Algebra and probability in Lukasiewicz...

75
Algebra and probability in Lukasiewicz logic Ioana Leu¸ stean Faculty of Mathematics and Computer Science University of Bucharest Probability, Uncertainty and Rationality Certosa di Pontignano (Siena), 1-3 November, 2009 Ioana Leu¸ stean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 1 / 32

Transcript of Algebra and probability in Lukasiewicz...

Page 1: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Algebra and probability in Lukasiewicz logic

Ioana Leustean

Faculty of Mathematics and Computer ScienceUniversity of Bucharest

Probability, Uncertainty and RationalityCertosa di Pontignano (Siena), 1-3 November, 2009

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 1 / 32

Page 2: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

LAP

Logic

Algebra

Probability

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 2 / 32

Page 3: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

LAP

Logic

Algebra

Probability

lap = movement once arround a course

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 2 / 32

Page 4: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

LAP

Logic

Algebra

Probability

lap = movement once arround a course

Classical logic

Boolean algebras

Classical probability theory: the set of events is a Boolean algebra

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 2 / 32

Page 5: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

LAP

Logic

Algebra

Probability

lap = movement once arround a course

Classical logic

Boolean algebras

Classical probability theory: the set of events is a Boolean algebra

LAP interaction in Lukasiewicz logic

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 2 / 32

Page 6: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Lukasiewicz logic

3-valued (2-valued) Lukasiewicz logic classical logic

l l0, 1

2 , 1 0, 1

‖ ‖

L3 L2

J. Lukasiewicz, 1920.

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 3 / 32

Page 7: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Lukasiewicz logic

n-valued (2-valued) Lukasiewicz logic classical logic

l l0, 1

n−1 ,2

n−1 , . . . ,n−2n−1 , 1 0, 1

‖ ‖

Ln L2

J. Lukasiewicz, 1920.

J. Lukasiewicz, 1929.

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 3 / 32

Page 8: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Lukasiewicz logic

∞-valued n-valued (2-valued) Lukasiewicz logic Lukasiewicz logic classical logic

l l l[0, 1] 0, 1

n−1 ,2

n−1 , . . . ,n−2n−1 , 1 0, 1

‖ ‖

Ln L2

J. Lukasiewicz, 1920.

J. Lukasiewicz, 1929.

J. Lukasiewicz, A. Tarski, 1930.

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 3 / 32

Page 9: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

(∞-valued) Lukasiewicz logic:

Connectives

¬ and −→

• Lukasiewicz considered also Mp for ”p is possible”• Tarski defined Mp = ¬p −→ p

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 4 / 32

Page 10: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

(∞-valued) Lukasiewicz logic:

Connectives

¬ and −→

• Lukasiewicz considered also Mp for ”p is possible”• Tarski defined Mp = ¬p −→ p

”truth-tables”

¬p := 1− p, p −→ q := min(1− p + q, 1) (p, q ∈ [0, 1] )

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 4 / 32

Page 11: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

(∞-valued) Lukasiewicz logic:

Connectives

¬ and −→

• Lukasiewicz considered also Mp for ”p is possible”• Tarski defined Mp = ¬p −→ p

”truth-tables”

¬p := 1− p, p −→ q := min(1− p + q, 1) (p, q ∈ [0, 1] )

Lukasiewicz logic is truth-functional

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 4 / 32

Page 12: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

(∞-valued) Lukasiewicz logic L:

Axioms

(L1) ϕ −→ (ψ −→ ϕ);(L2) (ϕ −→ ψ) −→ ((ψ −→ χ) −→ (ϕ −→ χ));(L3) ((ϕ −→ ψ) −→ ψ) −→ ((ψ −→ ϕ) −→ ϕ);(L4) (¬ψ −→ ¬ϕ) −→ (ϕ −→ ψ).

the deduction rule is modus ponens:ϕ,ϕ −→ ψ ⊢ ψ

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 5 / 32

Page 13: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

(∞-valued) Lukasiewicz logic L:

Axioms

(L1) ϕ −→ (ψ −→ ϕ);(L2) (ϕ −→ ψ) −→ ((ψ −→ χ) −→ (ϕ −→ χ));(L3) ((ϕ −→ ψ) −→ ψ) −→ ((ψ −→ ϕ) −→ ϕ);(L4) (¬ψ −→ ¬ϕ) −→ (ϕ −→ ψ).

the deduction rule is modus ponens:ϕ,ϕ −→ ψ ⊢ ψ

L + ((ϕ −→ ¬ϕ) −→ ¬ϕ) ⇒ classical logic

L + An + Ak | k ∈ 2, . . . , (n − 2), k 6| (n − 1) ⇒ n-valued logic

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 5 / 32

Page 14: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

(∞-valued) Lukasiewicz logic L:

McNaughton Theorem, 1951 (formulas as functions)

If f : [0, 1]n → [0, 1], TFAE:(a) f = ϕ[0,1] for some formula ϕ of Lukasiewicz logic,(b) f is continuous such that

∃q1, . . ., qk : Rn → R ∀(a1, . . . , an) ∈ [0, 1]n ∃i ∈ 1, kf (a1, . . . , an) = qi (a1, . . . , an),

where qi (a1, . . . , an) = m0i + m1ia1 + · · ·+ mnian, mji ∈ Z ∀i , j .

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 6 / 32

Page 15: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

(∞-valued) Lukasiewicz logic L:

McNaughton Theorem, 1951 (formulas as functions)

If f : [0, 1]n → [0, 1], TFAE:(a) f = ϕ[0,1] for some formula ϕ of Lukasiewicz logic,(b) f is continuous such that

∃q1, . . ., qk : Rn → R ∀(a1, . . . , an) ∈ [0, 1]n ∃i ∈ 1, kf (a1, . . . , an) = qi (a1, . . . , an),

where qi (a1, . . . , an) = m0i + m1ia1 + · · ·+ mnian, mji ∈ Z ∀i , j .

Normal form representation theorem

A. Di Nola, A.Lettieri, 2004

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 6 / 32

Page 16: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

(∞-valued) Lukasiewicz logic L:

McNaughton Theorem, 1951 (formulas as functions)

If f : [0, 1]n → [0, 1], TFAE:(a) f = ϕ[0,1] for some formula ϕ of Lukasiewicz logic,(b) f is continuous such that

∃q1, . . ., qk : Rn → R ∀(a1, . . . , an) ∈ [0, 1]n ∃i ∈ 1, kf (a1, . . . , an) = qi (a1, . . . , an),

where qi (a1, . . . , an) = m0i + m1ia1 + · · ·+ mnian, mji ∈ Z ∀i , j .

Normal form representation theorem

A. Di Nola, A.Lettieri, 2004

Rose and Rosser (1958)

A formula ϕ is a [0, 1]-tautology of L iff it can be derived from the axiomsusing modus ponens and substitution.

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 6 / 32

Page 17: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Algebra: historical overview

Gr.C. Moisil: 3-valued and 4-valued Lukasiewicz algebras (1940)n-valued Lukasiewicz algebras (1941)

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 7 / 32

Page 18: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Algebra: historical overview

Gr.C. Moisil: 3-valued and 4-valued Lukasiewicz algebras (1940)n-valued Lukasiewicz algebras (1941)

A. Rose (1965): for n ≥ 5 the n-valued Lukasiewicz algebraKn = 0, 1

n−1 ,n−2n−1 , 1 is not closed to Lukasiewicz implication

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 7 / 32

Page 19: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Algebra: historical overview

Gr.C. Moisil: 3-valued and 4-valued Lukasiewicz algebras (1940)n-valued Lukasiewicz algebras (1941)

A. Rose (1965): for n ≥ 5 the n-valued Lukasiewicz algebraKn = 0, 1

n−1 ,n−2n−1 , 1 is not closed to Lukasiewicz implication

Gr.C. Moisil: ϑ-valued Lukasiewicz algebras (1968)

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 7 / 32

Page 20: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Algebra: historical overview

Gr.C. Moisil: 3-valued and 4-valued Lukasiewicz algebras (1940)n-valued Lukasiewicz algebras (1941)

A. Rose (1965): for n ≥ 5 the n-valued Lukasiewicz algebraKn = 0, 1

n−1 ,n−2n−1 , 1 is not closed to Lukasiewicz implication

Gr.C. Moisil: ϑ-valued Lukasiewicz algebras (1968)

Argentininan school: A. Monteiro, R.Cignoli, L. Monteiro, M.Abad, etc.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C.C. Chang: MV-algebras (1958)

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 7 / 32

Page 21: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Algebra: historical overview

Gr.C. Moisil: 3-valued and 4-valued Lukasiewicz algebras (1940)n-valued Lukasiewicz algebras (1941)

A. Rose (1965): for n ≥ 5 the n-valued Lukasiewicz algebraKn = 0, 1

n−1 ,n−2n−1 , 1 is not closed to Lukasiewicz implication

Gr.C. Moisil: ϑ-valued Lukasiewicz algebras (1968)

Argentininan school: A. Monteiro, R.Cignoli, L. Monteiro, M.Abad, etc.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C.C. Chang: MV-algebras (1958)

R. Grigolia: MVn-algebras (1977)

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 7 / 32

Page 22: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Algebra: historical overview

Gr.C. Moisil: 3-valued and 4-valued Lukasiewicz algebras (1940)n-valued Lukasiewicz algebras (1941)

A. Rose (1965): for n ≥ 5 the n-valued Lukasiewicz algebraKn = 0, 1

n−1 ,n−2n−1 , 1 is not closed to Lukasiewicz implication

Gr.C. Moisil: ϑ-valued Lukasiewicz algebras (1968)

Argentininan school: A. Monteiro, R.Cignoli, L. Monteiro, M.Abad, etc.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C.C. Chang: MV-algebras (1958)

R. Grigolia: MVn-algebras (1977)

R. Cignoli: proper n-valued Lukasiewicz algebras (1982)

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 7 / 32

Page 23: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Algebra: historical overview

Gr.C. Moisil: 3-valued and 4-valued Lukasiewicz algebras (1940)n-valued Lukasiewicz algebras (1941)

A. Rose (1965): for n ≥ 5 the n-valued Lukasiewicz algebraKn = 0, 1

n−1 ,n−2n−1 , 1 is not closed to Lukasiewicz implication

Gr.C. Moisil: ϑ-valued Lukasiewicz algebras (1968)

Argentininan school: A. Monteiro, R.Cignoli, L. Monteiro, M.Abad, etc.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C.C. Chang: MV-algebras (1958)

R. Grigolia: MVn-algebras (1977)

R. Cignoli: proper n-valued Lukasiewicz algebras (1982)

J.M. Font, A.J. Rodriguez, A. Torrens: Wajsberg algebras (1984)

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 7 / 32

Page 24: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Algebra: historical overview

Gr.C. Moisil: 3-valued and 4-valued Lukasiewicz algebras (1940)n-valued Lukasiewicz algebras (1941)

A. Rose (1965): for n ≥ 5 the n-valued Lukasiewicz algebraKn = 0, 1

n−1 ,n−2n−1 , 1 is not closed to Lukasiewicz implication

Gr.C. Moisil: ϑ-valued Lukasiewicz algebras (1968)

Argentininan school: A. Monteiro, R.Cignoli, L. Monteiro, M.Abad, etc.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C.C. Chang: MV-algebras (1958)

R. Grigolia: MVn-algebras (1977)

R. Cignoli: proper n-valued Lukasiewicz algebras (1982)

J.M. Font, A.J. Rodriguez, A. Torrens: Wajsberg algebras (1984)

MV-algebras and Wajsberg algebrasMVn-algebras and proper n-valued Lukasiewicz algebras

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 7 / 32

Page 25: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Algebra: historical overview

Gr.C. Moisil: 3-valued and 4-valued Lukasiewicz algebras (1940)n-valued Lukasiewicz algebras (1941)

A. Rose (1965): for n ≥ 5 the n-valued Lukasiewicz algebraKn = 0, 1

n−1 ,n−2n−1 , 1 is not closed to Lukasiewicz implication

Gr.C. Moisil: ϑ-valued Lukasiewicz algebras (1968)

Argentininan school: A. Monteiro, R.Cignoli, L. Monteiro, M.Abad, etc.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C.C. Chang: MV-algebras (1958)

R. Grigolia: MVn-algebras (1977)

R. Cignoli: proper n-valued Lukasiewicz algebras (1982)

J.M. Font, A.J. Rodriguez, A. Torrens: Wajsberg algebras (1984)

MV-algebras and Wajsberg algebrasMVn-algebras and proper n-valued Lukasiewicz algebras

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 7 / 32

Page 26: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

the n-valued case

Boolean logicւ ց

Lukasiewiczn-valued logic

Postn-valued logic

ւ ց ↓ L-proper LMn-algebras ≃ MVn-algebras ⊃ Postn-algebras(Cignoli,1982) (Grigolia,1977) (Rosenbloom,1942)

∩LMn-algebras

(Moisil,1941)

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 8 / 32

Page 27: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

n-valued Lukasiewicz-Moisil algebras

LMn-algebra

(L,∨,∧,∗ , ϕ1, . . . , ϕn−1, 1)(LM0)(L,∨,∧,∗ ) De Morgan algebra (LM1) ϕi (ϕj(x)) = ϕj(x)(LM2) ϕi (x ∨ y) = ϕi (x) ∨ ϕi (y) (LM3) ϕi (x) ∨ (ϕi (x))∗ = 1(LM4) ϕi (x∗) = (ϕn−i (x))∗ (LM5) ϕ1(x) ≤ · · · ≤ ϕn−1(x)

(LM6) ϕi (x) = ϕi (y) for any i ∈ 1, n − 1⇒ x = y

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 9 / 32

Page 28: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

n-valued Lukasiewicz-Moisil algebras

LMn-algebra

(L,∨,∧,∗ , ϕ1, . . . , ϕn−1, 1)(LM0)(L,∨,∧,∗ ) De Morgan algebra (LM1) ϕi (ϕj(x)) = ϕj(x)(LM2) ϕi (x ∨ y) = ϕi (x) ∨ ϕi (y) (LM3) ϕi (x) ∨ (ϕi (x))∗ = 1(LM4) ϕi (x∗) = (ϕn−i (x))∗ (LM5) ϕ1(x) ≤ · · · ≤ ϕn−1(x)

(LM6) ϕi (x) = ϕi (y) for any i ∈ 1, n − 1⇒ x = y

L-proper LMn-algebra = LMn-algebra + Fiki ,k + axioms

Postn-algebra = LMn-algebra +cii=1,n−2+ axioms

LMn-algebras, MVn-algebras, Postn-algebras are equational classes.

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 9 / 32

Page 29: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Examples:

Example 1:

0 1n−1

2n−1 . . . n−2

n−1 1

ϕ1 0 0 0 . . . 0 1ϕ2 0 0 0 . . . 1 1...

......

......

......

ϕn−2 0 0 1 . . . 1 1ϕn−1 0 1 1 . . . 1 1

Example 2:

L = LXn = f | f : X −→ Ln

ϕi (f )(x) =

1, f (x) ≥ n−in−1

0, otherwise

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 10 / 32

Page 30: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Moisil’s determination principle

L is LMn-algebra, MVn-algebra or Pn-algebraL ⊃ B(L) = x | x ∨ x∗ = 1 (the Boolean reduct)

L ∋ x 7→ ϕ1(x),. . .,ϕn−1(x) ∈ B(L)x = y iff ϕi (x) = ϕi (y) for any i ∈ 1, n − 1

Any element is characterized by (n − 1) Boolean nuances.

The functor B : LukMoisilm → Bool has a right adjoint.

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 11 / 32

Page 31: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Moisil’s determination principle

L is LMn-algebra, MVn-algebra or Pn-algebraL ⊃ B(L) = x | x ∨ x∗ = 1 (the Boolean reduct)

L ∋ x 7→ ϕ1(x),. . .,ϕn−1(x) ∈ B(L)x = y iff ϕi (x) = ϕi (y) for any i ∈ 1, n − 1

Any element is characterized by (n − 1) Boolean nuances.

The functor B : LukMoisilm → Bool has a right adjoint.

Any element of L can be ”recovered” from its Boolean nuancesiff L is a Postn-algebra

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 11 / 32

Page 32: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Determination principle for subalgebras

Is it true that for S , T ⊆ A

ϕi (S) = ϕi (T ) for any i ∈ 1, n − 1⇒ S = T ?

Yes, if S and T are proper ideals.Not in general, if S and T are subalgebras.

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 12 / 32

Page 33: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Determination principle for subalgebras

I.L.,2008.

L - LMn-algebra

S ≤ LI→ J1(L), . . ., Jn−2(L), Jn−1(L) = B(S)

x ∈ L : Ji (x) ∈ Ii∀iS← I1, . . ., In−2, In−1 ≤ B(L)

I injective, S surjective

I(S) = I(T )⇒ S = T

S is L-proper (MVn-algebra) ⇔ I(S) satisfies (MV) (n ≥ 5)(MV): Ii ∩ Ik ⊆ In−i+k−1, 3 ≤ i ≤ n − 2, 1 ≤ k ≤ n − 4, k < i

S is Pn-algebra ⇔ I1 = · · · = In−1 = B(S)

The Boolean nuances of a subalgebra are (n − 1) Boolean ideals

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 12 / 32

Page 34: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Nuances of truth vs truth degrees

G. Georgescu, A. Popescu, 2006

Moisil logic is derived from the classical logic by the idea of nuancing,mathematically expressed by a categorical adjunction

Starting from a logical system and using the idea of nuance, it ispossible to construct an n-nuanced logical system on the top of thegiven one.

Nuancing the Lukasiewicz logic, they defined the n-nuanced

MV-algebras and they proved that there is a pair of adjoint functorsbetween the two categories.

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 13 / 32

Page 35: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

MV-algebras ↔ Lukasiewicz ∞-valued logic

C.C.Chang, 1958

An MV-algebra is a structure (A,⊕,∗ , 0) such that:

1 (A,⊕, 0) abelian monoid,

2 (x∗)∗ = x ,

3 (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x ,

4 0∗ ⊕ x = 0∗.

([0, 1],⊕,∗ , 0) MV-algebra, x ⊕ y = min(x + y , 0), x∗ = 1− x

MV-algebras are bounded distributive lattices with1 = 0∗, x ∨ y = (y∗ ⊕ x)∗ ⊕ x , x ∧ y = (x∗ ∨ y)∗

MV-algebras are reziduated lattices withx −→ y = (x∗ ⊕ y), x ⊙ y = (x∗ ⊕ y∗)∗.

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 14 / 32

Page 36: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

MV-algebras ↔ Lukasiewicz ∞-valued logic

C.C.Chang, 1958

An MV-algebra is a structure (A,⊕,∗ , 0) such that:

1 (A,⊕, 0) abelian monoid,

2 (x∗)∗ = x ,

3 (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x ,

4 0∗ ⊕ x = 0∗.

R. Cignoli, I.M.L. D’Ottaviano, D. Mundici,Algebraic foundations of many-valued reasoning, 2000.

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 14 / 32

Page 37: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

MV-algebras ↔ Lukasiewicz ∞-valued logic

C.C.Chang, 1958

An MV-algebra is a structure (A,⊕,∗ , 0) such that:

1 (A,⊕, 0) abelian monoid,

2 (x∗)∗ = x ,

3 (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x ,

4 0∗ ⊕ x = 0∗.

Chang’s completeness theorem

For a formula ϕ TFAE:

(a) ϕ provable, (d) ϕ holds in Ln for any n ≥ 2,(b) ϕ holds in any MV-algebra, (e) ϕ holds in [0, 1] ∩Q,(c) ϕ holds in any MV-chain, (f) ϕ holds in [0, 1].

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 14 / 32

Page 38: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Mundici’s categorical equivalence

Mundici’s categorical equivalence (1986)

The category of MV-algebras is equivalent with the category of abelianlattice-ordered groups with strong unit. For any MV-algebra A there existsan abelian lattice-ordered group with strong unit (G , u) such that

A ≃ [0, u]G .

u strong unit: u ≥ 0, for any x ∈ G there is n ≥ 1 s.t. x ≤ nu

Γ(G , u) = ([0, u]G ,⊕,∗ , 0): x ⊕ y = (x + y) ∧ 1, x∗ = 1− x

- G0 u

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 15 / 32

Page 39: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Mundici’s categorical equivalence

Mundici’s categorical equivalence (1986)

The category of MV-algebras is equivalent with the category of abelianlattice-ordered groups with strong unit. For any MV-algebra A there existsan abelian lattice-ordered group with strong unit (G , u) such that

A ≃ [0, u]G .

u strong unit: u ≥ 0, for any x ∈ G there is n ≥ 1 s.t. x ≤ nu

Γ(G , u) = ([0, u]G ,⊕,∗ , 0): x ⊕ y = (x + y) ∧ 1, x∗ = 1− x

strong unit ⇒ logical interpretation⇒ existence maximal ideals

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 15 / 32

Page 40: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Functional representation

A MV-algebra, ∅ 6= I ⊆ A is an ideal if:(x ∈ I , y ≤ x ⇒ y ∈ I ) and (x , y ∈ I ⇒ x ⊕ y ∈ I )

for any MV-algebra A, the maximal ideal space MaxA with thespectral topology is a compact Hausdorff space(open sets: r(I ) = M ∈ MaxA | I 6⊆ M for some ideal I ).

A is semisimple if⋂

M | M ∈ Max(A) = ∅

C (MaxA) = f : MaxA −→ [0, 1] | f continuous

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 16 / 32

Page 41: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Functional representation

A MV-algebra, ∅ 6= I ⊆ A is an ideal if:(x ∈ I , y ≤ x ⇒ y ∈ I ) and (x , y ∈ I ⇒ x ⊕ y ∈ I )

for any MV-algebra A, the maximal ideal space MaxA with thespectral topology is a compact Hausdorff space(open sets: r(I ) = M ∈ MaxA | I 6⊆ M for some ideal I ).

A is semisimple if⋂

M | M ∈ Max(A) = ∅

C (MaxA) = f : MaxA −→ [0, 1] | f continuous

L.P.Belluce, 1986

Any semisimple MV-algebra A is isomorphic with a separatingMV-subalgebra of C (MaxA) (with pointwise operations).

ι : A→ C (MaxA) embedding∀ M1 6= M2 ∃ f ∈ ι(A) (f (M1) = 0 and f (M2) 6= 0)

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 16 / 32

Page 42: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Functional representation

ι : A→ C (MaxA) embedding

A. Di Nola, S.Sessa, 1995

A σ-complete ⇒ MaxA basically disconnected

A complete ⇒ MaxA extremally disconnected

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 17 / 32

Page 43: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Functional representation

ι : A→ C (MaxA) embedding

A. Di Nola, S.Sessa, 1995

A σ-complete ⇒ MaxA basically disconnected

A complete ⇒ MaxA extremally disconnected

(V. Marra, I.L.)

We characterized those MV-algebras A with the property that A ≃ C (X )for some compact Hausdorff space X . We proved that the category ofcompact Hausdorff spaces and continuous maps is equivalent with a fullsubcategory of MV-algebras.

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 17 / 32

Page 44: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Semantical and sintactical consequences in L

For a set Θ of formulas, defineΘ⊢ = sintactic consequences of ΘΘ|= = semantic consequences of Θ

Theorem

TFAE:

Θ⊢ = Θ|=

L(Θ) (the Lindenbaum-Tarski algebra of Θ) is semisimple.

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 18 / 32

Page 45: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Semantical and sintactical consequences in L

For a set Θ of formulas, defineΘ⊢ = sintactic consequences of ΘΘ|= = semantic consequences of Θ

Theorem

TFAE:

Θ⊢ = Θ|=

L(Θ) (the Lindenbaum-Tarski algebra of Θ) is semisimple.

R. Cignoli, I.M.L. D’Ottaviano, D. Mundici, Algebraic foundations ofmany-valued reasoning, 2000.

P. Hajek, Metamathematics of fuzzy logic, 1998.

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 18 / 32

Page 46: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Di Nola’s representation theorem, 1991

Theorem

Up to isomorphism, every MV-algebra A is an algebra of [0, 1]∗-valuedfunctions over some set, where [0, 1]⋆ is an ultrapower of [0, 1], onlydepending on th cardinatlity of A.

[0, 1]⋆ is the unit interval of R⋆ (non-standard reals)

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 19 / 32

Page 47: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

MV-algebras are twofold structures

generalization of Boolean algebras

intervals in abelian lattice ordered groups with strong unit

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 20 / 32

Page 48: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

MV-algebras are twofold structures

generalization of Boolean algebras

intervals in abelian lattice ordered groups with strong unit

The theory of MV-algebras is a possible answer to Birkhoff’s problem:develop a common abstraction which includes Boolean algebras andlattice-ordered groups as special cases.

G. Birkhoff, Lattice Theory, 1973.

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 20 / 32

Page 49: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Probability

MV-algebrasւ ց

Boolean algebras Lattice-ordered groupswith strong unit

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 21 / 32

Page 50: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Probability

MV-algebrasւ ց

Boolean algebras Lattice-ordered groupswith strong unit

↓ ↓measures states↓ ↓

σ-continuity finite additivitym : B → [0,∞] s : G → R

m(0) = 0, s(1) = 1,m(

n an) = Σ∞

1 m(an) s(x + y) = s(x) + s(y),

ak ∧ an = 0, k 6= n s(G+) = R+

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 21 / 32

Page 51: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Probability vs truth degree

P. Hajek, Metamathematics of fuzzy logic, 1998.

Q1: ”The patient is young”Q2: ”The patient will survive next week”

The sentence Q1 is true to some degree - the lower the age of thepatient, the more the sentence is true.

The sentence Q2 is a crisp sentence (T | F ), but we do not knowwhich is the case; we may have some probability (degree of belief)that the sentence is true.

Most many-valued logics are truth-functional, while the probabilitycalculus is not, since P(a ∧ b) cannot be determined using P(a) andP(b).

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 22 / 32

Page 52: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Probability vs truth degree

P. Hajek, Metamathematics of fuzzy logic, 1998.

Q1: ”The patient is young”Q2: ”The patient will survive next week”

The sentence Q1 is true to some degree - the lower the age of thepatient, the more the sentence is true.

The sentence Q2 is a crisp sentence (T | F ), but we do not knowwhich is the case; we may have some probability (degree of belief)that the sentence is true.

Most many-valued logics are truth-functional, while the probabilitycalculus is not, since P(a ∧ b) cannot be determined using P(a) andP(b).

Truth of a many-valued sentence is a matter of degree.Probability is not a degree of truth.

Probability is a degree of belief.

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 22 / 32

Page 53: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

States (finitely additive case)

D. Mundici, 1995

Definition

A state on (A,⊕,∗ , 0) is a map s : A→ [0, 1] s.t s(1) = 1 ands(x ⊕ y) = s(x) + s(y) whenever x ≤ y∗ (x ⊙ y = 0).The state s is faithfull if s(x) = 0 implies x = 0.

s(p) is the ”average degree of truth” of p

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 23 / 32

Page 54: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

States (finitely additive case)

D. Mundici, 1995

Definition

A state on (A,⊕,∗ , 0) is a map s : A→ [0, 1] s.t s(1) = 1 ands(x ⊕ y) = s(x) + s(y) whenever x ≤ y∗ (x ⊙ y = 0).The state s is faithfull if s(x) = 0 implies x = 0.

s(p) is the ”average degree of truth” of p

extension results, characterization of the state space, ...

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 23 / 32

Page 55: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

de Finetti’s coherence criterion for MV-algebras

D. Mundici, 2006,

ϕ1, . . ., ϕn are formulas of Lukasiewicz, α1, . . ., αn ∈ [0, 1]. TFAE:

for all λ1, . . ., λn ∈ R there exists a valuation V s.t.∑n

i=1 λi (αi − V (ϕi )) ≥ 0

(the probabilistic assessment (P(ϕi ) = αi )i is coherent),

there exists a state s defined on the Lindenbaum-Tarski algebra of Ls.t. s([ϕi ]) = αi for all i ∈ 1, . . . , n.

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 24 / 32

Page 56: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

de Finetti’s coherence criterion for MV-algebras

D. Mundici, 2006,

ϕ1, . . ., ϕn are formulas of Lukasiewicz, α1, . . ., αn ∈ [0, 1]. TFAE:

for all λ1, . . ., λn ∈ R there exists a valuation V s.t.∑n

i=1 λi (αi − V (ϕi )) ≥ 0

there exists a state s defined on the Lindenbaum-Tarski algebra of Ls.t. s([ϕi ]) = αi for all i ∈ 1, . . . , n.

MV-algebra with internal state(T. Flaminio, F. Montagna, ?)

An SMV-algebra is a structure (A, σ) such that A is an MV-algebra andσ : A −→ A s.t.:

σ(0) = 0, σ(x ⊕ y) = σ(x)⊕ σ(y ⊙ (x ⊙ y)∗),σ(x∗) = σ(x)∗, σ(σ(x)⊕ σ(y)) = σ(x)⊕ σ(y).

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 24 / 32

Page 57: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

de Finetti’s coherence criterion for MV-algebras

D. Mundici, 2006,T. Flaminio, F.Montagna, 2009

ϕ1, . . ., ϕn are formulas of Lukasiewicz, α1, . . ., αn ∈ [0, 1]∩Q. TFAE:

for all λ1, . . ., λn ∈ R there exists a valuation V s.t.∑n

i=1 λi (αi − V (ϕi )) ≥ 0

there exists a state s defined on the Lindenbaum-Tarski algebra of Ls.t. s([ϕi ]) = αi for all i ∈ 1, . . . , n.

for any 1 ≤ i ≤ n, any non-trivial SMV-algebra satisfies the equations

(mi − 1)xi = x∗i and σ(ϕi ) = nixi ,

where V (ϕi ) = ni

mifor any i .

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 24 / 32

Page 58: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

σ-states

Definition

Let A be a σ-complete MV-algebra (i.e. closed to countable suprema).The state s ∈ St(A) is a σ-state if xn ր x implies lim s(xn) = s(x) for allx , x1, x2, . . . ∈ A.

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 25 / 32

Page 59: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

σ-states

Definition

Let A be a σ-complete MV-algebra (i.e. closed to countable suprema).The state s ∈ St(A) is a σ-state if xn ր x implies lim s(xn) = s(x) for allx , x1, x2, . . . ∈ A.

⇓study of measures on abstract algebra in Lukasiewicz logic

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 25 / 32

Page 60: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

σ-states

Definition

Let A be a σ-complete MV-algebra (i.e. closed to countable suprema).The state s ∈ St(A) is a σ-state if xn ր x implies lim s(xn) = s(x) for allx , x1, x2, . . . ∈ A.

⇓study of measures on abstract algebra in Lukasiewicz logic

B. Riecan and D. Mundici, Probability on MV-algebras,Handbook of Measure Theory, 2002

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 25 / 32

Page 61: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Finite additivity (linearity) vs σ-continuity?

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 26 / 32

Page 62: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Finite additivity (linearity) vs σ-continuity?

Riesz representation theorem

Let X be a compact Hausdorff space, θ : C (X ) −→ R a positive linearfunctional. Then there exists a unique regular measure µ defined on theBorel σ-algebra of X such that

θ(f ) =∫

Xfdµ for any f ∈ C (X ).

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 26 / 32

Page 63: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Finite additivity (linearity) vs σ-continuity?

Riesz representation theorem

Let X be a compact Hausdorff space, θ : C (X ) −→ R a positive linearfunctional. Then there exists a unique regular measure µ defined on theBorel σ-algebra of X such that

θ(f ) =∫

Xfdµ for any f ∈ C (X ).

Kroupa-Panti theorem

Let A be a semisimple MV-algebra. For any state s : A −→ [0, 1], thereexists a unique regular measure µ defined on the Borel σ-algebra ofX = Max(A) such that

s(f ) =∫

Xfdµ for any f ∈ A.

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 26 / 32

Page 64: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Riesz spaces (vector lattices)

A Riesz space are lattice-ordered real vector spaces A s.t.:

x ≤ y implies x + z ≤ y + z for any z ∈ A,

r ≥ 0 and x ≥ 0 implies r•x ≥ 0,where •: R× A −→ A is the scalar multiplication.

Riesz, Kantorovich, Freundenthal, 1936-1940.

... most of the standard real function spaces are Riesz spaces, and in avery natural way.

G. Birkhoff, Lattice Theory, 1973.

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 27 / 32

Page 65: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Riesz MV-algebras

L is a Riesz space, •: R× L −→ L scalar multiplication,u ∈ L is a strong unit

•: [0, 1]× [0, u]L −→ [0, u]L

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 28 / 32

Page 66: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Riesz MV-algebras

L is a Riesz space, •: R× L −→ L scalar multiplication,u ∈ L is a strong unit

•: [0, 1]× [0, u]L −→ [0, u]L

The structure Γ(L, u) = ([0, u]L, •) is called Riesz MV-algebra.

The class of Riesz MV-algebras is equational.

Riesz MV-algebras are categorically equivalent with Riesz spaces withstrong unit.

A. Di Nola, P.Flondor, I.L., MV-modules, 2004.

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 28 / 32

Page 67: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

The logic of Riesz MV-algebras

LRMV can be developed following the algebraic approach of H. RasiowaLLuk ∪ δr : r ∈ [0, 1]Axioms= Axioms of Lukasiewicz logic + Axioms reflecting the equationaldescription of Riesz MV-algebras

LRMV is complete w.r.t. [0, 1]-evaluations.

For any r ∈ [0, 1] the formula r = δr (ϕ −→ ϕ) has the value r underany [0, 1]-evaluation. Hence the truth-constants are represented inlogic, making possible the Pavelka style approach.

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 29 / 32

Page 68: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

The logic of Riesz MV-algebras

LRMV can be developed following the algebraic approach of H. RasiowaLLuk ∪ δr : r ∈ [0, 1]Axioms= Axioms of Lukasiewicz logic + Axioms reflecting the equationaldescription of Riesz MV-algebras

LRMV is complete w.r.t. [0, 1]-evaluations.

For any r ∈ [0, 1] the formula r = δr (ϕ −→ ϕ) has the value r underany [0, 1]-evaluation. Hence the truth-constants are represented inlogic, making possible the Pavelka style approach.

F. Esteva, J. Gispert, L. Godo, C. Noguera, 2007.

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 29 / 32

Page 69: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

The logic of Riesz MV-algebras

LRMV can be developed following the algebraic approach of H. RasiowaLLuk ∪ δr : r ∈ [0, 1]Axioms= Axioms of Lukasiewicz logic + Axioms reflecting the equationaldescription of Riesz MV-algebras

LRMV is complete w.r.t. [0, 1]-evaluations.

For any r ∈ [0, 1] the formula r = δr (ϕ −→ ϕ) has the value r underany [0, 1]-evaluation. Hence the truth-constants are represented inlogic, making possible the Pavelka style approach.

ϕ formula, Θ theory

truth degree: ‖ ϕ ‖Θ= inf e(ϕ) : e [0, 1]-evaluation, e(Θ) = 1,

provability degree: |ϕ|Θ = supr ∈ [0, 1] : Θ ⊢ r −→ ϕ.

Pavelka completeness. |ϕ|Θ =‖ ϕ ‖Θ

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 29 / 32

Page 70: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Riesz MV-algebras with faithful states

A Riesz MV-algebra, s : A −→ [0, 1] a faithful state (s(x) = 0⇒ x = 0)ρs(x , y) = s(d(x , y)) = s((x ⊙ y∗) ∨ (y ⊙ x∗))

(A, ρs) metric space

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 30 / 32

Page 71: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Riesz MV-algebras with faithful states

A Riesz MV-algebra, s : A −→ [0, 1] a faithful state (s(x) = 0⇒ x = 0)ρs(x , y) = s(d(x , y)) = s((x ⊙ y∗) ∨ (y ⊙ x∗))

(A, ρs) metric space

Example

If (Y ,Ω, µ) a measure space then denote L1(µ) the Riesz space of allintegrable functions. The constant function 1 is a strong unit of L1(µ), soΓ(L1(µ), 1) is a Ries MV-algebra. Define the state

s : Γ(L1(µ), 1) −→ [0, 1], s(f ) =∫

Yfdµ.

Then (Γ(L1(µ), 1), ρs) is a complete metric space.

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 30 / 32

Page 72: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

A logical approach to metric spaces?

Theorem

For any pair (A, s) s.t. A is a Riesz MV-algebra, s : A −→ [0, 1] is afaithful state and (A, ρs) is a complete metric space, there exists ameasure space (Y ,Ω, µ) s.t.:(a) Y is an extremally disconnected compact Hausdorff space,(b) Ω is the Borel σ-algebra of Y ,(c) A ≃ Γ(L1(µ), 1).

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 31 / 32

Page 73: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

A logical approach to metric spaces?

Theorem

For any pair (A, s) s.t. A is a Riesz MV-algebra, s : A −→ [0, 1] is afaithful state and (A, ρs) is a complete metric space, there exists ameasure space (Y ,Ω, µ) s.t.:(a) Y is an extremally disconnected compact Hausdorff space,(b) Ω is the Borel σ-algebra of Y ,(c) A ≃ Γ(L1(µ), 1).

Y is the maximal ideal space of the complete Boolean algebra of allclosed ideals of A

MV-algebraic expresssion of Kakutani’s representation for abstractL-spaces (1942)

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 31 / 32

Page 74: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

A logical approach to metric spaces?

Theorem

For any pair (A, s) s.t. A is a Riesz MV-algebra, s : A −→ [0, 1] is afaithful state and (A, ρs) is a complete metric space, there exists ameasure space (Y ,Ω, µ) s.t.:(a) Y is an extremally disconnected compact Hausdorff space,(b) Ω is the Borel σ-algebra of Y ,(c) A ≃ Γ(L1(µ), 1).

Y is the maximal ideal space of the complete Boolean algebra of allclosed ideals of A

MV-algebraic expresssion of Kakutani’s representation for abstractL-spaces (1942)

Problem

Is it possible to extend the above connection to a categorical equivalence ?

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 31 / 32

Page 75: Algebra and probability in Lukasiewicz logichomepage.sns.it/hosni/lori/events/pura09/files/ioana.pdf · 2012-02-18 · Algebra and probability in Lukasiewicz logic Ioana Leu¸stean

Thank you!

Ioana Leustean (UB) Algebra and Probability in Lukasiewicz logic PURa 09 32 / 32