Al Garver, University of Michigan (joint with Rebecca ...garver/SLU_colloquium.pdf · Q;m are in...

33
Reverse plane partitions via representations of quivers Al Garver, University of Michigan (joint with Rebecca Patrias and Hugh Thomas) Saint Louis University Colloquium Series December 5, 2019 1 / 33

Transcript of Al Garver, University of Michigan (joint with Rebecca ...garver/SLU_colloquium.pdf · Q;m are in...

Page 1: Al Garver, University of Michigan (joint with Rebecca ...garver/SLU_colloquium.pdf · Q;m are in bijection with RPPpP Q;mqvia X ÞÑ ˆ– reverse plane partition from filling the

Reverse plane partitions via representations of quivers

Al Garver, University of Michigan(joint with Rebecca Patrias and Hugh Thomas)

Saint Louis University Colloquium Series

December 5, 2019

1 / 33

Page 2: Al Garver, University of Michigan (joint with Rebecca ...garver/SLU_colloquium.pdf · Q;m are in bijection with RPPpP Q;mqvia X ÞÑ ˆ– reverse plane partition from filling the

Outline

representations of quivers (and algebras)

nilpotent endomorphisms of quiver representations

minuscule posets

reverse plane partitions on minuscule posets

periodicity of promotion

2 / 33

Page 3: Al Garver, University of Michigan (joint with Rebecca ...garver/SLU_colloquium.pdf · Q;m are in bijection with RPPpP Q;mqvia X ÞÑ ˆ– reverse plane partition from filling the

A quiver Q is a directed graph.

1 2ooEE 1 // 2

oo1 2oo

��3

^^

A representation X of Q is an assignment of finite-dimensional k-vectorspaces to each vertex and linear maps to each arrow.

X “

k2 k

10

ı

oo

1��k

01

ı

__

Throughout this talk, k will be an algebraically closed field.

3 / 33

Page 4: Al Garver, University of Michigan (joint with Rebecca ...garver/SLU_colloquium.pdf · Q;m are in bijection with RPPpP Q;mqvia X ÞÑ ˆ– reverse plane partition from filling the

A morphism of representations is a collection of linear maps so that “everysquare commutes”.

k2

a bc d

ı

##k

e

##”

10

ı

oo

1��

k2 k

1��

10

ı

oo

kf //

01

ı

__

k

01

ı

__

reppQq - the category of all representations of Q (over k)

4 / 33

Page 5: Al Garver, University of Michigan (joint with Rebecca ...garver/SLU_colloquium.pdf · Q;m are in bijection with RPPpP Q;mqvia X ÞÑ ˆ– reverse plane partition from filling the

A morphism of representations is a collection of linear maps so that “everysquare commutes”.

k2

a 00 a

ı

##k

a

##”

10

ı

oo

1��

k2 k

1��

10

ı

oo

k a //

01

ı

__

k

01

ı

__

reppQq - the category of all representations of Q (over k)

5 / 33

Page 6: Al Garver, University of Michigan (joint with Rebecca ...garver/SLU_colloquium.pdf · Q;m are in bijection with RPPpP Q;mqvia X ÞÑ ˆ– reverse plane partition from filling the

Why study quiver representations?

Theorem (Gabriel ‘72)For any finite-dimensional k-algebra A,

modpAq » modpkQ{Iq.

andmodpkQ{Iq » reppQ, Iq.

These ideas appeared earlier in [Thrall ‘47, Grothendieck ‘57, Gabriel ‘60].

Example

Q “ 1 2αoo

�3

γ

^^ kQ –ke1 ‘ ke2 ‘ ke3 ‘ kα‘ kβ‘kγ ‘ kγβ

Here modpkQq » reppQq.

6 / 33

Page 7: Al Garver, University of Michigan (joint with Rebecca ...garver/SLU_colloquium.pdf · Q;m are in bijection with RPPpP Q;mqvia X ÞÑ ˆ– reverse plane partition from filling the

Any quiver Q has an Auslander–Reiten quiver ΓpQq whose vertices are theisomorphism classes of indecomposable representations of Q and whosearrows are irreducible morphisms. [Auslander–Reiten ‘75]

4

��3

��2

��1

1111

##

0001

1110

##

;;

0111

##

τoo

1100

;;

##

0110

;;

##

τoo 0011

##

τoo

1000

;;

0100

;;

τoo 0010

;;

τoo 0001τoo

Q ΓpQq - the Auslander–Reiten quiver of Q

There is a map τ called the Auslander–Reiten translation.The Auslander–Reiten translation partitions the indecomposables intoτ -orbits.When Q is Dynkin, tvertices of Qu ÐÑ tτ -orbitsu.

Theorem (Gabriel ‘72)The isomorphism classes of indecomposable representations of a Dynkinquiver are in bijection with the positive roots of the associated root system.

7 / 33

Page 8: Al Garver, University of Michigan (joint with Rebecca ...garver/SLU_colloquium.pdf · Q;m are in bijection with RPPpP Q;mqvia X ÞÑ ˆ– reverse plane partition from filling the

A “ kQ{I - a finite dimensional algebra

X “ ppXiqi, pfaqaq P reppQ, Iq

φ “ pφiqi - a nilpotent endomorphism of X

NEnd(X) - all nilpotent endomorphisms of X

k2

φ1“”

a 00 a

ı

##k

φ2“a

##”

10

ı

oo

1��

k2 k

1��

10

ı

oo

k φ3“a //

01

ı

__

k

01

ı

__

LemmaThe space NEnd(X) is an irreducible algebraic variety.

8 / 33

Page 9: Al Garver, University of Michigan (joint with Rebecca ...garver/SLU_colloquium.pdf · Q;m are in bijection with RPPpP Q;mqvia X ÞÑ ˆ– reverse plane partition from filling the

A “ kQ{I - a finite dimensional algebra

X “ ppXiqi, pfaqaq P reppQ, Iq

φ “ pφiqi - a nilpotent endomorphism of X

NEnd(X) - all nilpotent endomorphisms of X

k2

φ1“”

0 00 0

ı

##k

φ2“0

##”

10

ı

oo

1��

k2 k

1��

10

ı

oo

k φ3“0 //

01

ı

__

k

01

ı

__

LemmaThe space NEnd(X) is an irreducible algebraic variety.

9 / 33

Page 10: Al Garver, University of Michigan (joint with Rebecca ...garver/SLU_colloquium.pdf · Q;m are in bijection with RPPpP Q;mqvia X ÞÑ ˆ– reverse plane partition from filling the

For each i, φi λi “ pλi1 ě ¨ ¨ ¨ ě λi

rq where partition λi records the sizesof the Jordan blocks of φi.

JFpφq :“ pλ1, . . . , λnq the Jordan form data of φ

Example

k2

φ1“”

0 00 0

ı

##k

φ2“0

##”

10

ı

oo

1��

k2 k

1��

10

ı

oo

k φ3“0 //

01

ı

__

k

01

ı

__

JFpφq “ pp1, 1q, p1q, p1qq

10 / 33

Page 11: Al Garver, University of Michigan (joint with Rebecca ...garver/SLU_colloquium.pdf · Q;m are in bijection with RPPpP Q;mqvia X ÞÑ ˆ– reverse plane partition from filling the

For λ “ pλ1 ě ¨ ¨ ¨ ě λrq and λ1 “ pλ11 ě ¨ ¨ ¨ ě λ1r1q, one has λ ď λ1 indominance order if λ1 ` ¨ ¨ ¨ ` λ` ď λ11 ` ¨ ¨ ¨ ` λ

1` for each ` ě 1.

Theorem (G.–Patrias–Thomas, ‘18)There is a unique maximum value of JF(¨) on NEnd(X) with respect tocomponentwise dominance order, denoted by GenJF(X). It is attained on adense open subset of NEnd(X).

Example

k2

φ1“”

0 00 0

ı

##k

φ2“0

##”

10

ı

oo

1��

k2 k

1��

10

ı

oo

k φ3“0 //

01

ı

__

k

01

ı

__

GenJFpXq “ pp1, 1q, p1q, p1qq

11 / 33

Page 12: Al Garver, University of Michigan (joint with Rebecca ...garver/SLU_colloquium.pdf · Q;m are in bijection with RPPpP Q;mqvia X ÞÑ ˆ– reverse plane partition from filling the

Goal: Study the invariant GenJFpXq

Question

For which subcategories C of reppQ, Iq is it the case that any object X P Cmay be recovered from GenJF(X)? We say such a subcategory is Jordanrecoverable.

ExampleUsually GenJF(X) is not enough information to recover X. Let Q “ 1 Ð 2.

X “ k 1Ð k has GenJF(X) “ pp1q, p1qq

X1 “ k 0Ð k has GenJF(X1) “ pp1q, p1qq

Theorem (G.–Patrias–Thomas ’18)Let Q be a Dynkin quiver and m a minuscule vertex of Q. The category CQ,m

of representations of Q all of whose indecomposable summands aresupported at m is Jordan recoverable.

Moreover, we classify the objects in CQ,m in terms of the combinatorics ofthe minuscule poset associated with Q and m. 12 / 33

Page 13: Al Garver, University of Michigan (joint with Rebecca ...garver/SLU_colloquium.pdf · Q;m are in bijection with RPPpP Q;mqvia X ÞÑ ˆ– reverse plane partition from filling the

The minuscule posets are defined by choosing a simply-laced Dynkindiagram and a minuscule vertex m.

An 1 2 ¨ ¨ ¨ n

n

Dn 1 2 ¨ ¨ ¨ n´ 2 n´ 1

6

E6 1 2 3 4 5

7

E7 1 2 3 4 5 6

13 / 33

Page 14: Al Garver, University of Michigan (joint with Rebecca ...garver/SLU_colloquium.pdf · Q;m are in bijection with RPPpP Q;mqvia X ÞÑ ˆ– reverse plane partition from filling the

Minuscule posets

Example (Three families of minuscule posets)

4321

0

0

1

1 2

3

3

4

ρ

5

3

2

1

4

4

3

52

1

PA4,3 PD5,1 PD5,4

A reverse plane partition is an order-reversing map ρ : P Ñ Zě0.The objects of CQ,m will be parameterized by reverse plane partitionsdefined on the minuscule poset associated with Q and m.

14 / 33

Page 15: Al Garver, University of Michigan (joint with Rebecca ...garver/SLU_colloquium.pdf · Q;m are in bijection with RPPpP Q;mqvia X ÞÑ ˆ– reverse plane partition from filling the

LemmaGiven a Dynkin quiver Q and a minuscule vertex m, the Hasse quiver of theminscule poset PQ,m is isomorphic to the full subquiver of ΓpQq on therepresentations supported at m.

4

��3

��2

��1

1111

##

0001

1110

##

;;

0111

##1100

;;

##

0110

;;

##

0011

##1000

;;

0100

;;

0010

;;

0001

Q ΓpQq - the Auslander–Reiten quiver of Q

DefinitionA minuscule vertex m of a Dynkin quiver Q is one where everyindecomposable representation X of Q has dimpXmq P t0, 1u.

15 / 33

Page 16: Al Garver, University of Michigan (joint with Rebecca ...garver/SLU_colloquium.pdf · Q;m are in bijection with RPPpP Q;mqvia X ÞÑ ˆ– reverse plane partition from filling the

Theorem (Proctor ‘84)For any minuscule poset P, the generating function for reverse planepartitions on P is

ÿ

ρ:PÑZě0PRPPpPq

q|ρ| “ź

xPP

11´ qrkpxq

where |ρ| :“ř

xPP ρpxq and rk : P Ñ Zě1 is the rank function on P.

Analogous identities for order filters of certain minuscule posets(Stanley ‘71, Hillman–Grassl ‘76, Gansner ‘81, Pak ‘01, Sulzgruber2017)

Theorem (MacMahon ‘1916)If P is a type A minuscule poset, the generating function for reverse planepartitions on P whose largest entry is at most t is

ÿ

q|ρ| “rź

i“1

j“1

k“1

1´ qi`j`k´1

1´ qi`j`k´2 .

16 / 33

Page 17: Al Garver, University of Michigan (joint with Rebecca ...garver/SLU_colloquium.pdf · Q;m are in bijection with RPPpP Q;mqvia X ÞÑ ˆ– reverse plane partition from filling the

Theorem (G.–Patrias–Thomas ‘18)

The objects of CQ,m are in bijection with RPPpPQ,mq viaX ÞÑ ρ – reverse plane partition from filling the τ -orbits of

PQ,m with the Jordan block sizes in GenJF(X)

11100

01101

01111

11113

00111

00102

ÞÑ

5

4

3

5

1

3

4

3

2

1

X ÞÑ ρpXq Q

dimpXq “ 3585GenJFpXq “ pp3q, p4, 1q, p5, 3q, p5qq

17 / 33

Page 18: Al Garver, University of Michigan (joint with Rebecca ...garver/SLU_colloquium.pdf · Q;m are in bijection with RPPpP Q;mqvia X ÞÑ ˆ– reverse plane partition from filling the

Theorem (G.–Patrias–Thomas, ‘18)

The objects of CQ,m are in bijection with RPPpPQ,mq.

11100

01101

01111

11113

00111

00102

ÞÑ

5

4

3

5

1

3

4

3

2

1

X ÞÑ ρpXq Q

GenJFpXq “ pp3q, p4, 1q, p5, 3q, p5qqCorollary

ÿ

ρPRPPpPq

q|ρ| “ÿ

XPCQ,m

qdimpXq “ź

XiPindpCQ,mq

11´ qdimpXiq

“ź

xPP

11´ qrkpxq

18 / 33

Page 19: Al Garver, University of Michigan (joint with Rebecca ...garver/SLU_colloquium.pdf · Q;m are in bijection with RPPpP Q;mqvia X ÞÑ ˆ– reverse plane partition from filling the

Idea of the proof

5

4

3

5

1

3

ÞÑ

8

4

3

5

1

3

ÞÑ

8

4

2

5

1

3

Given x P P, one can toggle a reverse plane partition ρ as follows to producea new reverse plane partition txρ. [Berenstein–Kirillov ‘95]

txρpyq “

#

maxyăy1

ρpy1q ` miny2ăy

ρpy2q ´ ρpyq : if y “ x

ρpyq : if y ‰ x.

19 / 33

Page 20: Al Garver, University of Michigan (joint with Rebecca ...garver/SLU_colloquium.pdf · Q;m are in bijection with RPPpP Q;mqvia X ÞÑ ˆ– reverse plane partition from filling the

Idea of the proof

Build up the representation and corresponding reverse plane partitioninductively, using toggles.

11113

$$11100

::

$$

01111

$$01101

$$

::

00111

00102

::

0

��0

@@

��

0

��‚

@@

��

0

@@

��

0

��‚

AA

AA

0

AA

X ΓpQq

20 / 33

Page 21: Al Garver, University of Michigan (joint with Rebecca ...garver/SLU_colloquium.pdf · Q;m are in bijection with RPPpP Q;mqvia X ÞÑ ˆ– reverse plane partition from filling the

Idea of the proof

11113

$$11100

::

$$

01111

$$01101

$$

::

00111

00102

::

0

��0

@@

��

0

��‚

AA

��

0

AA

��

1

��‚

AA

AA

0

@@

X ΓpQq

21 / 33

Page 22: Al Garver, University of Michigan (joint with Rebecca ...garver/SLU_colloquium.pdf · Q;m are in bijection with RPPpP Q;mqvia X ÞÑ ˆ– reverse plane partition from filling the

Idea of the proof

11113

$$11100

::

$$

01111

$$01101

$$

::

00111

00102

::

0

0

@@

��

0

@@

��

0

>>

��

1

��‚

AA

AA

3

@@

X ΓpQq

22 / 33

Page 23: Al Garver, University of Michigan (joint with Rebecca ...garver/SLU_colloquium.pdf · Q;m are in bijection with RPPpP Q;mqvia X ÞÑ ˆ– reverse plane partition from filling the

Idea of the proof

11113

$$11100

::

$$

01111

$$01101

$$

::

00111

00102

::

0

��0

AA

��

2

��‚

AA

��

0

@@

1

��‚

@@

@@

3

>>

X ΓpQq

23 / 33

Page 24: Al Garver, University of Michigan (joint with Rebecca ...garver/SLU_colloquium.pdf · Q;m are in bijection with RPPpP Q;mqvia X ÞÑ ˆ– reverse plane partition from filling the

Idea of the proof

11113

$$11100

::

$$

01111

$$01101

$$

::

00111

00102

::

0

0

>>

��

2

��‚

AA

��

4

@@

��

1

��‚

AA

@@

3

AA

X ΓpQq

24 / 33

Page 25: Al Garver, University of Michigan (joint with Rebecca ...garver/SLU_colloquium.pdf · Q;m are in bijection with RPPpP Q;mqvia X ÞÑ ˆ– reverse plane partition from filling the

Idea of the proof

11113

$$11100

::

$$

01111

$$01101

$$

::

00111

00102

::

0

��0

>>

2

��‚

>>

��

4

@@

��

1

��‚

AA

??

2

AA

X ΓpQq

25 / 33

Page 26: Al Garver, University of Michigan (joint with Rebecca ...garver/SLU_colloquium.pdf · Q;m are in bijection with RPPpP Q;mqvia X ÞÑ ˆ– reverse plane partition from filling the

Idea of the proof

11113

$$11100

::

$$

01111

$$01101

$$

::

00111

00102

::

5

��0

@@

2

��‚

@@

��

4

>>

1

��‚

@@

>>

2

@@

X ΓpQq

26 / 33

Page 27: Al Garver, University of Michigan (joint with Rebecca ...garver/SLU_colloquium.pdf · Q;m are in bijection with RPPpP Q;mqvia X ÞÑ ˆ– reverse plane partition from filling the

Idea of the proof

11113

$$11100

::

$$

01111

$$01101

$$

::

00111

00102

::

5

��5

@@

��

3

��‚

@@

4

AA

��

1

��‚

@@

>>

2

@@

X ΓpQq

27 / 33

Page 28: Al Garver, University of Michigan (joint with Rebecca ...garver/SLU_colloquium.pdf · Q;m are in bijection with RPPpP Q;mqvia X ÞÑ ˆ– reverse plane partition from filling the

Idea of the proof

11113

$$11100

::

$$

01111

$$01101

$$

::

00111

00102

::

5

��5

@@

��

3

��‚

??

��

4

AA

��

1

��‚

??

AA

2

AA

X ΓpQq

28 / 33

Page 29: Al Garver, University of Michigan (joint with Rebecca ...garver/SLU_colloquium.pdf · Q;m are in bijection with RPPpP Q;mqvia X ÞÑ ˆ– reverse plane partition from filling the

Idea of the proof

11113

$$11100

::

$$

01111

$$01101

$$

::

00111

00102

::

5

��5

@@

��

3

��‚

@@

��

4

@@

��

1

��‚

??

AA

3

AA

X ΓpQq

29 / 33

Page 30: Al Garver, University of Michigan (joint with Rebecca ...garver/SLU_colloquium.pdf · Q;m are in bijection with RPPpP Q;mqvia X ÞÑ ˆ– reverse plane partition from filling the

Periodicity for promotion pro “ t1t2t4t3

5

4

3

5

1

3

t3ÞÑ

8

4

2

5

1

3

t4ÞÑ

8

4

2

8´ 3

1

3

t2ÞÑ

8

8´ 1

2

8´ 3

1

3

t1ÞÑ

8

8´ 1

2

8´ 3

1

8´ 3

proÞÑ

8 ´ 1

8´ 3

8´ 4

8´ 2

8´ 5

8´ 5

proÞÑ

8 ´ 1

8´ 2

8´ 4

8´ 3

0

3

proÞÑ

8 ´ 1

4

1

3

1

2

proÞÑ

5

4

3

5

1

3

30 / 33

Page 31: Al Garver, University of Michigan (joint with Rebecca ...garver/SLU_colloquium.pdf · Q;m are in bijection with RPPpP Q;mqvia X ÞÑ ˆ– reverse plane partition from filling the

Let ti be the operation of toggling every entry of ρ P RPPpPQ,mq in τ -orbit i.Let pro “ tn ¨ ¨ ¨ t1 where arrows of Q go from larger vertices point to smallervertices.

Theorem (G.–Patrias–Thomas ‘18)

We have proh “ id where h is the Coxeter number of the root system.

Brouwer and Schrijver ‘74 proved this in type A for rpps withppxq P t0, 1u.

Fon-der-Flaass ‘92 calculated the orbit sizes in this same setting.

Further properties and generalizations worked out by Panyushev ‘09,Armstrong–Stump–Thomas ‘11, Striker–Williams ‘11, Rush–Shi ‘12.

Birational promotion (actually, birational “rowmotion”) was introducedEinstein–Propp ‘13; our promotion is the “tropicalization”.

Our theorem can be deduced from work of Grinberg–Roby ‘15 andMusiker–Roby ‘18; ours is the first uniform proof.

31 / 33

Page 32: Al Garver, University of Michigan (joint with Rebecca ...garver/SLU_colloquium.pdf · Q;m are in bijection with RPPpP Q;mqvia X ÞÑ ˆ– reverse plane partition from filling the

Additional questions

Understand GenJFpXq for other families of algebras

Other periodicity (or integrability) results?

What is the connection to Lie theory?

What about MacMahon’s theorem?

Theorem (MacMahon ‘1916)If P is a type A minuscule poset, the generating function for reverse planepartitions on P whose largest entry is at most t is

ÿ

q|ρ| “rź

i“1

j“1

k“1

1´ qi`j`k´1

1´ qi`j`k´2 .

32 / 33

Page 33: Al Garver, University of Michigan (joint with Rebecca ...garver/SLU_colloquium.pdf · Q;m are in bijection with RPPpP Q;mqvia X ÞÑ ˆ– reverse plane partition from filling the

Thanks!

11100

>>

01111

>>

00102

>>

33 / 33