Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills...

82
String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical Physics, Bern University Workshop on “Strongly Interacting Field Theories” Jena, October 1, 2010

Transcript of Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills...

String Dynamics in Yang-Mills Theory

Uwe-Jens Wiese

Albert Einstein Center for Fundamental PhysicsInstitute for Theoretical Physics, Bern University

Workshop on “Strongly Interacting Field Theories”Jena, October 1, 2010

Collaboration: Ferdinando Gliozzi (INFN Torino)Michele Pepe (INFN Milano)

String Dynamics in Yang-Mills Theory

Uwe-Jens Wiese

Albert Einstein Center for Fundamental PhysicsInstitute for Theoretical Physics, Bern University

Workshop on “Strongly Interacting Field Theories”Jena, October 1, 2010

Collaboration: Ferdinando Gliozzi (INFN Torino)Michele Pepe (INFN Milano)

String Dynamics in Yang-Mills Theory

Uwe-Jens Wiese

Albert Einstein Center for Fundamental PhysicsInstitute for Theoretical Physics, Bern University

Workshop on “Strongly Interacting Field Theories”Jena, October 1, 2010

Collaboration: Ferdinando Gliozzi (INFN Torino)Michele Pepe (INFN Milano)

Outline

Yang-Mills Theory

Systematic Low-Energy Effective String Theory

Luscher-Weisz Multi-Level Simulation Technique

String Width at Zero and at Finite Temperature

String Breaking and String Decay

Exceptional Confinement in G (2) Yang-Mills Theory

Conclusions

Outline

Yang-Mills Theory

Systematic Low-Energy Effective String Theory

Luscher-Weisz Multi-Level Simulation Technique

String Width at Zero and at Finite Temperature

String Breaking and String Decay

Exceptional Confinement in G (2) Yang-Mills Theory

Conclusions

Yang-Mills theory

Gµ(x) = igG aµ(x)T a, a ∈ 1, 2, . . . , nG,

Gµν(x) = ∂µGν(x)− ∂νGµ(x) + [Gµ(x),Gν(x)],

S [Gµ] =

∫d4x

1

4g2Tr[GµνGµν ]

Main sequence gauge groups

group SU(N) Sp(N) SO(2N + 1) SO(4N) SO(4N + 2)

nG N2 − 1 2N2 + N 2N2 + N 8N2 − 2N 8N2 + 6N + 1rank N − 1 N N 2N 2N + 1

center Z(N) Z(2) Z(2) Z(2)× Z(2) Z(4)

Exceptional gauge groups

group G (2) F (4) E (6) E (7) E (8)

nG 14 52 78 133 248rank 2 4 6 7 8

center 1 1 Z(3) Z(2) 1

Yang-Mills theory

Gµ(x) = igG aµ(x)T a, a ∈ 1, 2, . . . , nG,

Gµν(x) = ∂µGν(x)− ∂νGµ(x) + [Gµ(x),Gν(x)],

S [Gµ] =

∫d4x

1

4g2Tr[GµνGµν ]

Main sequence gauge groups

group SU(N) Sp(N) SO(2N + 1) SO(4N) SO(4N + 2)

nG N2 − 1 2N2 + N 2N2 + N 8N2 − 2N 8N2 + 6N + 1rank N − 1 N N 2N 2N + 1

center Z(N) Z(2) Z(2) Z(2)× Z(2) Z(4)

Exceptional gauge groups

group G (2) F (4) E (6) E (7) E (8)

nG 14 52 78 133 248rank 2 4 6 7 8

center 1 1 Z(3) Z(2) 1

Yang-Mills theory

Gµ(x) = igG aµ(x)T a, a ∈ 1, 2, . . . , nG,

Gµν(x) = ∂µGν(x)− ∂νGµ(x) + [Gµ(x),Gν(x)],

S [Gµ] =

∫d4x

1

4g2Tr[GµνGµν ]

Main sequence gauge groups

group SU(N) Sp(N) SO(2N + 1) SO(4N) SO(4N + 2)

nG N2 − 1 2N2 + N 2N2 + N 8N2 − 2N 8N2 + 6N + 1rank N − 1 N N 2N 2N + 1

center Z(N) Z(2) Z(2) Z(2)× Z(2) Z(4)

Exceptional gauge groups

group G (2) F (4) E (6) E (7) E (8)

nG 14 52 78 133 248rank 2 4 6 7 8

center 1 1 Z(3) Z(2) 1

String tension from Polyakov loop correlators

@ @

0 rt = 0

t = β = 1/T

Φ(~x) = Tr P exp

(∫ β

0dt G0(~x , t)

),

〈Φ(0)∗Φ(r)〉 ∼ exp (−βV (r)) , V (r) ∼ σr

σ ≈ (0.4GeV)2 ≈ 105NAs strong as a cm-thick steel cable, but 13 orders of magnitude thinner.

String tension from Polyakov loop correlators

@ @

0 rt = 0

t = β = 1/T

Φ(~x) = Tr P exp

(∫ β

0dt G0(~x , t)

),

〈Φ(0)∗Φ(r)〉 ∼ exp (−βV (r)) , V (r) ∼ σr

σ ≈ (0.4GeV)2 ≈ 105N

As strong as a cm-thick steel cable, but 13 orders of magnitude thinner.

String tension from Polyakov loop correlators

@ @

0 rt = 0

t = β = 1/T

Φ(~x) = Tr P exp

(∫ β

0dt G0(~x , t)

),

〈Φ(0)∗Φ(r)〉 ∼ exp (−βV (r)) , V (r) ∼ σr

σ ≈ (0.4GeV)2 ≈ 105NAs strong as a cm-thick steel cable, but 13 orders of magnitude thinner.

How many people can be lifted by a Yang-Mills elevator?

@Gravity F = Mg

@ String tension σ

Mg = σ ≈ 105N, g ≈ 10m/sec2 ⇒ M ≈ 104kg ≈ 100 People

How many people can be lifted by a Yang-Mills elevator?

@Gravity F = Mg

@ String tension σ

Mg = σ ≈ 105N, g ≈ 10m/sec2 ⇒ M ≈ 104kg ≈ 100 People

How many people can be lifted by a Yang-Mills elevator?

@Gravity F = Mg

@ String tension σ

Mg = σ ≈ 105N, g ≈ 10m/sec2 ⇒ M ≈ 104kg ≈ 100 People

How many people can be lifted by a Yang-Mills elevator?

@Gravity F = Mg

@ String tension σ

Mg = σ ≈ 105N, g ≈ 10m/sec2 ⇒ M ≈ 104kg ≈ 100 People

Outline

Yang-Mills Theory

Systematic Low-Energy Effective String Theory

Luscher-Weisz Multi-Level Simulation Technique

String Width at Zero and at Finite Temperature

String Breaking and String Decay

Exceptional Confinement in G (2) Yang-Mills Theory

Conclusions

Low-energy effective string theory

@ @

0 r

The height variable ~h(x , t) points to the fluctuating string world-sheet in

the (d − 2) transverse dimensions (~h(0, t) = ~h(r , t) = 0).

S [~h] =

∫ β

0

dt

∫ r

0

dxσ

2∂µ~h · ∂µ

~h, µ ∈ 0, 1,

V (r) = σr − π(d − 2)

24r+O(1/r3),

w2lo(r/2) =

d − 2

2πσlog(r/r0)

M. Luscher, K. Symanzik, P. Weisz, Nucl. Phys. B173 (1980) 365M. Luscher, Nucl. Phys. B180 (1981) 317M. Luscher, G. Munster, P. Weisz, Nucl. Phys. B180 (1981) 1

Low-energy effective string theory

@ @

0 r

The height variable ~h(x , t) points to the fluctuating string world-sheet in

the (d − 2) transverse dimensions (~h(0, t) = ~h(r , t) = 0).

S [~h] =

∫ β

0

dt

∫ r

0

dxσ

2∂µ~h · ∂µ

~h, µ ∈ 0, 1,

V (r) = σr − π(d − 2)

24r+O(1/r3),

w2lo(r/2) =

d − 2

2πσlog(r/r0)

M. Luscher, K. Symanzik, P. Weisz, Nucl. Phys. B173 (1980) 365M. Luscher, Nucl. Phys. B180 (1981) 317M. Luscher, G. Munster, P. Weisz, Nucl. Phys. B180 (1981) 1

Low-energy effective string theory

@ @

0 r

The height variable ~h(x , t) points to the fluctuating string world-sheet in

the (d − 2) transverse dimensions (~h(0, t) = ~h(r , t) = 0).

S [~h] =

∫ β

0

dt

∫ r

0

dxσ

2∂µ~h · ∂µ

~h, µ ∈ 0, 1,

V (r) = σr − π(d − 2)

24r+O(1/r3),

w2lo(r/2) =

d − 2

2πσlog(r/r0)

M. Luscher, K. Symanzik, P. Weisz, Nucl. Phys. B173 (1980) 365M. Luscher, Nucl. Phys. B180 (1981) 317M. Luscher, G. Munster, P. Weisz, Nucl. Phys. B180 (1981) 1

Low-energy effective string theory

@ @

0 r

The height variable ~h(x , t) points to the fluctuating string world-sheet in

the (d − 2) transverse dimensions (~h(0, t) = ~h(r , t) = 0).

S [~h] =

∫ β

0

dt

∫ r

0

dxσ

2∂µ~h · ∂µ

~h, µ ∈ 0, 1,

V (r) = σr − π(d − 2)

24r+O(1/r3),

w2lo(r/2) =

d − 2

2πσlog(r/r0)

M. Luscher, K. Symanzik, P. Weisz, Nucl. Phys. B173 (1980) 365M. Luscher, Nucl. Phys. B180 (1981) 317M. Luscher, G. Munster, P. Weisz, Nucl. Phys. B180 (1981) 1

Low-energy effective string theory

@ @

0 r

The height variable ~h(x , t) points to the fluctuating string world-sheet in

the (d − 2) transverse dimensions (~h(0, t) = ~h(r , t) = 0).

S [~h] =

∫ β

0

dt

∫ r

0

dxσ

2∂µ~h · ∂µ

~h, µ ∈ 0, 1,

V (r) = σr − π(d − 2)

24r+O(1/r3),

w2lo(r/2) =

d − 2

2πσlog(r/r0)

M. Luscher, K. Symanzik, P. Weisz, Nucl. Phys. B173 (1980) 365M. Luscher, Nucl. Phys. B180 (1981) 317M. Luscher, G. Munster, P. Weisz, Nucl. Phys. B180 (1981) 1

Low-energy effective string theory

@ @

0 r

The height variable ~h(x , t) points to the fluctuating string world-sheet in

the (d − 2) transverse dimensions (~h(0, t) = ~h(r , t) = 0).

S [~h] =

∫ β

0

dt

∫ r

0

dxσ

2∂µ~h · ∂µ

~h, µ ∈ 0, 1,

V (r) = σr − π(d − 2)

24r+O(1/r3),

w2lo(r/2) =

d − 2

2πσlog(r/r0)

M. Luscher, K. Symanzik, P. Weisz, Nucl. Phys. B173 (1980) 365M. Luscher, Nucl. Phys. B180 (1981) 317M. Luscher, G. Munster, P. Weisz, Nucl. Phys. B180 (1981) 1

Low-energy effective string theory

@ @

0 r

The height variable ~h(x , t) points to the fluctuating string world-sheet in

the (d − 2) transverse dimensions (~h(0, t) = ~h(r , t) = 0).

S [~h] =

∫ β

0

dt

∫ r

0

dxσ

2∂µ~h · ∂µ

~h, µ ∈ 0, 1,

V (r) = σr − π(d − 2)

24r+O(1/r3),

w2lo(r/2) =

d − 2

2πσlog(r/r0)

M. Luscher, K. Symanzik, P. Weisz, Nucl. Phys. B173 (1980) 365M. Luscher, Nucl. Phys. B180 (1981) 317M. Luscher, G. Munster, P. Weisz, Nucl. Phys. B180 (1981) 1

Effective string theory for d = 3 at the 2-loop level

S [h] =

∫ β

0dt

∫ r

0dx

σ

2

[∂µh∂µh −

1

8σ(∂µh∂µh)2

]Even to the next order, the action agrees with the one of theNambu-Goto string.O. Aharony and E. Karzbrun, JHEP 0906 (2009) 012

w2(r/2) = 〈h(r/2, t) h(r/2 + ε, t + ε′)〉

=

(1 +

4πf (τ)

σr2

)w2

lo(r/2)− f (τ) + g(τ)

σ2r2,

f (τ) =E2(τ)− 4E2(2τ)

48,

g(τ) = iπτ

(E2(τ)

12− q

d

dq

)(f (τ) +

E2(τ)

16

)+

E2(τ)

96,

E2(τ) = 1− 24∞∑

n=1

n qn

1− qn, q = exp(2πiτ), τ = iβ/2r

F. Gliozzi, M. Pepe, UJW, arXiv:1006.2252 [hep-lat]

Effective string theory for d = 3 at the 2-loop level

S [h] =

∫ β

0dt

∫ r

0dx

σ

2

[∂µh∂µh −

1

8σ(∂µh∂µh)2

]Even to the next order, the action agrees with the one of theNambu-Goto string.O. Aharony and E. Karzbrun, JHEP 0906 (2009) 012

w2(r/2) = 〈h(r/2, t) h(r/2 + ε, t + ε′)〉

=

(1 +

4πf (τ)

σr2

)w2

lo(r/2)− f (τ) + g(τ)

σ2r2,

f (τ) =E2(τ)− 4E2(2τ)

48,

g(τ) = iπτ

(E2(τ)

12− q

d

dq

)(f (τ) +

E2(τ)

16

)+

E2(τ)

96,

E2(τ) = 1− 24∞∑

n=1

n qn

1− qn, q = exp(2πiτ), τ = iβ/2r

F. Gliozzi, M. Pepe, UJW, arXiv:1006.2252 [hep-lat]

Outline

Yang-Mills Theory

Systematic Low-Energy Effective String Theory

Luscher-Weisz Multi-Level Simulation Technique

String Width at Zero and at Finite Temperature

String Breaking and String Decay

Exceptional Confinement in G (2) Yang-Mills Theory

Conclusions

Two-link operators

x1

x0

r

T (t)αβγδ = U0(0, t)∗αβU0(r , t)γδ

Multiplication law

T (t)T (t + a)αβγδ = T (t)αλγεT (t + a)λβεδ

Polyakov loop correlator

Φ(0)∗Φ(r) = T (0)T (a) . . .T (β − a)ααγγ

M. Luscher and P. Weisz, JHEP 0109 (2001) 010

Two-link operators

x1

x0

r

T (t)αβγδ = U0(0, t)∗αβU0(r , t)γδ

Multiplication law

T (t)T (t + a)αβγδ = T (t)αλγεT (t + a)λβεδ

Polyakov loop correlator

Φ(0)∗Φ(r) = T (0)T (a) . . .T (β − a)ααγγ

M. Luscher and P. Weisz, JHEP 0109 (2001) 010

Two-link operators

x1

x0

r

T (t)αβγδ = U0(0, t)∗αβU0(r , t)γδ

Multiplication law

T (t)T (t + a)αβγδ = T (t)αλγεT (t + a)λβεδ

Polyakov loop correlator

Φ(0)∗Φ(r) = T (0)T (a) . . .T (β − a)ααγγ

M. Luscher and P. Weisz, JHEP 0109 (2001) 010

Sub-lattice expectation value

[T (t) . . .T (t ′)] =1

Zsub

∫DUsub T (t) . . .T (t ′) exp(−S [U]sub)

〈Φ(0)∗Φ(r)〉 = 〈[T (0)T (a)] . . . [T (β − 2a)T (β − a)]ααγγ〉

Sub-lattice expectation value

[T (t) . . .T (t ′)] =1

Zsub

∫DUsub T (t) . . .T (t ′) exp(−S [U]sub)

〈Φ(0)∗Φ(r)〉 = 〈[T (0)T (a)] . . . [T (β − 2a)T (β − a)]ααγγ〉

Sub-lattice expectation value

[T (t) . . .T (t ′)] =1

Zsub

∫DUsub T (t) . . .T (t ′) exp(−S [U]sub)

〈Φ(0)∗Φ(r)〉 = 〈[T (0)T (a)] . . . [T (β − 2a)T (β − a)]ααγγ〉

Sub-lattice expectation value

[T (t) . . .T (t ′)] =1

Zsub

∫DUsub T (t) . . .T (t ′) exp(−S [U]sub)

〈Φ(0)∗Φ(r)〉 = 〈[T (0)T (a)] . . . [T (β − 2a)T (β − a)]ααγγ〉

Sub-lattice expectation value

[T (t) . . .T (t ′)] =1

Zsub

∫DUsub T (t) . . .T (t ′) exp(−S [U]sub)

〈Φ(0)∗Φ(r)〉 = 〈[T (0)T (a)] . . . [T (β − 2a)T (β − a)]ααγγ〉

Outline

Yang-Mills Theory

Systematic Low-Energy Effective String Theory

Luscher-Weisz Multi-Level Simulation Technique

String Width at Zero and at Finite Temperature

String Breaking and String Decay

Exceptional Confinement in G (2) Yang-Mills Theory

Conclusions

Simulations in (2 + 1)-d SU(2) Yang-Mills theory

S [U] = − 1

g2

∑x ,µ,ν

Tr[Uµ(x)Uν(x + µ)Uµ(x + ν)†Uν(x)†],

〈Φ(0)Φ(r)〉 =1

Z

∫DU Φ(0)Φ(r) exp(−S [U]) ∼ exp(−βV (r))

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 4 6 8 10 12 14 16

V(R) = a + b R + c/Rspin 1/2

V (r) = σr − π24r + . . .

There is very good agreement with the effective string theory.The value of the string tension obtained on a 542 × 48 lattice at4/g2 = 9 is σ = 0.025897(15)/a2.

Simulations in (2 + 1)-d SU(2) Yang-Mills theory

S [U] = − 1

g2

∑x ,µ,ν

Tr[Uµ(x)Uν(x + µ)Uµ(x + ν)†Uν(x)†],

〈Φ(0)Φ(r)〉 =1

Z

∫DU Φ(0)Φ(r) exp(−S [U]) ∼ exp(−βV (r))

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 4 6 8 10 12 14 16

V(R) = a + b R + c/Rspin 1/2

V (r) = σr − π24r + . . .

There is very good agreement with the effective string theory.The value of the string tension obtained on a 542 × 48 lattice at4/g2 = 9 is σ = 0.025897(15)/a2.

Simulations in (2 + 1)-d SU(2) Yang-Mills theory

S [U] = − 1

g2

∑x ,µ,ν

Tr[Uµ(x)Uν(x + µ)Uµ(x + ν)†Uν(x)†],

〈Φ(0)Φ(r)〉 =1

Z

∫DU Φ(0)Φ(r) exp(−S [U]) ∼ exp(−βV (r))

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 4 6 8 10 12 14 16

V(R) = a + b R + c/Rspin 1/2

V (r) = σr − π24r + . . .

There is very good agreement with the effective string theory.The value of the string tension obtained on a 542 × 48 lattice at4/g2 = 9 is σ = 0.025897(15)/a2.

Computation of the string width

P(x) = Tr[U1(x)U0(x + 1)U1(x + 0)†U0(x)†],

C (x2) =〈Φ(0)Φ(r)P(x)〉〈Φ(0)Φ(r)〉

− 〈P(x)〉

0.88545

0.8855

0.88555

0.8856

0.88565

0.8857

0.88575

0.8858

0 2 4 6 8 10 12 14 16 18

fitdata

2

4

6

8

10

12

14

5 10 15 20 25

fit w2(r/2)

There is very good agreement with the effective string theory at thetwo-loop level. The values of the low-energy parameters areσ = 0.025897(15)/a2, r0 = 2.26(2)a = 0.364(4)/

√σ ≈ 0.2 fm.

F. Gliozzi, M. Pepe, UJW, Phys. Rev. Lett. 104 (2010) 232001

Computation of the string width

P(x) = Tr[U1(x)U0(x + 1)U1(x + 0)†U0(x)†],

C (x2) =〈Φ(0)Φ(r)P(x)〉〈Φ(0)Φ(r)〉

− 〈P(x)〉

0.88545

0.8855

0.88555

0.8856

0.88565

0.8857

0.88575

0.8858

0 2 4 6 8 10 12 14 16 18

fitdata

2

4

6

8

10

12

14

5 10 15 20 25

fit w2(r/2)

There is very good agreement with the effective string theory at thetwo-loop level. The values of the low-energy parameters areσ = 0.025897(15)/a2, r0 = 2.26(2)a = 0.364(4)/

√σ ≈ 0.2 fm.

F. Gliozzi, M. Pepe, UJW, Phys. Rev. Lett. 104 (2010) 232001

Computation of the string width

P(x) = Tr[U1(x)U0(x + 1)U1(x + 0)†U0(x)†],

C (x2) =〈Φ(0)Φ(r)P(x)〉〈Φ(0)Φ(r)〉

− 〈P(x)〉

0.88545

0.8855

0.88555

0.8856

0.88565

0.8857

0.88575

0.8858

0 2 4 6 8 10 12 14 16 18

fitdata

2

4

6

8

10

12

14

5 10 15 20 25

fit w2(r/2)

There is very good agreement with the effective string theory at thetwo-loop level. The values of the low-energy parameters areσ = 0.025897(15)/a2, r0 = 2.26(2)a = 0.364(4)/

√σ ≈ 0.2 fm.

F. Gliozzi, M. Pepe, UJW, Phys. Rev. Lett. 104 (2010) 232001

String width at finite temperature

w2(r/2) =1

2πσlog

4r0

)+

r

2β+ . . .

At finite temperature, the effective string theory predicts a linear increaseof the width as one separates the static sources.

4

6

8

10

12

14

16

18

20

5 10 15 20 25

Again, there is excellent agreement with the effective string theory at thetwo-loop level, now without any adjustable parameters.F. Gliozzi, M. Pepe, UJW, to be published

String width at finite temperature

w2(r/2) =1

2πσlog

4r0

)+

r

2β+ . . .

At finite temperature, the effective string theory predicts a linear increaseof the width as one separates the static sources.

4

6

8

10

12

14

16

18

20

5 10 15 20 25

Again, there is excellent agreement with the effective string theory at thetwo-loop level, now without any adjustable parameters.F. Gliozzi, M. Pepe, UJW, to be published

String width at finite temperature

w2(r/2) =1

2πσlog

4r0

)+

r

2β+ . . .

At finite temperature, the effective string theory predicts a linear increaseof the width as one separates the static sources.

4

6

8

10

12

14

16

18

20

5 10 15 20 25

Again, there is excellent agreement with the effective string theory at thetwo-loop level, now without any adjustable parameters.F. Gliozzi, M. Pepe, UJW, to be published

Outline

Yang-Mills Theory

Systematic Low-Energy Effective String Theory

Luscher-Weisz Multi-Level Simulation Technique

String Width at Zero and at Finite Temperature

String Breaking and String Decay

Exceptional Confinement in G (2) Yang-Mills Theory

Conclusions

String breaking

and string decay (strand rupture)

Static potential between triplet (Q = 1) charges in (2+1)-d SU(2)Yang-Mills theory

0

0.5

1

1.5

2

2 4 6 8 10 12 14 16

V(R)spin 1

M. Pepe and UJW, Phys. Rev. Lett. 102 (2009) 191601

String breaking and string decay (strand rupture)

Static potential between triplet (Q = 1) charges in (2+1)-d SU(2)Yang-Mills theory

0

0.5

1

1.5

2

2 4 6 8 10 12 14 16

V(R)spin 1

M. Pepe and UJW, Phys. Rev. Lett. 102 (2009) 191601

String breaking and string decay (strand rupture)

Static potential between triplet (Q = 1) charges in (2+1)-d SU(2)Yang-Mills theory

0

0.5

1

1.5

2

2 4 6 8 10 12 14 16

V(R)spin 1

M. Pepe and UJW, Phys. Rev. Lett. 102 (2009) 191601

String breaking and string decay (strand rupture)

Static potential between triplet (Q = 1) charges in (2+1)-d SU(2)Yang-Mills theory

0

0.5

1

1.5

2

2 4 6 8 10 12 14 16

V(R)spin 1

M. Pepe and UJW, Phys. Rev. Lett. 102 (2009) 191601

String decay

1

1.5

2

2.5

3

3.5

4

2 4 6 8 10 12 14 16

fitQ = 1/2Q = 3/2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2 4 6 8 10 12 14

fitQ = 1/2Q = 3/2

Potential and force between quadruplet (Q = 3/2) charges

2

2.5

3

3.5

4

4.5

5

2 4 6 8 10 12 14 16

fitQ = 1Q = 2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2 4 6 8 10 12 14

fitQ = 1Q = 2

Potential and force between quintet (Q = 2) charges

String decay

1

1.5

2

2.5

3

3.5

4

2 4 6 8 10 12 14 16

fitQ = 1/2Q = 3/2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2 4 6 8 10 12 14

fitQ = 1/2Q = 3/2

Potential and force between quadruplet (Q = 3/2) charges

2

2.5

3

3.5

4

4.5

5

2 4 6 8 10 12 14 16

fitQ = 1Q = 2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2 4 6 8 10 12 14

fitQ = 1Q = 2

Potential and force between quintet (Q = 2) charges

Constituent gluon model: EQ,n(r) = σQr − cQ

r+ 2MQ,n

H1(r) =

(E1,0(r) A

A E0,1(r)

),

H3/2(r) =

(E3/2,0(r) B

B E1/2,1(r)

),

H2(r) =

E2,0(r) C 0C E1,1(r) A0 A E0,2(r)

,

Q σQa2 σQ/σ 4Q(Q + 1)/3

1/2 0.06397(3) 1 1

1 0.144(1) 2.25(2) 8/3

3/2 0.241(5) 3.77(8) 5

2 0.385(5) 6.02(8) 8

We observe deviations from Casimir scaling.

Constituent gluon model: EQ,n(r) = σQr − cQ

r+ 2MQ,n

H1(r) =

(E1,0(r) A

A E0,1(r)

),

H3/2(r) =

(E3/2,0(r) B

B E1/2,1(r)

),

H2(r) =

E2,0(r) C 0C E1,1(r) A0 A E0,2(r)

,

Q σQa2 σQ/σ 4Q(Q + 1)/3

1/2 0.06397(3) 1 1

1 0.144(1) 2.25(2) 8/3

3/2 0.241(5) 3.77(8) 5

2 0.385(5) 6.02(8) 8

We observe deviations from Casimir scaling.

Masses and mass differences: ∆Q,n = MQ−1,n+1 −MQ,n

Q MQ,0a MQ−1,1a MQ−2,2a ∆Q,0a ∆Q−1,1a

1/2 0.109(1) — — — —

1 0.37(3) 1.038(1) — 0.67(3) —

3/2 0.72(5) 1.32(5) — 0.60(5) —

2 1.04(3) 1.71(3) 2.42(1) 0.67(3) 0.71(3)

Constituent gluon mass:MG = 0.65(4)/a = 2.6(2)

√σ ≈ 1 GeV

0+ glueball mass: M0+ = 1.198(25)/aH. Meyer and M. Teper, Nucl. Phys. B668 (2003) 111

A simple constituent gluon model describes the data rather well.

Masses and mass differences: ∆Q,n = MQ−1,n+1 −MQ,n

Q MQ,0a MQ−1,1a MQ−2,2a ∆Q,0a ∆Q−1,1a

1/2 0.109(1) — — — —

1 0.37(3) 1.038(1) — 0.67(3) —

3/2 0.72(5) 1.32(5) — 0.60(5) —

2 1.04(3) 1.71(3) 2.42(1) 0.67(3) 0.71(3)

Constituent gluon mass:MG = 0.65(4)/a = 2.6(2)

√σ ≈ 1 GeV

0+ glueball mass: M0+ = 1.198(25)/aH. Meyer and M. Teper, Nucl. Phys. B668 (2003) 111

A simple constituent gluon model describes the data rather well.

Masses and mass differences: ∆Q,n = MQ−1,n+1 −MQ,n

Q MQ,0a MQ−1,1a MQ−2,2a ∆Q,0a ∆Q−1,1a

1/2 0.109(1) — — — —

1 0.37(3) 1.038(1) — 0.67(3) —

3/2 0.72(5) 1.32(5) — 0.60(5) —

2 1.04(3) 1.71(3) 2.42(1) 0.67(3) 0.71(3)

Constituent gluon mass:MG = 0.65(4)/a = 2.6(2)

√σ ≈ 1 GeV

0+ glueball mass: M0+ = 1.198(25)/aH. Meyer and M. Teper, Nucl. Phys. B668 (2003) 111

A simple constituent gluon model describes the data rather well.

Masses and mass differences: ∆Q,n = MQ−1,n+1 −MQ,n

Q MQ,0a MQ−1,1a MQ−2,2a ∆Q,0a ∆Q−1,1a

1/2 0.109(1) — — — —

1 0.37(3) 1.038(1) — 0.67(3) —

3/2 0.72(5) 1.32(5) — 0.60(5) —

2 1.04(3) 1.71(3) 2.42(1) 0.67(3) 0.71(3)

Constituent gluon mass:MG = 0.65(4)/a = 2.6(2)

√σ ≈ 1 GeV

0+ glueball mass: M0+ = 1.198(25)/aH. Meyer and M. Teper, Nucl. Phys. B668 (2003) 111

A simple constituent gluon model describes the data rather well.

Outline

Yang-Mills Theory

Systematic Low-Energy Effective String Theory

Luscher-Weisz Multi-Level Simulation Technique

String Width at Zero and at Finite Temperature

String Breaking and String Decay

Exceptional Confinement in G (2) Yang-Mills Theory

Conclusions

Exceptional Lie Group G (2) ⊂ SO(7)

ΩabΩac = δbc , Tabc = Tdef ΩdaΩebΩfc ,

T127 = T154 = T163 = T235 = T264 = T374 = T576 = 1

0

0

3

4

6

7

5

12

1/ 3

1/2 3

−1/2 3

−1/2 1/2

−1/ 3

0

0 TT

V

V

U

U

X

X

Z

Z

Y

Y

+

+

+

+

+

−−

+

1/2 1−1 −1/2

1 / 3

3 / 2

−1/ 2 3

− 3 / 2

7 = 3 ⊕ 3 ⊕ 1,

14 = 8 ⊕ 3 ⊕ 3

The fact that G (2) has a trivial center causes exceptional confinement.K. Holland, P. Minkowski, M. Pepe, UJW, Nucl. Phys. B668 (2003) 207

Exceptional Lie Group G (2) ⊂ SO(7)

ΩabΩac = δbc , Tabc = Tdef ΩdaΩebΩfc ,

T127 = T154 = T163 = T235 = T264 = T374 = T576 = 1

0

0

3

4

6

7

5

12

1/ 3

1/2 3

−1/2 3

−1/2 1/2

−1/ 3

0

0 TT

V

V

U

U

X

X

Z

Z

Y

Y

+

+

+

+

+

−−

+

1/2 1−1 −1/2

1 / 3

3 / 2

−1/ 2 3

− 3 / 2

7 = 3 ⊕ 3 ⊕ 1,

14 = 8 ⊕ 3 ⊕ 3

The fact that G (2) has a trivial center causes exceptional confinement.K. Holland, P. Minkowski, M. Pepe, UJW, Nucl. Phys. B668 (2003) 207

Exceptional Lie Group G (2) ⊂ SO(7)

ΩabΩac = δbc , Tabc = Tdef ΩdaΩebΩfc ,

T127 = T154 = T163 = T235 = T264 = T374 = T576 = 1

0

0

3

4

6

7

5

12

1/ 3

1/2 3

−1/2 3

−1/2 1/2

−1/ 3

0

0 TT

V

V

U

U

X

X

Z

Z

Y

Y

+

+

+

+

+

−−

+

1/2 1−1 −1/2

1 / 3

3 / 2

−1/ 2 3

− 3 / 2

7 = 3 ⊕ 3 ⊕ 1, 14 = 8 ⊕ 3 ⊕ 3

The fact that G (2) has a trivial center causes exceptional confinement.K. Holland, P. Minkowski, M. Pepe, UJW, Nucl. Phys. B668 (2003) 207

Exceptional Lie Group G (2) ⊂ SO(7)

ΩabΩac = δbc , Tabc = Tdef ΩdaΩebΩfc ,

T127 = T154 = T163 = T235 = T264 = T374 = T576 = 1

0

0

3

4

6

7

5

12

1/ 3

1/2 3

−1/2 3

−1/2 1/2

−1/ 3

0

0 TT

V

V

U

U

X

X

Z

Z

Y

Y

+

+

+

+

+

−−

+

1/2 1−1 −1/2

1 / 3

3 / 2

−1/ 2 3

− 3 / 2

7 = 3 ⊕ 3 ⊕ 1, 14 = 8 ⊕ 3 ⊕ 3

The fact that G (2) has a trivial center causes exceptional confinement.K. Holland, P. Minkowski, M. Pepe, UJW, Nucl. Phys. B668 (2003) 207

Casimir Scaling in G (2) Yang-Mills Theory

14 ⊗ 14 ⊗ 14 = 1 ⊕ 7 ⊕ 5 14 ⊕ 3 27 ⊕ 2 64⊕ 4 77 ⊕ 3 77′ ⊕ 182 ⊕ 3 189⊕ 273 ⊕ 2 448

Three gluons can screen a single quark.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4 5 6 7

Vst

.at

r/as

71427647777’

L. Liptak and S. Olejnik, Phys. Rev. D78 (2008) 074501B. H. Wellegehausen, A. Wipf, and C. Wozar, arXiv:1006.2305

Casimir Scaling in G (2) Yang-Mills Theory

14 ⊗ 14 ⊗ 14 = 1 ⊕ 7 ⊕ 5 14 ⊕ 3 27 ⊕ 2 64⊕ 4 77 ⊕ 3 77′ ⊕ 182 ⊕ 3 189⊕ 273 ⊕ 2 448

Three gluons can screen a single quark.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4 5 6 7

Vst

.at

r/as

71427647777’

L. Liptak and S. Olejnik, Phys. Rev. D78 (2008) 074501B. H. Wellegehausen, A. Wipf, and C. Wozar, arXiv:1006.2305

Casimir Scaling in G (2) Yang-Mills Theory

14 ⊗ 14 ⊗ 14 = 1 ⊕ 7 ⊕ 5 14 ⊕ 3 27 ⊕ 2 64⊕ 4 77 ⊕ 3 77′ ⊕ 182 ⊕ 3 189⊕ 273 ⊕ 2 448

Three gluons can screen a single quark.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4 5 6 7

Vst

.at

r/as

71427647777’

L. Liptak and S. Olejnik, Phys. Rev. D78 (2008) 074501B. H. Wellegehausen, A. Wipf, and C. Wozar, arXiv:1006.2305

String Breaking in 3-d G (2) Yang-Mills Theory

14 ⊗ 14 ⊗ 14 = 1 ⊕ 7 ⊕ 5 14 ⊕ 3 27 ⊕ 2 64⊕ 4 77 ⊕ 3 77′ ⊕ 182 ⊕ 3 189⊕ 273 ⊕ 2 448

One or two gluons cannot screen a fundamental quark to a smallercharge, but three can.

B. H. Wellegehausen, A. Wipf, and C. Wozar, arXiv:1006.2305The fundamental string breaks by the simultaneous creation of six gluons,without intermediate string decay.

String Breaking in 3-d G (2) Yang-Mills Theory

14 ⊗ 14 ⊗ 14 = 1 ⊕ 7 ⊕ 5 14 ⊕ 3 27 ⊕ 2 64⊕ 4 77 ⊕ 3 77′ ⊕ 182 ⊕ 3 189⊕ 273 ⊕ 2 448

One or two gluons cannot screen a fundamental quark to a smallercharge, but three can.

B. H. Wellegehausen, A. Wipf, and C. Wozar, arXiv:1006.2305The fundamental string breaks by the simultaneous creation of six gluons,without intermediate string decay.

String Breaking in 3-d G (2) Yang-Mills Theory

14 ⊗ 14 ⊗ 14 = 1 ⊕ 7 ⊕ 5 14 ⊕ 3 27 ⊕ 2 64⊕ 4 77 ⊕ 3 77′ ⊕ 182 ⊕ 3 189⊕ 273 ⊕ 2 448

One or two gluons cannot screen a fundamental quark to a smallercharge, but three can.

B. H. Wellegehausen, A. Wipf, and C. Wozar, arXiv:1006.2305

The fundamental string breaks by the simultaneous creation of six gluons,without intermediate string decay.

String Breaking in 3-d G (2) Yang-Mills Theory

14 ⊗ 14 ⊗ 14 = 1 ⊕ 7 ⊕ 5 14 ⊕ 3 27 ⊕ 2 64⊕ 4 77 ⊕ 3 77′ ⊕ 182 ⊕ 3 189⊕ 273 ⊕ 2 448

One or two gluons cannot screen a fundamental quark to a smallercharge, but three can.

B. H. Wellegehausen, A. Wipf, and C. Wozar, arXiv:1006.2305The fundamental string breaks by the simultaneous creation of six gluons,without intermediate string decay.

Outline

Yang-Mills Theory

Systematic Low-Energy Effective String Theory

Luscher-Weisz Multi-Level Simulation Technique

String Width at Zero and at Finite Temperature

String Breaking and String Decay

Exceptional Confinement in G (2) Yang-Mills Theory

Conclusions

Conclusions

• In Yang-Mills theory there is a systematic low-energy effective stringtheory (analogous to chiral perturbation theory in QCD), which describesthe dynamics of the Goldstone modes of the spontaneously brokentranslation symmetry of the string world-sheet.

• The effective theory has been tested at the two-loop level with veryhigh precision using the Luscher and Weisz multi-level simulationtechnique, which led to the determination of low-energy parameter r0.

• Strings connecting static charges in higher representations may decaybefore they break completely.

• A constitutent gluon model accounts for the “brown muck”surrounding a screened color charge.

• The exceptional group G (2) is the smallest one with a trivial center.One observes Casimir scaling at the few percent accuracy level.A fundamental 7 quark can bescreened by three adjoint 14 gluons.

The fundamental G (2) string breaks by the simultaneous creation of six

gluons without string decay.

Conclusions

• In Yang-Mills theory there is a systematic low-energy effective stringtheory (analogous to chiral perturbation theory in QCD), which describesthe dynamics of the Goldstone modes of the spontaneously brokentranslation symmetry of the string world-sheet.

• The effective theory has been tested at the two-loop level with veryhigh precision using the Luscher and Weisz multi-level simulationtechnique, which led to the determination of low-energy parameter r0.

• Strings connecting static charges in higher representations may decaybefore they break completely.

• A constitutent gluon model accounts for the “brown muck”surrounding a screened color charge.

• The exceptional group G (2) is the smallest one with a trivial center.One observes Casimir scaling at the few percent accuracy level.A fundamental 7 quark can bescreened by three adjoint 14 gluons.

The fundamental G (2) string breaks by the simultaneous creation of six

gluons without string decay.

Conclusions

• In Yang-Mills theory there is a systematic low-energy effective stringtheory (analogous to chiral perturbation theory in QCD), which describesthe dynamics of the Goldstone modes of the spontaneously brokentranslation symmetry of the string world-sheet.

• The effective theory has been tested at the two-loop level with veryhigh precision using the Luscher and Weisz multi-level simulationtechnique, which led to the determination of low-energy parameter r0.

• Strings connecting static charges in higher representations may decaybefore they break completely.

• A constitutent gluon model accounts for the “brown muck”surrounding a screened color charge.

• The exceptional group G (2) is the smallest one with a trivial center.One observes Casimir scaling at the few percent accuracy level.A fundamental 7 quark can bescreened by three adjoint 14 gluons.

The fundamental G (2) string breaks by the simultaneous creation of six

gluons without string decay.

Conclusions

• In Yang-Mills theory there is a systematic low-energy effective stringtheory (analogous to chiral perturbation theory in QCD), which describesthe dynamics of the Goldstone modes of the spontaneously brokentranslation symmetry of the string world-sheet.

• The effective theory has been tested at the two-loop level with veryhigh precision using the Luscher and Weisz multi-level simulationtechnique, which led to the determination of low-energy parameter r0.

• Strings connecting static charges in higher representations may decaybefore they break completely.

• A constitutent gluon model accounts for the “brown muck”surrounding a screened color charge.

• The exceptional group G (2) is the smallest one with a trivial center.One observes Casimir scaling at the few percent accuracy level.A fundamental 7 quark can bescreened by three adjoint 14 gluons.

The fundamental G (2) string breaks by the simultaneous creation of six

gluons without string decay.

Conclusions

• In Yang-Mills theory there is a systematic low-energy effective stringtheory (analogous to chiral perturbation theory in QCD), which describesthe dynamics of the Goldstone modes of the spontaneously brokentranslation symmetry of the string world-sheet.

• The effective theory has been tested at the two-loop level with veryhigh precision using the Luscher and Weisz multi-level simulationtechnique, which led to the determination of low-energy parameter r0.

• Strings connecting static charges in higher representations may decaybefore they break completely.

• A constitutent gluon model accounts for the “brown muck”surrounding a screened color charge.

• The exceptional group G (2) is the smallest one with a trivial center.One observes Casimir scaling at the few percent accuracy level.A fundamental 7 quark can bescreened by three adjoint 14 gluons.

The fundamental G (2) string breaks by the simultaneous creation of six

gluons without string decay.

Yang-Mills elevator as a metaphor for our workshop

@Gravity F = Mg

@ String tension σ

Thanks for organizing a very nice workshop thatcontributes to quickly elevate us to a higher level ofunderstanding of strongly interacting field theories!

Yang-Mills elevator as a metaphor for our workshop

@Gravity F = Mg

@ String tension σ

Thanks for organizing a very nice workshop thatcontributes to quickly elevate us to a higher level ofunderstanding of strongly interacting field theories!

Yang-Mills elevator as a metaphor for our workshop

@Gravity F = Mg

@ String tension σ

Thanks for organizing a very nice workshop thatcontributes to quickly elevate us to a higher level ofunderstanding of strongly interacting field theories!

Yang-Mills elevator as a metaphor for our workshop

@Gravity F = Mg

@ String tension σ

Thanks for organizing a very nice workshop thatcontributes to quickly elevate us to a higher level ofunderstanding of strongly interacting field theories!

Yang-Mills elevator as a metaphor for our workshop

@Gravity F = Mg

@ String tension σ

Thanks for organizing a very nice workshop thatcontributes to quickly elevate us to a higher level ofunderstanding of strongly interacting field theories!

Yang-Mills elevator as a metaphor for our workshop

@Gravity F = Mg

@ String tension σ

Thanks for organizing a very nice workshop thatcontributes to quickly elevate us to a higher level ofunderstanding of strongly interacting field theories!

Yang-Mills elevator as a metaphor for our workshop

@Gravity F = Mg

@ String tension σ

Thanks for organizing a very nice workshop thatcontributes to quickly elevate us to a higher level ofunderstanding of strongly interacting field theories!