Alberto Bellin

50
1/50 Microgravity observa3ons and hydrological modelling email: [email protected] The value of aggregated measurements of state variables in hydrological modeling Alberto Bellin Department of Civil, Environmental and Mechanical Engineering

Transcript of Alberto Bellin

Page 1: Alberto Bellin

1/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

The value of aggregated measurements of state variables in hydrological modeling  

 

Alberto Bellin Department of Civil, Environmental and

Mechanical Engineering

Page 2: Alberto Bellin

2/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

RESEARCH ARTICLE10.1002/2015WR016994

On the use of spatially distributed, time-lapse microgravitysurveys to inform hydrological modelingSebastiano Piccolroaz1, Bruno Majone1, Francesco Palmieri2, Giorgio Cassiani3, and Alberto Bellin1

1Department of Civil, Environmental, and Mechanical Engineering, University of Trento, Trento, Italy, 2Istituto Nazionale diOceanografia e di Geofisica Sperimentale, Trieste, Italy, 3Department of Geosciences, University of Padova, Padova, Italy

Abstract In the last decades significant technological advances together with improved modeling capa-bilities fostered a rapid development of geophysical monitoring techniques in support of hydrological mod-eling. Geophysical monitoring offers the attractive possibility to acquire spatially distributed information onstate variables. These provide complementary information about the functioning of the hydrological systemto that provided by standard hydrological measurements, which are either intrinsically local or the result ofa complex spatial averaging process. Soil water content is an example of state variable, which is relativelysimple to measure pointwise (locally) but with a vanishing constraining effect on catchment-scale modeling,while streamflow data, the typical hydrological measurement, offer limited possibility to disentangle thecontrolling processes. The objective of this work is to analyze the advantages offered by coupling traditionalhydrological data with unconventional geophysical information in inverse modeling of hydrological sys-tems. In particular, we explored how the use of time-lapse, spatially distributed microgravity measurementsmay improve the conceptual model identification of a topographically complex Alpine catchment (the Ver-migliana catchment, South-Eastern Alps, Italy). The inclusion of microgravity data resulted in a better con-straint of the inversion procedure and an improved capability to identify limitations of concurringconceptual models to a level that would be impossible relying only on streamflow data. This allowed for abetter identification of model parameters and a more reliable description of the controlling hydrologicalprocesses, with a significant reduction of uncertainty in water storage dynamics with respect to the casewhen only streamflow data are used.

1. Introduction

Building hydrological models able to accurately reproduce hydrological fluxes at a multiplicity of temporaland spatial scales, as more frequently required in applications, is still a serious challenge. The main difficultyis in the inability to adequately characterize the spatial variability of hydrological fluxes, due to the largeheterogeneity that characterizes the Earth’s subsurface [see e.g., Rubin, 2003]. Since this variability cannotbe assessed with the detail needed to represent the real, but unknown, spatial distribution of hydrologicalfluxes, simplifying hypotheses on the spatial distribution of the hydraulic parameters are typically intro-duced, which makes simulations highly uncertain. Traditionally, this difficulty has been addressed by usingsimplified conceptual models, which require the definition of lumped parameters with values determinedthrough suitable inference procedures with streamflow as the most used, and often the only, observationalvariable [see, e.g., Beven, 2011].

Since the works of Duan et al. [1992] and Gupta et al. [1998] the need to consider the inherent multiobjec-tive nature of inference and the importance of assessing, and possibly minimizing, the epistemic error asso-ciated to the conceptual model (i.e., the uncertainty that stems from a lack of knowledge about a givenphenomenon) emerged clearly together with a growing concern about the representativity of consolidatedbelieves [see e.g., Kirchner, 2006]. In particular, Efstratiadis and Koutsoyiannis [2010] and Beven and Wester-berg [2011] indicated that epistemic uncertainty may be related to the noninformativeness (i.e., limitedeffectiveness) of observational data in conditioning model parameters and structure. Furthermore, Efstratia-dis and Koutsoyiannis [2010] and Linde [2014] evidenced that, in some cases, the additional information pro-vided by the adoption of a multiobjective framework may lead to rejection of an inappropriate conceptualmodel, which would appear as proper against a single criterion (i.e., the classical comparison of observedand simulated water discharges).

Key Points:! Microgravity data constrain

subsurface water storage inhydrological models! Combining streamflow and

microgravity data rules out improperconceptual models! Indirect measures of state variables

constrain inversion of hydrologicaldata

Supporting Information:! Supporting Information S1

Correspondence to:S. Piccolroaz,[email protected]

Citation:Piccolroaz, S., B. Majone, F. Palmieri,G. Cassiani, and A. Bellin (2015), On theuse of spatially distributed, time-lapsemicrogravity surveys to informhydrological modeling, Water Resour.Res., 51, doi:10.1002/2015WR016994.

Received 30 JAN 2015Accepted 6 AUG 2015Accepted article online 11 AUG 2015

VC 2015. American Geophysical Union.All Rights Reserved.

PICCOLROAZ ET AL. MICROGRAVITY AND HYDROLOGICAL MODELING 1

Water Resources Research

PUBLICATIONS

Page 3: Alberto Bellin

3/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Two  concurring  hydrological  models  (M1  and  M2)  having  the  same  high  efficiency  when  calibrated  using  only  streamflow  data  (single  objec>ve)…  

Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul0

5

10

15

20

25

30

Time

Disc

harg

e [m

3 /s]

ObservedSim. M1 (KGEhydro=0.92Sim. M2 (KGEhydro=0.93

Page 4: Alberto Bellin

4/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

…  show  remarkable  differences  when  adding  geophysical  informa>on  (mul>  objec>ve):  the  shape  of  the  Pareto  fronts  provide  useful  hints  to  iden>fy  model  limita>ons,  and  indicate  the  value  of  including  geophysical  data  to  beGer  constraint  of  the  inversion  procedure.  

Page 5: Alberto Bellin

5/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Introduc3on

Microgravimetry  may  provide  useful  data  on  water  storage  in  the  earth’s  subsurface    • relevant  in  the  evalua3on/quan3fica3on  of  groundwater  resources  (e.g.  GRACE  at  large  scale);  • a  promising  support  in  hydrological  modeling.      Are  microgravimetry  data  useful  to  inform  hydrological  models?  We  are  interested  in  coupling  tradi3onal  hydrological  data  (inherently  global)  and  geophysical  informa3on  (spa>ally  distributed).  

Time-­‐lapse,  rela3ve  microgravimetry  is  a  geophysical  technique  which  allows  to  obtain  an  indirect  es>mate  of  surface  and  subsurface  water  storage  varia3ons  (i.e.,  soil  water  content,  groundwater  and  snowpack)    Basic  concept:  the  temporal  varia>on  of  the  gravita>onal  aGrac>on  is  propor>onal  to  the  hydrological  storage  changes    (once  all  other  contribu>ons  are  corrected).  

Page 6: Alberto Bellin

6/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Study  site:  the  Vermigliana  catchment,  located  in  the  South-­‐Eastern  Alps  (Italy).  

Main  characteris3cs:  •  contribu>ng  area:  104  km2;  •  the  main  creek  has  a  length  of  4  km  and  an  

average  slope  of  1%;  •  eleva>on  ranging  from  950  to  3558  m  a.s.l.;  •  very  steep  slopes  and  a  narrow  valley  

boGom  (U-­‐shaped  profile);  •  nivo-­‐glacial  regime;  •  almost  pris>ne  condi>ons.  

Microgravity  campaign

Page 7: Alberto Bellin

7/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Fieldwork  and  data  acquisi3on1:  •  6  field  campaigns  between  June  2009  and  May  2011;  •  extensive  point  gravity  measurements  on  a  network  of  53  sta3ons;  •  the  Vermigliana  catchment  has  been  monitored  through  8  sta3ons;  •  streamflow  data  are  available  at  the  Vermiglio  stream  gauging  sta>on.  

1  Equipment:  LaCoste-­‐Romberg  mod  D-­‐018  equipped  with  a  Zero  Length  Spring  feedback.  

Microgravity  campaign

Reference    measurement

Page 8: Alberto Bellin

8/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Modeling  approach

Hydrological  model:  a  modified  version  of  GEOTRANSF  (Majone  et  al.,  2012,  WATER  RESOUR  RES),  a  distributed  hydrological  model  characterized  by  1.  subdividing  the  catchment  into  slope  and  valley  boGom  areas  (assuming  they  are  governed  

by  inherently  different  processes);    2.  explicitly  coupling  vadose-­‐zone  and  groundwater  dynamics.    

The  valley  boGom  is  iden>fied  considering  thresholds  on  slope  and  eleva>on    (≈  1.8  km2,  2%  of  the  catchment  area)  

Page 9: Alberto Bellin

9/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Valley bottom

Page 10: Alberto Bellin

10/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Valley bottom

Sub-basin entirely confined in the hillslope unit

coupled hydrological and water resources management model, submitted to Environmental Modelling &Software, 2015) was adopted for simulating the hydrological cycle of the Vermigliana catchment. GEO-TRANSF is built around two geomorphological units: the subcatchment and the channel. The former unitidentifies a portion of the catchment where hillslope processes dominate. The latter is the base elementcomposing the river network that connects the selected subcatchments to the control section, wherestreamflow is simulated. A mass balance equation is written for each subcatchment under the assumptionthat streamflow at its outlet depends nonlinearly upon water storage [Kirchner, 2009; Majone et al., 2010].

In order to make the model sensitive to water redistribution within the drainage area, the catchment hasbeen subdivided into two interconnected elements, the hillslope and the valley bottom, roughly corre-sponding to convex and concave areas, respectively (see Figure 3a). In this way, the conceptual model iden-tifies two storing mechanisms related to identifiable morphological characteristics [Winter, 2001; Savenije,2010; Gharari et al., 2011; Nobre et al., 2011; Gao et al., 2014]. Hillslope is identified as the area with highaverage slope where runoff is dominated by shallow subsurface flow and groundwater storage is small tonegligible. On the other hand, the valley bottom area, which in the work of Savenije [2010] is included inthe broader ‘‘wetland’’ landscape classification, is the area where water storage occurs chiefly as ground-water. Note that, in general, a subcatchment is not necessarily formed of both landscape units (see theschematic in Figure 3).

In the present study, landscape classification was performed by using the following mixed criterion. The cellsbelonging to the hillslope unit were first identified as those characterized by slope and elevation higher than

Figure 1. Map of the catchment monitored during the microgravity campaigns with indicated the locations belonging to the microgravitynetwork. The boundaries of the Vermigliana catchment are drawn, together with the subdivision in 13 subcatchments (grey lines), and theposition of the stream gauging station (blue triangle). The inset shows the location of the Vermigliana catchment within the Italianterritory.

Water Resources Research 10.1002/2015WR016994

PICCOLROAZ ET AL. MICROGRAVITY AND HYDROLOGICAL MODELING 4

Page 11: Alberto Bellin

11/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Valley bottom

Sub-basin partitioned between hillslope and valley bottom

Page 12: Alberto Bellin

12/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Modeling  approach

Calibra3on  procedure:  par>cle  swarm  algorithm  to  solve  a  mul>-­‐objec>ve  op>miza>on  problem    

(see  e.g.,  Robinson  and  Rahmat-­‐Samii,  2004,  IEEE  T  ANTENN  PROPAG)  

Objec3ve  func3on:  the  following  expression  has  been  used  as  model  performance  criterion  

KGE  =  Kling–Gupta  efficiency  index  (Gupta  et  al.,  2009,  J  HYDROL)  

� =µs

µ0� =

�s

�0

r =covSO

(�S �0)

KGE = 1�q(� � 1)2 + (� � 1)2 + (r � 1)2

KGEtot

= (1� ↵)KGEhydro

+ ↵KGEgrav

, ↵ = 0÷ 1

Page 13: Alberto Bellin

13/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Modeling  approach

Gravity  model:    the  domain  is  divided  into  n  prisms  for  which  the  individual  contribu>on  to  the  hydrology-­‐induced  gravity  varia>ons  is  evaluated  according  to  

The  following  approximated  solu>on  has  been  applied  for  distances  larger  than  a  given  threshold  from  the  gravimeter

Page 14: Alberto Bellin

14/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Domain  discre3za3on:  carried  out  at  two  levels      

• Horizontal  plane  based  on  the  10x10  m  resolu>on  DEM  available  for  the  catchment      

• Ver3cal  direc3on  considering  the  same  layers  of  the  hydrological  model,  including  snowpack  

Modeling  approach

Main  water  storage  components:  soil  moisture  in  the  rizosphere  and  in  the  vadose  zone,  groundwater  and  snowpack.  

Page 15: Alberto Bellin

15/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Model  M1 Model  M2

Page 16: Alberto Bellin

16/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Two  concurring  hydrological  models  (M1  and  M2)  having  the  same  high  efficiency  when  calibrated  using  only  streamflow  data  (single  objec>ve)…  

Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul0

5

10

15

20

25

30

Time

Disc

harg

e [m

3 /s]

ObservedSim. M1 (KGEhydro=0.92Sim. M2 (KGEhydro=0.93

Page 17: Alberto Bellin

17/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

…  show  remarkable  differences  when  adding  geophysical  informa>on  (mul>  objec>ve):  the  shape  of  the  Pareto  fronts  provide  useful  hints  to  iden>fy  model  limita>ons,  and  indicate  the  value  of  including  geophysical  data  to  beGer  constraint  of  the  inversion  procedure.  

Page 18: Alberto Bellin

18/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Uncertainty  assessment  

Results

Comparison   among   parameters   and   model   output   uncertainty   (model   M1)   for   two  significant  cases:  • only  streamflow  data  are  available  for  model  calibra>on  (α=0)  • both   streamflow   and   microgravity   data   are   used   for   parameters   inference   with   a  balanced  aggregated  objec>ve  func>on  (α=0.5)  

Among   the   solu>ons   obtained   during   the   explora>on   of  the   parameters   space,   only   those   with   KGEtot   differing  less  the  1%  from  the  maximum  value  (colored  squares   in  the  previous  slide)  have  been  retained  for  the  uncertainty  analysis.    The   analysis   has   been   focused   on   the   100%   confidence  bands  resul>ng  from  the  retained  solu>ons.  

To  address  the  c l u s t e r i n g  effect  of  PSO.  

Page 19: Alberto Bellin

19/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Model  parameters  

Results

The  values  of  the  parameters  are  normalized  with  respect  to  their  range  

Confidence  bands  are:  • 45%  smaller  for  α=0.5  than  for  α=0  • well   distributed  between  0  and  1  (proper  choice  of  their  prior  range  of  varia>on)  

Page 20: Alberto Bellin

20/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Results

Water  storage  

When  including  microgravity  data,  confidence  bands  reduce  by  • 26%  in  the  hillslope  • 95%   in   the   valley  boGom  

The  accumula>on  of  water  in  the  valley  boGom  (due  to  a  par>cularly  wet  summer  in  2010)  is  observed  only  for  α=0.5    

Page 21: Alberto Bellin

21/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Results

Water  table  fluctua3on  

When  including  microgravity  data,  confidence  bands  reduce  by  •  39%  in  the  hillslope  •  93%   in   the   valley  

boGom  

Page 22: Alberto Bellin

22/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Results

Streamflow  

The  averaged  confidence  band  reduces  from  0.95  m3/s  to  0.78  m3/s  when  microgravity  data  are  included  

microgravity  data  not  only  allow  for  a  beGer  representa>on  of  subsurface  storage,  but  they  also  reduce  uncertainty  of  streamflow.  

Page 23: Alberto Bellin

23/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Results

Gravity  change  (for  α=0.5)    

Valley  boGom  sta>ons    (green)  show  a  good  agreement  between  simulated  and  observed  data,  while  hillslope  sta>ons  (blue)  show  larger  devia>ons.    In  general,  seasonal  varia>ons  are  well  reproduced.  

Errors  are  likely  due  to  the  simplifica>on,  dictated  by  the  lack  of  detailed  stra>graphic  data,  of  assuming  the  water  table  moving  parallel  to  the  ground  surface.  

Page 24: Alberto Bellin

24/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Conclusions

Conclusions  Coupled  approach  tradi3onal  streamflow  data  +  >me-­‐lapse,  spa>ally  distributed  microgravity  measurements      

Main  results  •  significant  reduc3on  of  the  uncertainty  associated  with  the  es>ma>on  of  the  >me  

varia>ons  of  the  main  hydrological  state  variables  (e.g.,  total  water  volume,  water  table  eleva>on)  

•  the  major  effects  can  be  observed  in  the  valley  boaom  area    → higher  density  of  gravimetric  sta>ons

•  uncertainty  on  simulated  streamflow  decreases  as  well  •  gravimetric  data  allowed  for  a  beaer  iden>fica>on  of  the  hydrological  conceptual  model  

including  the  defini>on  of  the  valley  boGom  region  

Thank  you

Page 25: Alberto Bellin

25/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Page 26: Alberto Bellin

26/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Pareto  front    

Page 27: Alberto Bellin

27/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

HydroSCAPE: a multi-scale framework for streamflow routing in large-scale hydrological models

Leno River at Rovereto

Page 28: Alberto Bellin

28/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Open  un3l  30  October  2015

Page 29: Alberto Bellin

29/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Large  scale  hydrological  model  •  Rainfall-­‐runoff  model  aimed  at  simula>ng  the  occurrence  of  floods  at  the  large  scale  

(i.e.,  catchments  with  an  extension  ranging  from  1000  km2  up  to  the  con>nental  scale).  Par>cular  emphasis  is  given  to  extreme  events.  

•  Possible  extensions  include  the  applica>on  to  several  water  resources  issues:  aquifer  recharge,  storage  dynamics,  water  resources  availability,  interac>ons  with  river  ecosystems  etc.  

•  Specific  aGen>on  is  given  to  the  flow  rou3ng  algorithm,  which  has  been  indicated  as  an  aspect  of  LSM  and  global  hydrological  models  needing  some  improvement  (Clark  et  al,  WRR  2015)  

REVIEW ARTICLE10.1002/2015WR017096

Improving the representation of hydrologic processes in EarthSystem ModelsMartyn P. Clark1, Ying Fan2, David M. Lawrence1, Jennifer C. Adam3, Diogo Bolster4, David J. Gochis1,Richard P. Hooper5, Mukesh Kumar6, L. Ruby Leung7, D. Scott Mackay8, Reed M. Maxwell9,Chaopeng Shen10, Sean C. Swenson1, and Xubin Zeng11

1National Center for Atmospheric Research, Boulder, Colorado, USA, 2Department of Earth and Planetary Sciences,Rutgers University, New Brunswick, New Jersey, USA, 3Department of Civil and Environmental Engineering, WashingtonState University, Pullman, Washington, USA, 4Department of Civil & Environmental Engineering and Earth Sciences,University of Notre Dame, South Bend, Indiana, USA, 5The Consortium of Universities for the Advancement of HydrologicScience, Inc., 6Nichols Schools of Environment, Duke University, Durham, North Carolina, USA, 7Pacific Northwest NationalLaboratory, Richland, Washington, USA, 8Department of Geography, University at Buffalo, State University of New York,Buffalo, New York, USA, 9Department of Geology and Geological Engineering, Colorado School of Mines, Golden,Colorado, USA, 10Department of Civil and Environmental Engineering, Pennsylvania State University, State College,Pennsylvania, USA, 11Department of Atmospheric Sciences, University of Arizona, Tucson, Arizona, USA

Abstract Many of the scientific and societal challenges in understanding and preparing for global envi-ronmental change rest upon our ability to understand and predict the water cycle change at large riverbasin, continent, and global scales. However, current large-scale land models (as a component of Earth Sys-tem Models, or ESMs) do not yet reflect the best hydrologic process understanding or utilize the largeamount of hydrologic observations for model testing. This paper discusses the opportunities and key chal-lenges to improve hydrologic process representations and benchmarking in ESM land models, suggestingthat (1) land model development can benefit from recent advances in hydrology, both through incorporat-ing key processes (e.g., groundwater-surface water interactions) and new approaches to describe multiscalespatial variability and hydrologic connectivity; (2) accelerating model advances requires comprehensivehydrologic benchmarking in order to systematically evaluate competing alternatives, understand modelweaknesses, and prioritize model development needs, and (3) stronger collaboration is needed betweenthe hydrology and ESM modeling communities, both through greater engagement of hydrologists in ESMland model development, and through rigorous evaluation of ESM hydrology performance in researchwatersheds or Critical Zone Observatories. Such coordinated efforts in advancing hydrology in ESMs havethe potential to substantially impact energy, carbon, and nutrient cycle prediction capabilities through thefundamental role hydrologic processes play in regulating these cycles.

1. Introduction

The stores and fluxes of water near the land surface modulate nearly all processes at the land-atmosphereinterface. For example, evapotranspiration affects weather and climate through its influence on boundarylayer dynamics and thermal dynamics. The stores and fluxes of water on land also influence ecosystemstructure and functioning, carbon, nutrient, and other biogeochemical cycles, and dictate freshwater avail-ability for societies. Many of the scientific and societal challenges to understand and prepare for global envi-ronmental change rest upon our ability to understand and predict water cycle changes at large river basin,continent, and global scales [Eagleson, 1986].

Simulations of global environmental change are now performed using Earth System Models (ESMs), whichare designed to capture the key interactions among the components of the Earth System including theatmosphere, ocean, land, and sea ice [Flato, 2011; Dunne et al., 2012; Hurrell et al., 2013]. ESMs build onglobal climate model platforms but substantially extend their capabilities by representing a diverse set ofphysical, chemical, and biological interactions across multiple space and time scales [Hurrell et al., 2013].Here we focus on the hydrologic processes in the so-called ‘‘land models’’—the land component of ESMs.Because terrestrial water stores and fluxes are strong modulators of energy and biogeochemical stores on

Special Section:The 50th Anniversary of WaterResources Research

Key Points:! Land model development can

benefit from recent advances inhydrology! Accelerating modeling advances

requires comprehensivebenchmarking activities! Stronger collaboration is needed

between the hydrology and ESMmodeling communities

Correspondence to:M. P. Clark,[email protected]

Citation:Clark, M. P., Y. Fan, D. M. Lawrence,J. C. Adam, D. Bolster, D. J. Gochis,R. P. Hooper, M. Kumar, L. R. Leung,D. S. Mackay, R. M. Maxwell, C. Shen,S. C. Swenson, and X. Zeng (2015),Improving the representation ofhydrologic processes in Earth SystemModels, Water Resour. Res., 51,doi:10.1002/2015WR017096.

Received 13 FEB 2015Accepted 19 JUL 2015Accepted article online 22 JUL 2015

VC 2015. American Geophysical Union.All Rights Reserved.

CLARK ET AL. REPRESENTING HYDROLOGIC PROCESSES IN EARTH SYSTEM MODELS 1

Water Resources Research

PUBLICATIONS

Page 30: Alberto Bellin

30/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

•  Some  key  scien3fic  ques3ons:  •  How  climate  change  may  modify  the  sta>s>cs  of  floods  occurring  IN  large  river  

basins?  •  What  are  the  consequences  on  the  management  of  the  hydraulic  structures?  •  Can  we  determine  the  uncertainty  associated  with  the  es>mate  of  extreme  

hydrological  events?

Large  scale  hydrological  model  

LETTERSPUBLISHED ONLINE: 21 OCTOBER 2012 | DOI: 10.1038/NCLIMATE1719

Hydroclimatic shifts driven by human water usefor food and energy productionGeorgia Destouni*, Fernando Jaramillo and Carmen Prieto

Hydrological change is a central part of global change1–3. Itsdrivers in the past need to be understood and quantified for ac-curate projection of disruptive future changes4. Here we anal-yse past hydro-climatic, agricultural and hydropower changesfrom twentieth century data for nine major Swedish drainagebasins, and synthesize and compare these results with otherregional5–7 and global2 assessments of hydrological change byirrigation and deforestation. Cross-regional comparison showssimilar increases of evapotranspiration by non-irrigated agri-culture and hydropower as for irrigated agriculture. In theSwedish basins, non-irrigated agriculture has also increased,whereas hydropower has decreased temporal runoff variability.A global indication of the regional results is a net total increaseof evapotranspiration that is larger than a proposed associatedplanetary boundary8. This emphasizes the need for climateand Earth system models to account for different human usesof water as anthropogenic drivers of hydro-climatic change.The present study shows how these drivers and their effectscan be distinguished and quantified for hydrological basins ondifferent scales and in different world regions. This should en-courage further exploration of greater basin variety for betterunderstanding of anthropogenic hydro-climatic change.

Drivers of freshwater changes are multiple and difficult todistinguish and quantify9–12. Global increase of evapotranspiration(ET) by irrigation and a parallel decrease by deforestation hasbeen estimated by spatial compilation of crop and forest data2.Furthermore, spatial analysis of relatively short-term (30-year)data has shown effects of large dams and their reservoirs onatmospheric variables of convective available potential energy,specific humidity and surface evaporation extending over distancesof around 100 km away from reservoir shorelines13. Such spatialresults indicate ET changes by different land and water uses,but do not reveal the actual change dynamics and timing.Moreover, global averaging hides the spatial variation of ETand its regional change drivers and further effects on waterchange (through changed water loss by ET to the atmosphere5,7,14)and climate change (through changed latent heat flux6,15 andatmospheric circulation16).

Hydrological model interpretation of consistently long,twentieth century time series of relevant hydro-climatic and land–water use data has distinguished between climate and irrigationdrivers of ET change in the drainage basins of the Aral Sea in CentralAsia5,6 and Mahanadi River in India7 (Fig. 1a). Both of these basinsrepresent areas withmajor irrigation developments that have drivenincreases of ET and associated water loss to the atmosphere. Directtemporal analysis of long-term hydro-climatic and land–water usedata, accounting for the water balance constraints of hydrologicalbasins, can thus complement spatial studies, particularly for thetwentieth century, which has seen large land–water use changes,

Department of Physical Geography and Quaternary Geology, Bert Bolin Centre for Climate Research, Stockholm University, SE-106 91 Stockholm, Sweden.*e-mail: [email protected].

while instrumental hydro-climatic data have become available fordirect analysis of their hydrological effects.

In this study, we investigate twentieth century land–water useand hydro-climatic data, and interpret them by the fundamentalwater balance quantification P�ET�R�DS= 0 (where P isprecipitation, R is runoff and DS is water storage change) fornine major Swedish drainage basins (Fig. 1a). The investigationhas three goals. First, a basin-scale distinction of hydrologicalchanges and their drivers in the Swedish basins, which amongthem represent different land–water uses (Fig. 1a, green: dominantnon-irrigated agriculture, red: dominant hydropower, blue: withessentially unregulated rivers and little agriculture) and hydro-climatic conditions in terms of surface temperature (T ; Fig. 1b)and P (Fig. 1c). Second, cross-regional result comparison acrossthe complementary Swedish, Aral and Mahanadi basins (Fig. 1a),representing an even wider range of different hydro-climaticconditions (Fig. 1b,c) and land–water uses (irrigated and non-irrigated agriculture, hydropower, unregulated). Third, cross-scale/method comparison between the extrapolation implicationsof the regional basin results and previous spatial estimates ofglobal hydrological changes and drivers2. Hydrological, and otherphysical and ecological science communities11,17,18 have identifiedfundamental needs for such synthesis and comparisons alongclimatic and other gradients.

For the Swedish basins, we calculated annual ET as ETwb =P�Rfrom available P (ref. 19) and R (ref. 20) data (SupplementaryFig. S1), assuming annual DS⇡ 0. This assumption is justifiedbecause possible alternative DS assumptions that can be made onthe basis of lake water level changes19 affect mostly the short-term fluctuations and not the long-term variation and changes ofaverage ETwb = P �R�DS that are the main focus of this study(Supplementary Fig. S2 compares ETwb calculated with differentDSassumptions). Furthermore, we compared ETwb with two different,purely climate-determined estimates (denoted ETclim) of ET byBudyko and Turc expressions21 using available data on P andT (ref. 19), and potential evapotranspiration (PET) calculatedfrom T data (Supplementary Methods). We also compared thedata-given changes in annual average R with a Budyko-basedestimate of purely climate-driven change21 (1Rclim; SupplementaryMethods), and quantified the temporal R variability and its changesin terms of the coefficient of variation of daily R, CV(R), in amoving 20-year window.

For the Mahanadi and Aral Sea basins, hydro-climatic changesfrom the beginning to the end of the twentieth century have beenreported in previous studies5–7 (summarized in SupplementaryTables S1 and S2) that calculated ETwb by distributed hydrologicalmodelling. They distinguished purely climatic (T and P) changeeffects on ETwb by comparison of realistic simulations of bothirrigation and climate change with a hypothetical scenario of

NATURE CLIMATE CHANGE | ADVANCE ONLINE PUBLICATION | www.nature.com/natureclimatechange 1

Resilience of river flow regimesGianluca Bottera, Stefano Bassoa,b, Ignacio Rodriguez-Iturbec, and Andrea Rinaldoa,d,1

aDepartment of Civil, Architectural, and Environmental Engineering, University of Padua, I-35100 Padua, Italy; bDepartment of Water Resources and DrinkingWater, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland; cDepartment of Civil and Environmental Engineering,Princeton University, Princeton 08540, NJ; and dLaboratory of Ecohydrology, School of Architecture, Civil and Environmental Engineering, École PolytechniqueFédérale de Lausanne, Lausanne CH-1015, Switzerland

Contributed by Andrea Rinaldo, June 25, 2013 (sent for review March 3, 2013)

Landscape and climate alterations foreshadow global-scale shifts ofriver flow regimes. However, a theory that identifies the range offoreseen impacts on streamflows resulting from inhomogeneousforcings and sensitivity gradients across diverse regimes is lacking.Here, we derive a measurable index embedding climate andlandscape attributes (the ratio of the mean interarrival of stream-flow-producing rainfall events and the mean catchment responsetime) that discriminates erratic regimes with enhanced intraseaso-nal streamflow variability from persistent regimes endowed withregular flow patterns. Theoretical and empirical data show thaterratic hydrological regimes typical of rivers with low meandischarges are resilient in that they hold a reduced sensitivity toclimate fluctuations. The distinction between erratic and persistentregimes provides a robust framework for characterizing the hydrol-ogy of freshwater ecosystems and improving water managementstrategies in times of global change.

climate change | flow variability | hydroclimatic shift | water uses

The river flow regime identifies the streamflow temporal vari-ability at a station (1), which is the natural byproduct of the

sequence of flow pulses conveyed to the stream network from thecontributing catchment after rainfall. The flow regime is embodiedby the probability distribution function (pdf) of daily flows (2–4),which provides information on the mean water availability, theextent of discharge fluctuations (5), and the frequency of high/lowflows. Flow regimes not only constrain anthropogenic uses, such asenergy production and irrigation, but shape form and functions ofriverine ecosystems owing to the dynamic control of flow magni-tude on stream habitats (1, 4, 6–8). In the past decades, naturaland anthropogenic modifications of climate drivers (9), jointlywith landscape changes, have led to increasingly nonstationaryflow regimes (10–14). These ubiquitous and accelerating alter-ations of river flows challenge the sustainability of water uses (5,15) and the ecosystem services provided by river biomes (6, 16, 17).However, streamflow alterations are not expected to be uniform(18, 19), owing to heterogeneous climate/landscape drifts andsensitivity gradients across diverse climate zones and regime types.Here, the flow regimes of pristine rivers are analyzed using a

mechanistic analytical model in which streamflow dynamics aredriven by a catchment-scale soil–water balance forced by sto-chastic daily rainfall (2, 3). The analytical model indicates that thenature of flow regimes and their sensitivity to climate change canbe discriminated based on the frequency of effective (i.e., flow-producing) rainfall events and the time scale of the hydrologicalresponse through which these rainfall inputs are propagated acrosscatchments. This hypothesis is tested through extended climateand flow records taken from 44 US and Italian catchmentsbelonging to the US Geological Survey/National Oceanic andAtmospheric Administration and the Regional Agency for Envi-ronmental Protection of the Veneto Region monitoring networks(Table S1). To comply with the basic assumptions of the mecha-nistic model (pertaining to the features of climate forcing and thedominant mechanisms of streamflow production), the choice ofthe catchments is restricted to unregulated, small/medium water-sheds weakly influenced by snow dynamics (SI Materials andMethods). In this setting, flow-producing rainfall events result

from the censoring operated by catchment soils on daily rainfall,and they are modeled as a spatially uniform marked Poissonprocess with mean depth α [L] and mean frequency λ ½T−1". Al-though α quantifies the average daily intensity of rainfall events, λis smaller than the underlying precipitation frequency because thesoil–water deficit created by plant transpiration in the root zonemay hinder the routing of some inputs to streams (Eq. S3).Therefore, λ crucially embeds rainfall attributes; soil/vegetationproperties; and other climate variables, such as temperature, hu-midity, and wind speed.The time scale of the hydrological response, defined as the

mean water retention time in the upstream catchment, is opera-tionally identified by the inverse of the flow decay rate ðk ½T−1"Þobserved during recessions, conveniently assumed to be exponential(2, 3, 20). The term k quantifies catchment-scale morphologicaland hydrological attributes [e.g., the mean length of hydrologicalpathways and upscaled soil conductivity (3)]. High k values implylow duration of the flow pulses released from the catchment afterrainfall, typical of fast-responding catchments.When flow-producing rainfall events are relatively frequent,

such that their mean interarrival is smaller than the duration of theflow pulses delivered from the contributing catchment ðλ> kÞ, therange of streamflows observed at a station between two sub-sequent events is reduced, and a persistent supply is guaranteed tothe stream from catchment soils. Therefore, river flows are weaklyvariable around the mean (Fig. 1A, Lower) and quite predictable.This type of regime (hereafter termed persistent) is typicallyexpected during humid, cold seasons in slow-responding catch-ments (high λ, low k).When the mean interarrival between flow-producing rainfall

events is larger than the typical duration of the resulting flow pulsesðλ< kÞ, a wider range of streamflows is observed between eventsbecause the reach is allowed to dry significantly before the arrivalof a new pulse. The temporal patterns of streamflows are thusmore unpredictable (Fig. 1A, Upper), leading to erratic regimeswith significant streamflow fluctuations. Under these circum-stances, the preferential state of the system is typically lower thanthe mean. Erratic regimes are likely expected in fast-respondingcatchments during seasons with sporadic rainfall events (low λ,high k). However, this type of regime also can frequently be ob-served during hot, humid seasons (where relatively high rainfallrates are compensated by enhanced evapotranspiration).The analytical mechanistic model on which the proposed classi-

fication of hydrological regimes is grounded allows the river flowpdf to be expressed as a gamma-distribution with shape parameterλ=k and rate parameter αk (2, 3) (Materials and Methods). Theparameters α, λ, and k (which we hereafter term hydroclimaticparameters) summarize the underlying morphological and

Author contributions: G.B., I.R.-I., and A.R. designed research; G.B., S.B., and A.R. per-formed research; G.B. and S.B. analyzed data; and G.B., I.R.-I., and A.R. wrote the paper.

The authors declare no conflict of interest.

Freely available online through the PNAS open access option.1To whom correspondence should be addressed. E-mail: [email protected].

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1311920110/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1311920110 PNAS | August 6, 2013 | vol. 110 | no. 32 | 12925–12930

ENVIRO

NMEN

TAL

SCIENCE

S

Page 31: Alberto Bellin

31/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Characteristics of the model Macro-­‐regional/con>nental  hydrological  model  for  flood  assessment.  

Possible   applica>on   to   water   resources   problems:   aquifer   recharge,   storage   dynamics,  water  resources  availability,  interac>ons  with  river  ecosystems  etc.

Discre>za>on   into   large   macro-­‐cells:   computa>onal   requirements,   direct   coupling   with  climate  models,  focus  on  large  scale  dynamics.  

Simplicity:   a   few   parameters,   possibly   linked   to   physical   proper>es   for   which   distributed  informa>on  is  easily  available.  

Linearity   of   the   processes:   in   order   to   ensure   a   simple   and   efficient   numerical  paralleliza>on.  

Rigorous  upscaling  of  the  spa>al  distribu>on  of  water  fluxes.  

Physically  based  (WFIUH  approach).  

Page 32: Alberto Bellin

32/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Delinea>on  of  the  catchment  area.  

Pre-processing

Page 33: Alberto Bellin

33/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Pre-processing

Discre3za3on   of   the   domain   into   a  number  of  macrocells.  

Delinea>on  of  the  catchment  area.  

Page 34: Alberto Bellin

34/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Pre-processing

Discre3za3on   of   the   domain   into   a  number  of  macrocells.  

Extrac>on  of  the  river  network   from  the  DEM.    

Delinea>on  of  the  catchment  area.  

Page 35: Alberto Bellin

35/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Discre3za3on   of   the   domain   into   a  number  of  macrocells.  

Extrac>on  of  the  river  network   from  the  DEM.    Iden3fica3on   of   target   points   (hereater  referred   to   as   nodes):   gauged   sec>ons,  residen>al   areas,   hydraulic   structures,  reservoir  etc.  Defini>on  of  the  width  func3on  for  each  node-­‐macrocell  pair.    

Delinea>on  of  the  catchment  area.  

Pre-processing

Page 36: Alberto Bellin

36/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Structure of the model Water   balance   dynamics   at   the   hillslope  scale  are  simulated  using  a  simple  rainfall-­‐runoff  model  (e.g.,  SCS)      Hillslope   drains   into   the   river   network,  where   water   is   transferred   towards  nodes,  with  a  given  channel  velocity.  WFIUH   approach   (e.g.   Rinaldo,   Marani,  Rigon,  1991)    

The  streamflow  simulated  at  each  node  is  given   by   the   sum  of   the   contribu>ons   of  all  macrocells  contribu>ng  to  that  node.  

The   model   is   linear  →   the   streamflow  generated  at  each  macrocell  is  evaluated  independently  from  the  others.    

Page 37: Alberto Bellin

37/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Characteris3cs:  •  Few   reservoir   and   hydraulic  structures.  

•  Snow  precipita>on  and  mel>ng  is  negligible.  

•  Historical   series   (a   few   decades)  of   streamflow,   rainfall   and   air  temperature  are  available.  

•  Surface   area   of   the   catchment  equal  to  4116  km2.  

•  5   nodes,   in   correspondence   to  gauging  sec>ons.  

     

Example application: Upper Tiber

Page 38: Alberto Bellin

38/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Example application: Upper Tiber

Page 39: Alberto Bellin

39/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

3  grid  sizes:  5,  10  and  50  km

Example application: Upper Tiber

Page 40: Alberto Bellin

40/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Width  func>ons  at  Ponte  Nuovo  obtained  aggrega>ng  the  original  20  m  DEM  to  5,  10  and  50  km:  Models  in  which  the  geomorphological  descrip>on  of  the  drainage  network  has  the  same  scale  of  the  computa>onal  grid,  suffer  from  a  deteriora>on  of  the  geomorphological  response  of  the  watershed.    This  is  not  the  case  of  the  proposed  formula>on,  in  which  the  width  func>on  maintains  all  the  informa>on  derived  from  the  original  DEM        

Example application: Upper Tiber

Figure 5. Width functions of the Upper Tiber river basin at Ponte Nuovo (PN) outlet (4116 km2) derived from

DEMs obtained aggregating the original 20 m DEM to 5, 10 and 50 km (lower panels). The width function

obtained with the original 20 m DEM is also shown with a red line.

to represent the travel time distribution at the hillslope scale. In this case, rescaling may be obtained

by using a hillslope specific velocity V`

<< Vc

.

The overall streamflow generation model can be summarized as follows7 EdN:7335

Ri,j

=

⇣Pj

k=1Ji,k�t� Ia,i

⌘2

Pj

k=1Ji,k�t+ cS

Si

� Ia,i

, j = 1, ...,np

(5)

7EDNOTE: L’equazione dell’SCS che c’era nel testo non mi torna, mi sembra che avevamo detto di applicarla in

modo continuo. L’ho quindi commentata nel file tex e riscritta in modo che sa da una vostra verifica risulta che è invece

corretta si può ripristinare. C’e’ anche problema che qui t è usato come contatore, mentre prima è stato usato come

variabile tempo. L’ho quindi cambiato

13

Page 41: Alberto Bellin

41/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Rainfall-­‐runoff  models  

Model parameters

v λ cS kH SCSLRH

✓ ✓ ✓ ✓

Data requirements

•  SCSLRH:  SCS  +  linear  reservoir  for  the  hillslope  

QUESTO  E’  IL  MODELLO  DI  PRODUZIONE  USATO  IN  HESS,  LE  ALTRE  SLIDE  LE  HO  NASCOSTE

Page 42: Alberto Bellin

42/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Rainfall-­‐runoff  models  •  none:  runoff=rainfall  

Model parameters

v λ cS k kH none ✓ - - - - SCS ✓ ✓ ✓ - - SCSLRI

✓ ✓ ✓ ✓ -

SCSLRH

✓ ✓ ✓ - ✓

SCSLRHI

✓ ✓ ✓ ✓ ✓

Data requirements

                                                                                                   

Page 43: Alberto Bellin

43/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Rainfall-­‐runoff  models  •  none:  runoff=rainfall  

Model parameters

v λ cS k kH none ✓ - - - - SCS ✓ ✓ ✓ - - SCSLRI

✓ ✓ ✓ ✓ -

SCSLRH

✓ ✓ ✓ - ✓

SCSLRHI

✓ ✓ ✓ ✓ ✓

Data requirements

•  SCS:  Soil  Conserva>on  Service  –  Curve  Number  Methodology  

                                                                                                   

Page 44: Alberto Bellin

44/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Rainfall-­‐runoff  models  •  none:  runoff=rainfall  

Model parameters

v λ cS k kH none ✓ - - - - SCS ✓ ✓ ✓ - - SCSLRI

✓ ✓ ✓ ✓ -

SCSLRH

✓ ✓ ✓ - ✓

SCSLRHI

✓ ✓ ✓ ✓ ✓

Data requirements

•  SCS:  Soil  Conserva>on  Service  –  Curve  Number  Methodology  

                                                                                                   

•  SCSLRI:  SCS  +  linear  reservoir  for  infiltra>on  

Page 45: Alberto Bellin

45/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Rainfall-­‐runoff  models  •  none:  runoff=rainfall  

Model parameters

v λ cS k kH none ✓ - - - - SCS ✓ ✓ ✓ - - SCSLRI

✓ ✓ ✓ ✓ -

SCSLRH

✓ ✓ ✓ - ✓

SCSLRHI

✓ ✓ ✓ ✓ ✓

Data requirements

•  SCS:  Soil  Conserva>on  Service  –  Curve  Number  Methodology  

•  SCSLRH:  SCS  +  linear  reservoir  for  the  hillslope  

•  SCSLRHI:  SCS  +  linear  reservoir  for  the  hillslope  +  linear  reservoir  for  infiltra>on  

•  SCSLRI:  SCS  +  linear  reservoir  for  infiltra>on  

Page 46: Alberto Bellin

46/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Calibra>on  at  Ponte  Nuovo Example application: Upper Tiber

Page 47: Alberto Bellin

47/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Mul>  site  valida>on Example application: Upper Tiber

Page 48: Alberto Bellin

48/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Mul>  event  valida>on Example application: Upper Tiber

Page 49: Alberto Bellin

49/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

Conclusions •  We proposed a routing scheme independent on

the gridding of the LSM; •  “perfect” upscaling with geomorphological

dispersion preserved; •  The scheme is computational efficient (major

computational burden in the preprocessing);

•  Routing dependent on 2 parameters.

Page 50: Alberto Bellin

50/50    

Microgravity  observa3ons  and  hydrological  modelling  e-­‐mail:  [email protected]  

THANK YOU