Design Using FactSage

www.factsage.com

EX10. Phase diagram : AZ31 – Sr phase diagram

In FactSage, all the input is in molar formula.

Thus, in order to add AZ31 (97wt%Mg-3wt%Al-1wt%Zn), we have to do conversion

of the composition into molar fraction first. Then, add this molar formula as input

97wt%Mg-3wt%Al-1wt%Zn -> 0.96897Mg-0.027277Al-0.0037517Zn

Alloy Design Advanced 39

Page 41: Alloy Design Using FactSage

www.factsage.com

HCP_A3 + Al4Sr(s)

HCP_A3 + Laves_C15 + Al4Sr(s)

Liquid + HCP_A3

Liquid

MgZn + HCP_A3 + Gamma + Al4Sr(s) HCP_A3 + Al4Sr(s) + Laves_C15 + SrZn5(s)

HCP_A3 + Laves_C15

HCP_A3 + Laves_C15 + Mg17Sr2(s)

Liquid + HCP_A3 + Laves_C15

Mg0.96897Al0.027277Zn0.0037517 - Sr

mass Sr/(Mg0.96897Al0.027277Zn0.0037517+Sr)

T(C

)

0 0.01 0.02 0.03 0.04 0.05

0

140

280

420

560

700

Alloy Design Advanced 40

Page 42: Alloy Design Using FactSage

www.factsage.com

EX11. Phase diagram: AZ31 – Sr – Ca isothermal section

Alloy Design Advanced 41

Page 43: Alloy Design Using FactSage

www.factsage.com

Laves_C15 + HCP_A3 + D13(ca,sr,ba)

Laves_C15 + HCP_A3

Laves_C15 + HCP_A3 + Mg17Sr2(s)

Laves_C15 + HCP_A3 + Laves_C14 + Mg17Sr2(s)

Laves_C15 + Laves_C14 + HCP_A3

Mg0.96897Al0.027277Zn0.0037517 - Sr - Ca

300oC

mass Sr/(Mg0.96897Al0.027277Zn0.0037517+Sr+Ca)

mass

Ca/(

Mg

0.9

68

97A

l 0.0

27

27

7Z

n0

.00

37

51

7+

Sr+

Ca)

0 0.006 0.012 0.018 0.024 0.03

0

0.006

0.012

0.018

0.024

0.03

Alloy Design Advanced 42

Page 44: Alloy Design Using FactSage

www.factsage.com

EX12-1. Mg-Al-Zn + 1% Sr triangle /rectangular isothermal section

For the triangle phase diagram of more than 4 component system, special care is

needed to set correct composition.

Alloy Design Advanced 43

Page 45: Alloy Design Using FactSage

www.factsage.com

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.10.20.30.40.50.60.70.80.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Mg

Zn Almass fractions /(Mg+Al+Zn)

Liquid + HCP_A3

Liquid

Liquid + Al4Sr(s)

Liquid + FCC_A1 + Al4Sr(s)

FCC_A1 + Al4Sr(s)

Mg - Al - Zn - Sr

500oC, mass Sr/(Mg+Al+Zn) = 0.010101

Alloy Design Advanced 44

Page 46: Alloy Design Using FactSage

www.factsage.com

EX12-2. Mg-Al-Zn + 1% Sr triangle /rectangular isothermal section

Alloy Design Advanced 45

Page 47: Alloy Design Using FactSage

www.factsage.com

Liquid + HCP_A3

Liquid + HCP_A3 + Al4Sr(s)

HCP_A3 + Al4Sr(s)HCP_A3 + Mg17Sr2(s)

Mg - Al - Zn - Sr

500oC, mass Sr/(Mg+Al+Zn+Sr) = 0.01

mass Al/(Mg+Al+Zn+Sr)

mass

Zn

/(M

g+

Al+

Zn

+S

r)

0 0.02 0.04 0.06 0.08 0.1

0

0.01

0.02

0.03

0.04

0.05

Alloy Design Advanced 46

Page 48: Alloy Design Using FactSage

www.factsage.com

EX13. Metastable phase: Fe-C binary system w/wo C (Fe3C)

Although C (carbon) is thermodynamically stable phase than Fe3C, C is not appearing in

most of low carbon steel. Thus, in order to do proper calculations, C should be removed

from above compound list in particular in steel.

In the same way, if a certain phase is not readily formed (sluggish to form), we can

unselect the phase to simulate the system more realistically.

Alloy Design Advanced 47

Page 49: Alloy Design Using FactSage

www.factsage.com

Metastable phase diagram without C

Stable phase diagram with C

BCC_A2 + Fe3C(s)

Fe3C(s) + FCC(c,n)

FCC(c,n)

Fe-LIQUID

Fe-LIQUID + FCC(c,n)

Fe-LIQUID + Fe3C(s)

Fe-LIQUID + Fe3C(s)

Fe - C

mass C/(Fe+C)

T(C

)

0 0.02 0.04 0.06 0.08 0.1

500

720

940

1160

1380

1600

FCC(c,n) + C(s)

Fe-LIQUID + C(s)

BCC_A2 + C(s)

FCC(c,n)

Fe-LIQUID + FCC(c,n)

Fe-LIQUID

Fe - C

mass C/(Fe+C)

T(C

)

0 0.02 0.04 0.06 0.08 0.1

500

720

940

1160

1380

1600

Alloy Design Advanced 48

Page 50: Alloy Design Using FactSage

www.factsage.com

EX14. J option (3 possible miscibility gaps): Fe-Nb-Ti-C-N system

“J” option is needed for a phase which has more than 2 possible miscibility gaps.

Most well known example is Fe FCC phase in steel with (Ti,Nb)(C,N) phase formation.

Since Ti(C,N) and Nb(C,N) have FCC cyrstal structure, we describe both FCC metallic

phase and carbonitride phase using the same FCC phase model. Thus, in order to do

proper calculations, J option should be applied to FCC phase in this case.

Alloy Design Advanced 49

Page 51: Alloy Design Using FactSage

www.factsage.com

Austenite phase

Nb(C,N) ppt.

Ti(C,N) ppt.

Alloy Design Advanced 50

Page 52: Alloy Design Using FactSage

www.factsage.com

CEMEFCC#1

FCC#1

FCC#1

FCC#2 FCC#2 FCC#2 FCC#2FCC#3 FCC#3 FCC#3 FCC#3

BCC#1BCC#1

BCC#1

99.875 Fe + 0.018 Ti + 0.068 Nb + 0.039 C +

c:\Workshop\Equi0.res 30Apr10

T(C)

gra

m

600 650 700 750 800 850 900 950 1000

0

10

20

30

40

50

60

70

80

90

100

FCC#2 FCC#2 FCC#2

FCC#2

FCC#3 FCC#3FCC#3

FCC#3

99.875 Fe + 0.018 Ti + 0.068 Nb + 0.039 C +

c:\Workshop\Equi0.res 30Apr10

T(C)

gra

m

600 650 700 750 800 850 900 950 1000

0

0.02

0.04

0.06

0.08

0.10

Alloy Design Advanced 51

Page 53: Alloy Design Using FactSage

www.factsage.com

EX15-1. Phase diagram PO2 – T: Oxidation of pure Fe

Oxidation of steel requires multiple databases

(a) FSStel: steel phases

(b) FToxid: oxide phases

(c) Fact53: gases and others

Alloy Design Advanced 52

Page 54: Alloy Design Using FactSage

www.factsage.com

When we select multiple databases, this “suppress duplicate” option

help to remove duplicate based on ‘database priority’ given by user

Alloy Design Advanced 53

Page 55: Alloy Design Using FactSage

www.factsage.com

Fe2O3(s)

ASpinelAMonoxide

Fe(s2)

Fe(s)

Fe(s)

Fe-LIQUID

ASlag-liq

O2 - Fe

T(C)

log

10(p

(O2))

(a

tm)

500 740 980 1220 1460 1700

-40

-32

-24

-16

-8

0

Oxygen partial pressure can be

selected by this option

Alloy Design Advanced 54

Page 56: Alloy Design Using FactSage

www.factsage.com

EX15-2. phase diagram PO2 – X: Oxidation of Fe-Cr

If we want to use oxygen as one of axes,

O2 should be added as input component

Alloy Design Advanced 55

Page 57: Alloy Design Using FactSage

www.factsage.com

ASpinel + M2O3(Corundum)

ASpinel

ASpinel + M2O3(Corundum)

FCC_A1:Me(C,N) + ASpinel + M2O3(Corundum)

BCC_A2 + ASpinel + M2O3(Corundum)

BCC_A2 + ASpinel

FCC_A1:Me(C,N) + ASpinel

ASpinel

FCC_A1:Me(C,N) + ASpinel

O2 - Fe - Cr

1200oC

mass Cr/(Fe+Cr)

log

10(p

(O2))

(a

tm)

0 0.2 0.4 0.6 0.8 1

-20

-16

-12

-8

-4

0

Alloy Design Advanced 56

Page 58: Alloy Design Using FactSage

www.factsage.com

EX16. <A> option: Simple counter-cross inter-diffusion calc.

Any kind of counter-cross inter-diffusion reaction at interface can be simulated with

<A> option in Equilib. This assume the diffusivity of all components in both materials

are the same.

A materials B materials

B materials A materials

concentr

ation

Alloy Design Advanced 57

Page 59: Alloy Design Using FactSage

www.factsage.com

Joining of <A>Al-Mg // <1-A>AZ31

Alloy Design Advanced 58

Page 60: Alloy Design Using FactSage

www.factsage.com

Liqu#1

Liqu#1

FCC#1

HCP#1

Beta

Gama

Gama

<A> Al0.97Mg0.03 + <1-A> Mg0.965Al0.03Zn0.005

c:\Workshop\Equi0.res 30Apr10

Alpha

gra

m

0 000.1 000.2 000.3 000.4 000.5 000.6 000.7 000.8 000.9 001

0

0.20

0.40

0.60

0.80

1.00

Alloy Design Advanced 59

Page 61: Alloy Design Using FactSage

www.factsage.com

EX17. Oxygen partial pressure control for oxidation of metals

Alloy Design Advanced 60

N2-5%H2

Ice(H2O(s)), T= -30°C

PO2=?

H2 + 1/2O2 = H2O

Annealing T= 800°C

Hot Dip Galvanizing

Cold worked at 300 °C

Dew point

Page 62: Alloy Design Using FactSage

www.factsage.com

We should select real gas to obtain

accurate Gibbs energy and volume

fraction of gas at low temperature

and high pressure.

Alloy Design Advanced 61

EX17-1. Oxygen partial pressure control using Dew-point concept

Page 63: Alloy Design Using FactSage

www.factsage.com

We will heat this gas at 800°C using

stream file.

Alloy Design Advanced 62

EX17-1. Oxygen partial pressure control using Dew-point concept

Page 64: Alloy Design Using FactSage

www.factsage.com

Creating stream file

Alloy Design Advanced 63

EX17-1. Oxygen partial pressure control using Dew-point concept

Page 65: Alloy Design Using FactSage

www.factsage.com

Importing stream file

Alloy Design Advanced 64

EX17-1. Oxygen partial pressure control using Dew-point concept

Page 66: Alloy Design Using FactSage

www.factsage.com Alloy Design Advanced 65

EX17-1. Oxygen partial pressure control using Dew-point concept

Page 67: Alloy Design Using FactSage

www.factsage.com

Final partial pressure of oxygen

when the temperature of ice is

-20°C

Alloy Design Advanced 66

EX17-1. Oxygen partial pressure control using Dew-point concept

Page 68: Alloy Design Using FactSage

www.factsage.com

Dew Point = 0

o C

-10o C -20

o C-30

0 C-40

o C-50

0 C

TemperatureoC

log

PO

2, b

ar

500 600 700 800 900 1000 1100 1200

-35-34

-33

-32

-31

-30

-29

-28

-27

-26

-25

-24

-23

-22

-21

-20

-19

-18

-17

-16

-15

Dew points – PO2/T Relationship

95%N2,5%H2

Dew Point 0o C

-100 C

-20o C

-30o C

-40o C

-500 C

Temperature0C

log p

O2,b

ar

500 600 700 800 900 1000 1100 1200

-35-34

-33

-32

-31

-30

-29

-28

-27

-26

-25

-24

-23

-22

-21

-20

-19

-18

-17

-16

-1590%N2,10%H2

Alloy Design Advanced 67

Page 69: Alloy Design Using FactSage

www.factsage.com

EX17-2. phase diagram PO2 – T: Oxidation of Fe-1%Mn-1%Si

Alloy Design Advanced 68

Page 70: Alloy Design Using FactSage

www.factsage.com

BCC_A2

BCC_A2 + FCC(c,n)

FCC(c,n)

Rhodonite + BCC_A2 + SiO2(s2)

Rhodonite + BCC_A2 + SiO2(s)

Rhodonite + BCC_A2 + SiO2(s4)

Rhodonite + FCC(c,n) + SiO2(s4)

AOlivine + BCC_A2

AOlivine + BSpinel

Rhodonite + BCC_A2

Rhodonite + BCC_A2

O2 - Fe - Mn - Si

mass Mn/(Fe+Mn+Si) = 0.01, mass Si/(Fe+Mn+Si) = 0.01

T(C)

log

10(p

(O2))

(atm

)

500 600 700 800 900 1000

-40

-36

-32

-28

-24

-20

Alloy Design Advanced 69

Page 71: Alloy Design Using FactSage

www.factsage.com

FCC + BCC

FC

C +

BC

C +

SiO

2

FCC + BCC + SiO2 + MnSiO3

FCC + BCC + MnSiO 3

FCC + BCC + Mn2SiO4

FCC + BCC + MnSiO3 + Mn2SiO4

Fe - C - Mn - Si - O2

800oC, p(O

2) = 10

-27.5 bar, C = 0.1%

wt% Mn

wt%

Si

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

Drawing of the diagram:

1) Collect all blue/red/green lines at different PO2 and superimpose them in one diagram.

2) The boundary of each color line (different phase) is the phase boundary of the primary

oxide phase in the diagram.

EX17-3. Primary oxide formation diagram

Alloy Design Advanced 70

Page 72: Alloy Design Using FactSage

www.factsage.com

Fe-Mn-Si at PO2=10-28atm, T=800°C

Alloy Design Advanced 71

Page 73: Alloy Design Using FactSage

www.factsage.com

Boundaries for oxide phase

Alloy Design Advanced 72

Superimpose the figures of the lines

calculated at different partial pressure of

oxygens

EX17-3. Primary oxide formation diagram

Page 74: Alloy Design Using FactSage

www.factsage.com

<BCC + SiO2>

<BCC

+ MnSiO3>

wt %Mn

wt

%S

i

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.0

1.5

2.0

2.5

3.0

<BCC +FCC

+ MnSiO3>

<BCC +FCC

+ Mn2SiO4>

(A)(B)

(C)

Mn = 0.5

Si = 1.5

Primary oxidation Secondary oxidation

Mn = 0.5

Si = 1.0

SiO2 formation

Si depletion

in metal

SiO2+MnSiO3 formationSiO2

MnSiO3

<BCC + SiO2>

<BCC

+ MnSiO3>

wt %Mn

wt

%S

i

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.0

1.5

2.0

2.5

3.0

<BCC +FCC

+ MnSiO3>

<BCC +FCC

+ Mn2SiO4>

(A)(B)

(C)

Mn = 0.5

Si = 1.5

Primary oxidation Secondary oxidation

Mn = 0.5

Si = 1.5

SiO2 formation

Si depletion

in metal

SiO2+MnSiO3 formationSiO2

MnSiO3

EX17-4. Primary and Secondary Oxidations

Alloy Design Advanced 74

Concept of primary and

secondary oxidations

Page 75: Alloy Design Using FactSage

www.factsage.com

Oxidation phase diagram of the Fe-0.002%C-Mn-Si steel at 800oC

Oxidation phase diagram

Alloy Design Advanced 75

Page 76: Alloy Design Using FactSage

www.factsage.com

EX18. Remelting and oxidation of Zn galvanized steel

Zn

Fe-1%Mn-0.5%Cr

Air

2. Oxidation reaction

Zn (liquid)

Fe-1%Mn-0.5%Cr

Air

1. L/S Interfacial reaction

Reheating

(900 oC)

Alloy Design Advanced 76

air

Original metal

Oxid

e layer

Oxidation Calculation

Log P(O2)

By controlling the partial pressure,

different layer oxides can be

calculated. But the partial pressure is

not linearly decreasing with depth of

oxide layer. So this type of calculation

shows quantitative oxidation behavior

Page 77: Alloy Design Using FactSage

www.factsage.com

FTlite database contains

reasonable Zn bath data for Zn-

galvanizing. So, this is chosen

instead of FSStel.

EX18-1. Interface reaction between liquid Zn and steel

Alloy Design Advanced 77

Page 78: Alloy Design Using FactSage

www.factsage.com

Original steel:

Fe-1%Mn-0.5%Cr

Reaction products:

Zn-rich Liquid

Reaction products:

BCC + FCC

We need this liquid Zn for the

oxidation reaction

Save it as stream

Alloy Design Advanced 78

EX18-1. Interface reaction between liquid Zn and steel

Page 79: Alloy Design Using FactSage

www.factsage.com

EX18-2. Oxidation reaction of liquid Zn

Alloy Design Advanced 79

(1)

(2)

(2)-a

(1)-a

(1)-b

(1) Setting oxygen partial pressure:

activity or log activity can be fixed

(2) Remove duplicate compounds

Give a priority in database

Typically “FToxid > any metallic database > FactPS”

Page 80: Alloy Design Using FactSage

www.factsage.com Alloy Design Advanced 79

EX18-2. Oxidation reaction of liquid Zn

Setting X-asix

Page 81: Alloy Design Using FactSage

www.factsage.com

EX18-2. Oxidation reaction of liquid Zn

Liqu#1

BCC#1

SPINASPINA

SPINA

MeO_A MeO_A

ZNITAZNITA

ZNITA

TSpi

100% [Zn-liquid] + 0 O2

C:\FactSage\Equi0.res 1Oct12

log10(activity) O2(g)

gra

m

-30.0 -20.0 -10.0 0.0

0

10

20

30

40

50

BCC#1

SPINA

SPINA

MeO_A MeO_ATSpi

100% [Zn-liquid] + 0 O2

C:\FactSage\Equi0.res 1Oct12

log10(activity) O2(g)

gra

m

-30.0 -20.0 -10.0 0.0

0

01

02

03

04

05

air

Spinel + liquid Spinel +Monoxide + liquid

Zincite + BCC

Original metal

Oxid

e layer

Zincite + Spinel

It is hard to expect the thickness of each layer

ZnCr2O4

MnO-rich monoxide

ZnO-rich Zincite

Alloy Design Advanced 80

Page 82: Alloy Design Using FactSage

www.factsage.com Alloy Design Advanced 81

EX19. Carburization and Decarburization of Steel

CO / CO2 is variable

Page 83: Alloy Design Using FactSage

www.factsage.com Alloy Design Advanced 82

EX19. Carburization and Decarburization of Steel

Page 84: Alloy Design Using FactSage

www.factsage.com

An amount of carbon in FCC phase (Fe)

Alloy Design Advanced 83

wei

gh

t %

<Alpha>

EX19. Carburization and Decarburization of Steel

Page 85: Alloy Design Using FactSage

www.factsage.com

Composition Target:

“ How to calculate optimum amount of

CO2 to reduce C in steel to a targeted

composition”

Alloy Design Advanced 84

EX19. Carburization and Decarburization: Composition target

Page 86: Alloy Design Using FactSage

www.factsage.com Alloy Design Advanced 85

wei

gh

t %

<Alpha>

EX19. Carburization and Decarburization: Composition target

Page 87: Alloy Design Using FactSage

www.factsage.com

EX20-1. P reduction in high purity Si using vacuum

FactSage ultrapure silicon database

This is special database for high purity Si

production

Alloy Design Advanced 86

Page 88: Alloy Design Using FactSage

www.factsage.com

Vacuum level

Alloy Design Advanced 87

EX20-1. P reduction in high purity Si using vacuum

Page 89: Alloy Design Using FactSage

www.factsage.com

P content in liquid Si

Alloy Design Advanced 88

wei

gh

t %

EX20-1. P reduction in high purity Si using vacuum

Page 90: Alloy Design Using FactSage

www.factsage.com

EX20-2. B reduction in high purity Si using H2-H2O mixture

JOM, JOURNAL OF THE MINERALS, METALS AND

MATERIALS SOCIETY

Volume 64, Number 8 (2012), 952-956

Alloy Design Advanced 89

Page 91: Alloy Design Using FactSage

www.factsage.com

EX20-2. B reduction in high purity Si using H2-H2O mixture

Open calculations:

Simple reactor module

with off-gas removal

Alloy Design Advanced 90

“Open” menu

Addition of <A> amount of gas and make chemical reaction

Remove the gas as off gas

Add another <A> gas for chemical reaction

Remove the gas as off gas

Do this iteration until reaching “10” step

Page 92: Alloy Design Using FactSage

www.factsage.com

B product in gas phase

B reduction in liquid Si

Alloy Design Advanced 91

EX20-2. B reduction in high purity Si using H2-H2O mixture

Page 93: Alloy Design Using FactSage

www.factsage.com

B content in liquid Si

Alloy Design Advanced 92

wei

gh

t %

wei

gh

t %

EX20-2. B reduction in high purity Si using H2-H2O mixture

B content can be reduced with decreasing T

“page” in x-axis is amount of gas injected

(or considered as the degassing time)

Page 94: Alloy Design Using FactSage

www.factsage.com

EX21. Heat balance: very important for industrial process

1) How much heat is required to

increase temperature from T1 to T2 ?

2) If we add or remove a certain amount

of H from mixtures of materials, what

would be final temperature ?

Good for

a) Furnace capacity design

b) Heat balance calculation for alloying

or fluxing of materials to melt bath

c) Calculate exothermic or endothermic

heat generated during explosion

d) Process simulation for temperature

change

A B +

AmBn + etc.

T1

T2

+ or - Heat

Heat of formation + T increase

Flux Alloys T1

T2 ??

Heat of Dissolution

Alloy Design Advanced 93

Page 95: Alloy Design Using FactSage

www.factsage.com

EX21-1. Heat balance: Addition of Ferro-Mn into Liquid steel

1600 °C, Liquid

Fe-1wt.%Al-0.8wt.%C

65%Mn-35%Fe

25°C

Final

Temperature ?

Use two stream

2.

1.

Alloy Design Advanced 94

1.

2.

Page 96: Alloy Design Using FactSage

www.factsage.com

Adiabatic condition

(dH = 0)

Alloy Design Advanced 95

EX21-1. Heat balance: Addition of Ferro-Mn into Liquid steel

If we know the heat loss of the

ladle we can setup this here for

the final Temperature prediction

Page 97: Alloy Design Using FactSage

www.factsage.com Alloy Design Advanced 96

EX21-1. Heat balance: Addition of Ferro-Mn into Liquid steel

Page 98: Alloy Design Using FactSage

www.factsage.com

EX21-2. Heat balance: Cooling of AZ91 from 600 to 300oC

Stream : AZ31 alloy at 600 °C

Alloy Design Advanced 97

Page 99: Alloy Design Using FactSage

www.factsage.com Alloy Design Advanced 98

EX21-2. Heat balance: Cooling of AZ91 from 600 to 300oC

Page 100: Alloy Design Using FactSage

www.factsage.com

EX22-1. Thermodynamic properties: Activity, ΔG, ΔH, ΔS etc.

Alloy Design Advanced 99

Page 101: Alloy Design Using FactSage

www.factsage.com Alloy Design Advanced 100

EX22-1. Thermodynamic properties: Activity, ΔG, ΔH, ΔS etc.

Page 102: Alloy Design Using FactSage

www.factsage.com

Mg(l) Si(l)

Alloy Design Advanced 101

EX22-1. Thermodynamic properties: Activity, ΔG, ΔH, ΔS etc.

Page 103: Alloy Design Using FactSage

www.factsage.com Alloy Design Advanced 102

EX22-1. Thermodynamic properties: Activity, ΔG, ΔH, ΔS etc.

Page 104: Alloy Design Using FactSage

www.factsage.com

EX22-2. Iso-activity line in ternary system

Calculation of iso-activity line of Mg(l)

in the Mg-Si-Sn system at T=1350 K

Alloy Design Advanced 103

Page 105: Alloy Design Using FactSage

www.factsage.com Alloy Design Advanced 104

EX22-2. Iso-activity line in ternary system

(1)

(2)

(1) Click mouth right button on “pure liquids”

(2) Click “+” button to (3) setup activity of element (this case is for Mg)

Mg=0.3

scan XMg = 0.3 from left to right of this

triangle and ask FactSage to find out

composition for activity of Mg(l) = 0.1

Sn Si

(3)

Page 106: Alloy Design Using FactSage

www.factsage.com

Save results in excel

or spread sheet form

Alloy Design Advanced 105

EX22-2. Iso-activity line in ternary system

Page 107: Alloy Design Using FactSage

www.factsage.com

Plot the results in triangle diagram

- Prepare the triangle frame

- Plot the A,B,C coordinate numbers in triangle

diagram

“Cont+C” “Cont+V” or “copy” and “paste”.

Sometimes, “Cont+V” is not working due to the setting of

values in Excel software, then use “paste” in “Edit” menu.

Alloy Design Advanced 106

EX22-2. Iso-activity line in ternary system

Page 108: Alloy Design Using FactSage

www.factsage.com

EX23. Calculation for Solidus lines (Solidus projection)

Calculating a polythermal projection – the first melting surface

Alloy Design Advanced 107

This is new feature in Phase diagram.

- Liquidus projection: plotting Liquidus in the temperature range with a certain interval

(“O” option should be required for Liquid phase)

- Solidus projection: plotting Solidus in the same way as liquidus projection

(“F” option should be required for Liquid phase)

(1)

(1)

(2)

(2)

(3)

Page 109: Alloy Design Using FactSage

www.factsage.com Alloy Design Advanced 108

EX23. Calculation for Solidus lines (Solidus projection)

Solidus projection

Liquidus projection

Page 110: Alloy Design Using FactSage

www.factsage.com

EX24. Non-metallic Inclusion formation during metal solidification

AWS 80th Annual Meeting, April 12–15, 1999, St. Louis,

Mo. Page 98-s to 105-s

T=1527°C

Alloy Design Advanced 109

Page 111: Alloy Design Using FactSage

www.factsage.com Alloy Design Advanced 110

EX24. Non-metallic Inclusion formation during metal solidification

Page 112: Alloy Design Using FactSage

www.factsage.com Alloy Design Advanced 111

EX24. Non-metallic Inclusion formation during metal solidification

Zoom-up

To zoom-up the small part of the calculated

results, the axis of the figure should be changed

Page 113: Alloy Design Using FactSage

www.factsage.com

C Si Mn Al Ni S Ti O N

0.06 0.20 1.31 0.006 1.82 0.006 0.023 351ppm 115ppm

Alloy Design Advanced 112

EX24. Non-metallic Inclusion formation during metal solidification

Page 114: Alloy Design Using FactSage

www.factsage.com Alloy Design Advanced 113

EX24. Non-metallic Inclusion formation during metal solidification

Zoom-up