alcock1984.pdf

download alcock1984.pdf

of 5

Transcript of alcock1984.pdf

  • 8/10/2019 alcock1984.pdf

    1/5

    Canadian Metallurgical Quarterly, Vol. 23, No.3, pp. 309-313, 1984

    Printed in Canada0008-4433/85 $3.00 + .00

    Canadian Institute of Mining and Metallurgy

    Pergamon Press Ltd.

    /VAPOUR PRESSURE EQUATIONS

    FOR THE METALLIC ELEMENTS: 298-2500K

    C. B. ALCOCK, V. P. ITKIN and M. K. HORRIGAN

    Dept of Metallurgy and Materials Science, University of Toronto, Toronto, M5S lA4, Canada

    (Received 2 November 1983; in revised form 2 April 1984)

    Abstract-Vapour pressure equations are presented for the metallic elements up to curium. For each elementa precise four-term equation and a more practically-based equation have been derived from a new evaluationofthermochemical data for the condensed and gaseous elements. It is intended that the equations should beused for ideal gases in the pressure range 10-15-10-3 atm, which covers the experimentally accessible range.The "precise" equations reproduce the data to better than 1% and the "practical" equations provide betterthan 5 % accuracy.

    The vapour pressures of the metallic elements were previously

    reviewed in the compilation of Hultgren et ai. [1] A critical

    assessment of thermodynamic data has recently been completed

    for the elements from literature data up to 1982 [2 J . These data

    are for the condensed and gaseous states and hence the data for

    any particular element can be combined to yield the vapour

    pressure of the element as a function of temperature. These

    equations are presented below for the 65 metallic elements up to

    and including curium. The general equation which is employed

    is a polynomial in temperature

    contributions which influence the temperature dependence of

    the thermal functions significantly.

    In the examples which are given below for the metal

    vanadium, the two-term equation is unacceptable, the three-

    term equation is "practical", and the four-term equation is

    "precise".

    The vapour pressures listed in Table 1as input were calculated

    using data from the recent evaluation for the chemical elements

    logp(atm) = A + B T-1 + Clog T+ D T10-3

    The fit of data to this polynomial form was made by least squares

    analysis, and for each element, a two-, three- and four-term

    equation was calculated in as wide a temperature interval as

    seemed reasonable. Usually two temperature intervals only are

    chosen, one for the solid and one for the liq uid. Based upon the

    goodness-of-fit of the equations to the calculated vapour

    pressures a "practical" equation with the minimum number of

    terms has been selected which will reproduce the vapour

    pressures to 5% or better. This criterion was se1ected as

    representing a reasonable experimental error which would be

    encountered in vapour pressure measurement, and which would

    therefore serve most practical cases as well as reducing the

    number of terms in the polynomial. The complete four-term

    equation is also presented when the accuracy is improved, but it

    is probably true that these equations are often over-precise when

    the experimental uncertainties in the original thermochemical

    data are taken into account.

    The equations can, in principle, be used above the upper limit

    of temperature, 2500 K, which is recommended here. It is felt

    however that the thermal data for the condensed phases may

    become significantly less accurate above 2300 K, and for gases,

    new levels above the ground level may begin to make significant

    309

    Tempera-ture(K)

    325424523622721820919

    1018111712161315141415131612171118101909200821072206

    Table 1. Vapour pressure of vanadium

    log P (atm)

    Calculated

    Input Equation (1) Equation (2) Equation (3)

    -75.109 -75.045 -75.121 -75.108-55.698 -55.684 - 55.692 -55.699-43.639 -43.653 -43.629 -43.641- 35.423 - 35.453 - 35.413 -35.424-29.466 -29.503 - 29.459 -29.466-24.950 -24.990 - 24.947 -24.949-21.409 -21.450 - 21.409 -21.408

    -18.560 -18.598 - 18.563 -18.559-16.217 -16.252 - 16.223 -16.216-14.258 -14.287 -14.265 -14.257-12.596 -12.619 - 12.604 -12.596-11.168 -11.184 - 11.177 -11.168

    -9.929 -9.937 -9.937 -9.930-8.844 -8.843 -8.851 -8.845-7.886 ......7.876 -7.892 -7.887-7.035 -7.014 -7.038 -7.036-6.274 -6.242 -6.273 -6.275-5.589 -5.546 -5.584 -5.590-4.971 -4.916 -4.961 -4.971-4.411 -4.342 -4.394 -4.408

  • 8/10/2019 alcock1984.pdf

    2/5

    310 C. B. ALCOCK et al.: VAPOUR PRESSURES OF METALLIC ELEMENTS

    [2]. The temperatures were chosen to illustrate the fact that the

    polynomial form may be used to calculate the vapour pressure at

    any selected temperature with any temperature interval. In this

    case, the lowest temperature is arbitrarily set at 325 K and

    calculations were made over 99 K intervals up to the melting

    point of vanadium (Table 1).

    The two-term vapour pressure equation was now calculated

    using these data and the result is:

    log p(atm) =7.87456 - 26948.9/7: (1 )

    The three-term equation is

    logp =9.74444 - 27132.3/T- 0.55006910g 7: (2)

    The Equation (2) is satisfactory, according to our criteria to be

    used as a "practical" equation, but a more precise fit is obtained

    with the four-term equation

    logp =

    7.55339 - 27007.7/T+ 0.19699logT - 0.171188T/1000. (3)

    It can be seen in Table 1that at most temperatures this equation

    gives values which depart from the input values by more than

    0.02. This is an acceptable difference between the input and the

    calculated values, i.e. within the limits 5% of the vapourpressure.

    The Equation (3) is sufficiently precise that no further terms

    need be explored.

    The origins of the data which have been used for this

    calculation are indicated in the Tables 2 and 3.

    Table 2. Recommended equations of the vapour pressures for the elements

    logp(atm) =A + B 'T-1 + ClogT+ D T'1O-3

    Elemert,

    state A B

    2 3

    Li sol 5.667 -8310

    Li liq 5.055 -8023

    Na sol 5.298 -5603

    Na liq 4.704 -5377

    K sol 4.961 -4646

    Kliq 4.402 -4453

    Rb sol 4.857 -4215

    Rb liq 4.312 -4040

    Cs sol 4.711 -3999

    Cs liq 4.165 -3830

    Be sol 8.042 -17020

    Be liq 5.786 -15731

    Mg sol 8.489 -7813

    Ca sol 10.127 -9517

    Sr sol 9.226 -8572

    Ba sol 12.405 -9690

    Ba liq 4.007 -8163

    Al sol 9.459 -17342

    Alliq 5.911 -16211

    Ga sol 6.657 -14208

    Ga liq 6.754 -13984

    In sol 5.991 -12548

    In liq 5.374 -12276

    Tl sol 5.971 -9447

    Tlliq 5.259 -9037

    Sn sol 6.036 -15710

    Sn liq 5.262 -15332

    Pb sol 5.643 -10143

    Pb liq 4.911 -9701

    Sc sol 6.650 -19721

    Sc liq 5.795 -17681Y sol 9.735 -22306

    Yliq 5.795 -20341

    La sol 7.463 -22551

    La liq 5.911 -21855

    Ti sol 11.925 -24991

    Ti liq 6.358 -22747

    Zr sol 10.008 -31512

    Zr liq 6.806 -30295

    Hfsol 9.445 -32482

    V sol 9.744 -27132

    V liq 6.929 -25011

    Nb sol 8.822 - 37 818

    Ta sol 16.807 -41346

    C

    4

    -0.4440

    -0.8253

    -1.4030

    -1.1926

    -2.2890

    -0.7927

    -0.3413

    0.2885

    -0.8705

    -0.3142

    -1.3376

    -0.7890

    -0.6735

    -0.5501

    -0.2575

    -3.2152

    D

    5

    -0.3663

    0.7437

    Temperature

    range

    6

    298-m.p.

    m.p.-l000

    298-m.p.

    m.p.-700

    298-m.p.

    m.p.-600

    298-m.p.

    m.p.-550

    298-m.p.

    m.p.-550

    298-m.p.

    m.p.-1800

    298-m.p.

    298-m.p.

    298-m.p.

    298-m.p.

    m.p.-1200

    298-m.p.

    m.p.-1800

    298-m.p.

    m.p.-1600

    298-m.p.

    m.p.-1500

    298-m.p.

    m.p.-llOO

    298-m.p.

    m.p.-l 850

    298-m.p.

    m.p.-l 200

    298-m.p.

    m.p.-2000298-m.p.

    m.p.-2300

    298-m.p.

    m.p.-2450

    298-m.p.

    m.p.-2400

    298-m.p.

    m.p.-2500

    298-m.p.

    298-m.p.

    m.p.-2500

    298-2500

    298-2500

    Refs

    7

    [2,4,8J

    [2,4 J

    [2-4,8J

    [2-4J

    [2, 4, 8 J

    [2,4J

    [2,4,8J

    [2, 4J

    [3,4,8J

    [2-4 J[2,4,8 J

    [2, 4 J

    [3,4,8J

    [2-4,8J

    [3,4 J

    [2-4J

    [3,4 J

    [2, 3, 8 J

    [2,3 J

    [2, 4, 6, 10J

    [2,4J

    [2,4 J

    [2,4J

    [2,4,6J

    [2,4J

    [2,4,8J

    [2, 4J

    [2, 4, 8 J

    [2, 4J

    [2, 4J

    [2J

    [2, 4J

    [2, 6 J

    [2,4,6J

    [2, 4J

    [2-4,11,12J

    [2,3J

    [2-5, 13J

    [2, 3, 14 J

    [2-4,15J

    [2-4J

    [3,4 J

    [2,4J

    [2,4 J

  • 8/10/2019 alcock1984.pdf

    3/5

    C. B. ALCOCK et al.:VAPOUR PRESSURES OF METALLIC ELEMENTS 311

    Table 2-cont.

    Element, Temperaturestate A B C D range Refs

    2 3 4 5 6 7

    Cr sol 6.800 -20733 0.4391 -0.4094 298-2000 [2,4JMo sol 11.529 -34626 -1.1331 298-2500 [2-4 J

    Wsol 2.945 -44094 1.3677 298-2350 [2,4JWsol -54.527 -57687 -12.2231 -2200-2500 [4 JMn sol 12.805 -15097 -1.7896 298-m.p. [2,6JRe sol 11.543 -40726 -1.1629 298-2500 [2, 16JFe sol 7.100 -21 723 0.4536 -0.5846 298-m.p. [2,3,6JFe liq 6.347 -19574 m.p.-2IOO [2JRu sol 9.755 -34154 -0.4723 298-m.p. [2 JOs sol 9.419 -41198 -0.3896 298-2500 [2,6JCO sol 10.976 -22576 -1.0280 298-m.p. [2,6,17JCO liq 6.488 -20578 m.p.-2150 [2JRh sol 10.168 -29010 -0.7068 298-m.p. [2 JRh liq 6.802 -26792 m.p.-2500 [2 JIr sol 10.506 -35099 -0.7500 298-2500 [2J

    Ni sol 10.557 -22606 -0.8717 298-m.p. [2,3JNiliq 6.666 -20765 m.p.-2150 [2, 3JPd sol 9.502 -19813 -0.9258 298-m.p. [2, 18, 19JPd liq 5.426 -17899 m.p.-2100 [2 J

    Pt sol 4.882 -29387 1.1039 -0.4527 298-m.p. [2,20JPt liq 6.386 -26856 m.p.-2500 [2JCU sol 9.123 -17748 -0.7317 298-m.p. [2,3,8JCU liq 5.849 -16415 m.p.-1850 [2,3,21 JAg sol 9.127 -14999 -0.7845 298-m.p. [2, 6, 8JAg liq 5.752 -13 827 m.p.-1600 [2JAu sol 9.152 -19343 -0.7479 298-m.p. [2 JAu liq 5.832 -18024 m.p.-2050 [2 JZn sol 6.102 -6776 298-m.p. [2, 3, 8JZn liq 5.378 -6286 m.p.-750 [2JCd sol 5.939 -5799 298-m.p. [2,6,8JCd liq 5.242 -5392 m.p.-650 [2 JHg liq 5.116 -3190 298-400 [2, 6, 8JCe sol 6.139 -21 752 298-m.p. [2,5,7JCe liq 5.611 -21200 m.p.-2450 [2,7,21 JPr sol 8.859 -18720 -0.9512 298-m.p. [2JPr liq 4.772 -17315 m.p.-2200

    [2 JNd sol 8.996 -17264 -0.9519 298-m.p. [2,5,6JNd liq 4.912 -15824 m.p.-2000 [2,22JSm sol 9.988 -11 034 -1.3287 298-m.p. [2,23 JEu sol 9.240 -9459 -1.1661 298-m.p. [2,5,7JGd sol 8.344 -20861 -0.5775 298-m.p. [2,6JGd liq 5.557 -19389 m.p.-2250 [2 JTbsol 9.510 -20457 -0.9247 298-m.p. [2,5-7JTb liq 5.411 -18639 m.p.-2200 [2JDy sol 9.579 -15336 -1.1114 298-m.p. [2, 7, 24 JHo sol 9.785 -15899 -1.1753 298-m.p. [2, 5, 6 JEr sol 9.916 -16642 -1.2154 298-m.p. [2,6, 25, 26 JEr liq 4.688 -14380 m.p.-1900 [2 ]Tm sol 8.882 -12270 -0.9564 298-1400 [2, 6 JYb sol 9.111 -8111 -1.0849 298-900 [2,5,6JLu sol 8.793 -22423 -0.6200 298-m.p. [2,6JLu liq 5.648 -20302 m.p.-2350 [2 J

    Th sol 8.668 -31483 -0.5288 298-m.p. [4,8,9JTh liq -18.453 -24569 6.6473 m.p.-2500 [2,9J

    Pa sol 10.552 -34869 -1.0075 298-m.p. [7,9,27.28 ]

    Pa liq 6.177 -32874 m.p.-2500 [9 JU sol 0.770 -27729 2.6982 -1. 5471 298-m.p. [2,4,5,8,9 JUliq 20.735 -28776 -4.0962 m.p.-2500 [4,9]

    Np sol 19.643 -24886 -3.9991 298-m.p. [2,9JNpliq 10.076 -23378 -1.3250 m.p.-2500 [9 ]

    Pu sol 26.160 -19162 -6.6675 298-600 [2,4,9,29JPu sol 18.858 -18460 -4.4720 500-m.p. [2,4,9,29JPu liq 3.666 -16658 m.p.-2450 [4,9JAm sol 11.311 -15059 -1.3449 298-m.p. [7,9,27JCm sol 8.369 -20364 -0.5770 298-m.p. [9JCmliq 5.223 -18292 m.p.-2200 [9 ]

  • 8/10/2019 alcock1984.pdf

    4/5

    312 C. B. ALCOCK et al.: VAPOUR PRESSURES OF METALLIC ELEMENTS

    Table 3. "Precisely fitted" equations of the vapour pressures for the elements

    logp(atm) =A + B T-1 + Clog T+ D Tl0-3

    Element, Temperature

    state A B C D range

    2 3 4 5 6

    Li sol 7.790 -8423 -0.7074 298-m.p.

    Li liq 8.409 -8320 -1.0255 m.p.-l000Na 1iq 8.400 -5634 -1.1748 m.p.-700

    Kliq 8.233 -4693 -1.2403 m.p.-600

    Rb 1iq 8.316 -4275 -1.3102 m.p.-550

    Cs liq 8.232 -4062 -1.3359 m.p.-550

    Be sol 4.933 -16869 0.6521 -0.3210 298-m.p.

    Ca sol 4.751 -9278 0.5348 -0.6766 298-m.p.

    Sr sol 4.809 -8385 0.4150 -0.5970 298-m.p.

    Ba sol 8.403 -9524 -0.8280 -0.5551 298-m.p.

    Al sol 7.124 -17246 0.0639 -0.3369 298-m.p.

    Alliq 10.578 -16946 -1.3133 m.p.-1800

    Ga 1iq 3.624 -13829 0.7579 -0.3141 m.p.-1600

    In sol 8.532 -12680 -0.8495 298-m.p.

    In liq 9.919 -12568 -1.5298 0.3377 m.p.-1500

    TI sol 8.994 -9624 -0.9887 298-m.p.

    Tl1iq 8.628 -9383 -1.0086 m.p.-l100

    Sn sol 8.274 -15834 -0.7398 298-m.p.Sn liq 2.719 -15107 0.8036 -0.1033 m.p.-1850

    Pb sol 8.336 -10303 -0.8782 298-m.p.

    Pb liq 8.532 -10093 -1.0750 m.p.-1200

    Y sol 6.421 -22138 0.2848 -0.3099 298-m.p.

    Y liq 13.745 -22215 - 2.1235 m.p.-2300

    La sol 7.514 -22553 -0.3323 0.0062 298-m.p.

    La liq 6.524 -21977 -0.1667 m.p.-2450

    Ti sol 7.704 -24772 0.1252 -0.3752 298-m.p.

    Ti liq 16.370 -25229 -2.6574 m.p.-2400

    Zr sol 7.779 -31376 -0.0354 -0.1658 298-m.p.

    Zr liq 1.584 -28764 1.3555 m.p.-2500

    Hfsol 8.936 -32449 -0.5041 -0.0331 298-m.p.

    V sol 7.553 -27008 0.1970 -0.1712 298-m.p.

    Nb sol 7.596 -37729 0.1441 -0.0706 298-2500

    Mo sol 8.186 -34387 -0.0374 -0.1914 298-2500

    Wsol -0.557 -43830 2.5145 -0.2074 298-2350

    Wsol -110.184 -28414 35.4537 -3.6057 2200-2500Mn sol 6.504 -14794 0.4354 -0.6608 298-m.p.

    Re sol 9.368 -40550 -0.4647 -0.1053 298-2500

    Ru sol 5.944 -33895 0.7895 -0.2381 298-m.p.

    Os sol 10.356 -41273 -0.6908 0.0459 298-2500

    Co sol 6.436 -22348 0.5578 -0.4319 298-m.p.

    Rh sol 8.721 -28923 -0.2168 -0.1076 298-m.p.

    Ir sol 9.679 -35042 -0.4773 -0.0497 298-2500

    Ni sol 9.397 -22547 -0.4663 -0.1114 298-m.p.

    Pd sol 7.824 -19728 -0.3414 -0.1560 298-m.p.

    Pt liq 21.257 -30921 -3.8960 m.p.-2500

    Cu sol 7.810 -17687 -0.2638 -0.1486 298-m.p.

    Cu liq 11.209 -17427 -1.4742 m.p.-1850

    Ag sol 7.715 -14935 -0.2779 -0.1701 298-m.p.

    Au sol 8.035 -19291 -0.3496 -0.1276 298-m.p.

    Au liq 10.298 -18898 -1.2222 m.p.-2050

    Zn sol 8.435 -6923 -0.7523 298-m.p.

    Cd sol 8.405 -5944 -0.8052 298-m.p.Ce sol 7.340 -21834 -0.3851 0.0266 298-m.p.

    Ce liq 6.023 -21278 -0.1127 m.p.-2450

    Pr sol 5.167 -18556 0.3775 -0.4546 298-m.p.

    Pr liq 11.917 -18693 -1.9565 m.p.-2200

    Nd sol 4.542 -17061 0.6421 -0.5233 298-m.p.Nd liq 12.396 -17249 -2.0554 m.p.-2000Sm sol 3.881 -10753 0.8499 -0.6986 298-m.p.Eu sol 6.479 -9340 -0.1659 -0.3600 298-m.p.

    Gd sol 5.158 -20706 0.5450 -0.3265 298-m.p.

    Gdliq 10.606 -20505 -1.3598 m.p.-2250Tb sol 6.460 -20307 0.1472 -0.3066 298-m.p.Tb liq 11.803 -20052 -1.7216 m.p.-2200

  • 8/10/2019 alcock1984.pdf

    5/5

    C. B. ALCOCK et aI.: VAPOUR PRESSURES OF METALLIC ELEMENTS 313

    Table 3. cont.-

    Element, Temperaturestate A B C D range

    2 3 4 5 6

    Dy sol 7.184 -15217 -0.2717 -0.2355 298-m.p.Ho sol 6.502 -15734 -0.0278 -0.3146 298-m.p.Er sol 7.669 -16529 -0.4312 -0.2116 298-m.p.Tm sol 7.062 -12185 -0.3098 -0.2019 298-1400Lu sol 7.347 -22347 -0.1187 -0.1288 298~m.p.Lu liq 18.851 -23540 -3.5093 m.p.-2350Th sol 11.954 -31682 -1.6430 0.2519 298-m.p.Th liq 59.574 -36981 -16.3130 1.9822 m.p.-2500Pa sol 4.601 -34501 1.0093 -0.4616 298-m.p.Pa liq 10.230 -34019 -1.0555 m.p.-2500Np sol 11.585 -24562 -1.0343 -1.1906 298-m.p.Np liq 16.266 -24018 -3.2613 0.2585 m.p.-2500Pu sol 18.958 -17609 10.5178 - 8.7185 298-600Pu sol 93.527 -22254 -30.9041 8.4953 500-m.p.Pu liq 12.992 -17587 -2.9370 0.4145 m.p.-2450Am sol 6.977 -14854 0.1914 -0.4699 298-m.p.Cm sol 3.571 -20128 1.1098 -0.4830 298-m.p.Cmliq 19.537 -21434 -3.8591 m.p.-2200

    REFERENCES

    1. R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, K. K. Kelleyand D. D. Wagman, Selected Values of the ThermodynamicProperties of the Elements. ASM, Metals Park, Ohio (1973).

    2. C. B. Alcock and V. P. Itkin, to be published.3. D. R. Stull and H. Prophet, JAN AF Thermochemical Tables (2dedn),

    Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 37 (1971); M. W.Chaseetal.,Supplements:J.phys. Chem.Ref. Data3,311-480 (1974);4, 1-175 (1975); 7,793-940 (1978); 11, 695-940 (1982).

    4. L. V. Gurvich, I . V. Veits and V. A. Medvedev et aI.,Term odinam icheskie Svoist va I ndividual' nykh V eshches tv

    (Thermodynamic Properties of Individual Substances), Vols 1-4.

    Izdatel'stvo "Nauka", Moscow (1978-1982).5. D. D. Wagman, W. H. Evans and V. B. Parker et aI.,The NBS Tables

    of chemical'thermodynamic properties, J. phys. Chem. Ref. Data 11,supplement 2 (1982).

    6. I. Barin and O. Knacke, Thermochemical Properties of InorganicSubstances. Springer, Berlin (1973); I. Barin, O. Knacke and O.Kubaschewski, Thermochemical Properties of Inorganic Substances,Supplement. Springer, Berlin (1977).

    7. V. A. Medvedev, G. A. Bergman and L. V. Gurvich et al.,Termicheskie Konstanty Veschchestv (Thermal Constants of

    Substances), Vols 1-10. VINITI, Moscow (1965-1981).8. CODATA Recommended Key Values for Thermodynamics,

    Codata Bull. 28 (1977).

    9. F. L. Oetting, M. H. Rand and R. J. Ackermann, Thermodynamics ofActinide Elements and Compounds, Part 1. The Actinide Elements,IAEA, Vienna (1976).

    10. Y. Takahashi, H. Kadokura and M. Yokokawa, J. chem. Therm.15,65 (1983).

    11. W. Bendick and W. Pepperhoff, J. Phys. F: Metal Phys. 12, 1085(1982).

    12. W. M. Cash and C. R. Brooks, J. chem. Therm. 14, 351 (1982).13. C. B. Alcock, K. T. Jacob and S. Zador, Zirconium: Physico-

    Chemical Properties of its Compounds and Alloys, Spec. Issue No.6, pp. 7-65. IAEA, Vienna (1976).

    14. Ya. I. Gerassimov, V. M. Glasov and V.B. Lazarev et aI., Dokl. Akad.N auk SSSR 235, 846 (1977).

    15. P. J. Spencer, Hafnium: Physico-Chemical Properties of itsCompounds and Alloys, Spec. Issue No.8, pp. 9-53. IAEA, Vienna(1981).

    16. L. P. Filippov and F. G. EI'darov, J. Eng. Phys. 32, 180 (1977).17. A. S. Normanton, Metal Sci. 9, 455 (1975).18. O. Vollmer and R. Kohlhaas, Z. N aturf. 24a, 1669 (1969).19. A. P. Miiller and A. Cezairliyan, Int. J. Thermophys. 1,217 (1980).20. H. Yokokawa and Y. Takahashi, J. chem. Therm. 11, 411 (1979).21. L. K. Kuntz and R. G. Bautista, Metall. Trans. 7B, 107 (1976).22. L. A. Stretz and R. G. Bautista, High Temp. Sci. 7, 197 (1975).23. V. M. Polovov, Soviet Phys. JETP 38,775 (1974).24. E. B. Amitin, W. G. Bessergenev, Yu. A. Kovalevskaya and I. E.

    Paukov, J. chem. Therm. 15, 181 (1983).25. J. M. McCormack, P. R. Platt and R. H. Saxer, J. chem. Engng Data

    16, 167 (1971).26. R. W. Mar and R. G. Bedford, J.less-common Metals 71,317 (1980).27. R. O. A. Hall, J. A. Lee and M. J. Mortimer et aI., J.low Temp. Phys.

    41, 397 (1980).28. M. H. Bradbury, J. less-common Metals 78,207 (1981).29. F. L. Oetting and R. O. Adams, J. chem. Therm. 15,534 (1983).