AL-6XNCatalog

32
CSI provides value added process components and systems for sanitary and high purity processes. We understand the needs of our customers and work as a team to fill those needs. MISSION Statement TABLE OF Contents Mission Statement General Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1 • Alloy Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1 Corrosion Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2 Pitting Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4 • Effect of pH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 5 • Galvanic Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 5 • Intergranular Corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 5 • Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 6 Physical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 7 Welding Stainless Steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 8 • Why “Over Alloy” AL-6XN Alloy Weld Areas? . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 8 Orbital Welding Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 9 • Autogenous (Without Filler) Welding for AL-6XN . . . . . . . . . . . . . . . . . . . . . . . . page 10 AL-6XN Alloy Product Catalog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 11 • Tubing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 11 • Standard Tolerances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 12 • Standard Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 13 • Sanitary Butt-Weld Pipe Adapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 20 • Flow Transfer Panels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 22 • Jacketed Tubing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 24 Corrosion Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 25

Transcript of AL-6XNCatalog

Page 1: AL-6XNCatalog

CSI provides value added process components and systems for sanitary and high purity processes.

We understand the needs of our customers and work as a team to fill those needs.

MMISSIONStatement

TTABLE OFContents

Mission Statement

General Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1

• Alloy Development. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1

Corrosion Resistance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2

Pitting Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4

• Effect of pH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 5

• Galvanic Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 5

• Intergranular Corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 5

• Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 6

Physical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 7

Welding Stainless Steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 8

• Why “Over Alloy” AL-6XN Alloy Weld Areas? . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 8

Orbital Welding Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 9

• Autogenous (Without Filler) Welding for AL-6XN . . . . . . . . . . . . . . . . . . . . . . . . page 10

AL-6XN Alloy Product Catalog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 11

• Tubing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 11

• Standard Tolerances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 12

• Standard Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 13

• Sanitary Butt-Weld Pipe Adapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 20

• Flow Transfer Panels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 22

• Jacketed Tubing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 24

Corrosion Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 25

Page 2: AL-6XNCatalog

It is now possible to extend the life of system

components that may experience problems with

chloride induced corrosion by using AL-6XN®

alloy sanitary tubing and fittings as supplied by

Central States Industrial Equipment & ServiceInc. AL-6XN Alloy is a “superaustenitic” low

carbon stainless steel containing chromium,

nickel, molybdenum, and nitrogen (Table I).

AL-6XN alloy is metallurgically stable to 1000°F

(540°C) and has no phase transformation even

after extensive deformation. Long term expo-

sure in the temperature range of 1200 - 1800º F

(650 - 1000º C) may result in the formation of

chi phase (sometimes incorrectly called sigma

phase) along the grain boundaries. Chi phase

may adversely affect corrosion resistance; and

therefore, should be avoided. Nitrogen is

added to the alloy to minimize chi phase forma-

tion, to improve its corrosion resistance,

increase its strength over a broad

temperature range, and to retain the

good formability of austenitic stain-

less steel. AL-6XN alloy has a face-

centered cubic crystal structure simi-

lar to other austenitic stainless

steels. The AL-6XN alloy

is non-magnetic, and its

magnetic permeability

remains low even after

severe cold forming.

1

Table I: Chemical Composition of AL-6XN Alloy

Element Typical Allowable

Carbon 0.02 0.03 maximum

Manganese 0.40 2.00 maximum

Phosphorus 0.020 0.040 maximum

Sulfur 0.001 0.030 maximum

Silicon 0.40 1.00 maximum

Chromium 20.5 20.00 / 22.00

Nickel 24.00 23.50 / 25.50

Molybdenum 6.20 6.00 / 7.00

Nitrogen 0.22 0.18 / 0.25

Copper 0.2 0.75

Iron Balance Balance

GGENERALProperties

Alloy Development:The 18% Chromium-8% Nickel austenitic stainless steels, commonly known as 304 S/S, have a long

service history in mildly corrosive industrial conditions. Over the years the corrosion resistance, weld-

ability and strength of the austenitic alloys were improved by changing the basic chemical composition

to meet more demanding applications.

• Molybdenum was added to improve corrosion resistance in chloride environments.

• Carbon was reduced to minimize sensitization during welding.

• Nitrogen was added to compensate for the reduced strength of the “L” grades, improve phase stability

and, together with chromium and molybdenum, improve pitting resistance.

• Chromium was increased to improve oxidation resistance.

• Nickel was added to stabilize the austenitic crystal structure and, at higher contents, improve stress-

corrosion cracking resistance and general corrosion resistance in reducing environments.

Page 3: AL-6XNCatalog

2

AL-6XN alloy has exceptional chloride corrosion resistance to pitting,

crevice and stress corrosion cracking; and, excellent general corrosion

resistance to various acid, alkali and salt solutions. The nitrogen addition

retards the formation of chi phase during manufacturing and field welding. Chromium provides good

resistance to oxidizing environments and, together with the high molybdenum and nitrogen levels,

improves the resistance to chloride pitting and crevice corrosion. High levels of nickel, molybdenum and

nitrogen also provide excellent resistance to stress corrosion cracking up to 450º F (230º C).

In contrast to other forms of corrosion,

general corrosion is rather predictable.

The uniform attack of an entire area

exposed to a corrosive media usually is

expressed as an average loss-of-metal-

thickness over a given period of time

and is expressed in units such as mils

(0.001 inch) per year, or mpy. The following criteria (Table II) are general guidelines for selecting alloys

resistant to general corrosion. This does not apply to pitting, crevice or stress corrosion cracking.

Table III compares the immersion corrosion resistance,

conducted in accordance with ASTM G-31, of five alloys in

eight different boiling acid and alkali solutions. These data

illustrate the performance of the alloys in a variety of envi-

ronments and do not necessarily simulate a particular

process or industry environment.

CCORROSIONResistance

Table II: Corrosion Rate Rating Reference

Corrosion Rate Rating Applications

<5 mpy Excellent Very Critical

5-20 mpy Satisfactory Critical

20-50 mpy Marginal Non-critical

>50 mpy Poor None

Table III: Corrosion Resistance in Boiling Solutions

Rate ASTM G-31 Corrosion Rate in Mils Per Year (mm/y)

Test Solution (Boiling) Type 316L Type 317L Alloy 904L AL-6XN Alloy 276

20% Acetic Acid 0.12 (0.003) 0.48 (0.01) 0.59 (0.02) 0.12 (0.003) 0.48 (0.01)

45% Formic Acid 23.41 (0.60) 18.37 (0.47) 7.68 (0.20) 2.40 (0.06) 2.76 (0.07)

10% Oxalic Acid 44.90 (1.23) 48.03 (1.14) 27.13 (0.69) 7.32 (0.19) 11.24 (0.28)

20% Phosphoric Acid 0.60 (0.02) 0.72 (0.02) 0.47 (0.01) 0.24 (0.006) 0.36 (0.009)

10% Sodium Bisulfate 71.57 (1.82) 55.76 (1.42) 8.88 (0.23) 4.56 (0.12) 2.64 (0.07)

50% Sodium Hydroxide 77.69 (1.92) 32.78 (0.83) 9.61 (0.24) 11.4 (0.29) 17.77 (0.45)

10% Sulfamic Acid 124.3 (3.16) 93.26 (2.39) 9.13 (0.23) 9.36 (0.24) 2.64 (0.067)

10% Sulfuric Acid 645.7 (16.15) 298.3 (7.58) 100.8 (2.53) 71.9 (1.83) 13.93 (0.35)

Page 4: AL-6XNCatalog

3

Probably the most important characteristic of a

stainless steel alloy exposed to chloride containing

solutions is its resistance to pitting and crevice

attack. The pitting resistance of an austenitic

stainless steel may be correlated to alloy com-

position in terms of the Pitting ResistanceEquivalent Number. PREN = %Cr + 3.3(%Mo)

+ 16(%N); where chromium, molybdenum and

nitrogen are in weight percent. Increasing the

molybdenum in the alloy produces greater

resistance to pitting. Therefore, high

molybdenum-high chromium alloys generally

provide the best pitting resistance. Figure 1shows the relationship of pitting, molybdenum

content, pH, and chloride content.

Duplicate samples were exposed to various corrosion environments for five, 48-hour periods to

determine the average corrosion rates. Table IV compares the same alloys tested in standard

ASTM solutions.

Table IV: Corrosion Resistance in Standard ASM Tests

Figure 1

Pitting corrosion

relationship as a

function of

Chloride, pH,

and molybdenum

contents.

Rate ASTM G-31 Corrosion Rate in Mils Per Year (mm/y)

Test Solution (Boiling) Type 316L Type 317L Alloy 904L AL-6XN Alloy 276

Practice B (Fe2(SO4)3-H2SO4) 25.81 (0.656) 20.58 (0.523) 14.04 (0.357) 15.35 (0.390) 262.2 (6.66)

Practice C (65% HNO3) 22.12 (0.562) 19.51 (0.496) 15.23 (0.387) 26.2 (0.666) 900.1 (22.86)

Practice E (Cu-CuSO4-H2SO4) PASS PASS PASS PASS PASS

Practice F (Cu-CuSO4-H2SO4) 106.0 (2.69) 99.0 (2.51) 91.8 (2.33) 74.2 (1.88) 275.5 (7.00)

Page 5: AL-6XNCatalog

The Critical Pitting Temperature

(CPT) is the solution tempera-

ture at which pitting is first

observed. As shown in Table V,

the CPT’s of several stainless

alloys were tested in accor-

dance with ASTM G-48B, ASTM

G-48A and in a test solution

containing 4% NaCl +1% Fe3 (SO4)3+0.01 M HCl. When compared to the other alloys in these tests,

AL-6XN alloy demonstrated a significantly greater resistance to pitting.

Product

Another important consideration is the chloride

pitting potential of stainless steel. This is an

indication of the susceptibility of the alloy to local-

ized corrosion. If the potential is more positive,

the chances of pitting are reduced. Figure 2indicates that the chloride pitting resistance of

AL-6XN alloy is far superior to Type

316L stainless steel. These data were

obtained from anodic polarization tests

conducted in accordance with ASTM

G-61 at a scan rate of 1.2V/hr.

Crevice corrosion is another form of localized

corrosion that occurs when the corroding metal

is in close contact with anything that makes a

tight crevice. Crevice corrosion is usually the first to occur and is predictable as to when and where it

will take place. Like pitting, the presence of chlorides makes the reaction proceed at a fast rate. There

is a “critical crevice corrosion temperature” (CCCT) below which corrosion will not occur. Figure 3 (page

5) is a plot of the PREN versus CCCT and metallurgical category. The greater the difference between

the CCCT and the operating temperature, the greater the probability that crevice corrosion will occur.

4

AL-6XN

316L

Test Temperature (°C)

25° C 50° C 70° C 90° C

1

0.8

0.6

0.4

0.2

0

Pit

tin

g P

ote

nti

al

(V)

Figure 2

Pitting Potential in 3.5%

NaCl Solutions.

Table V: Critical Pitting Temperatures

1 Based on ASTM G-48B (6% FeCl3 for 72 hours with crevices)

2 Based on ASTM G-48A (6% FeCl3 for 72 hours)

3 Test Solution: 4% NaCl +1%Fe3(SO4)3 + 0.01M HCl

PPITTINGPotential

CCREVICECorrosion

CCCT1 CPT2 CPT3

°C °F °C °F °C °F

°C 304 <27.5 <-2.5

316 27.5 2.5 59 15

317 35 1.7 66 18.9 77 25

904L 68 20 104 40 113 45

AL-6XN 110 43 177 80.5 172 78

Page 6: AL-6XNCatalog

Effect of pHIncreasing the acidity, or decreasing the pH, of a solution beyond a certain value may

result in a dramatic increase in the general corrosion rate. The point at which this occurs

is referred to as the depassivation pH, above which the rate is low and below which the

rate is high. Corrosion rates in an acidified 3.5% sodium chloride solution at

room temperature for austenitic stainless steel, ferritic stainless steel and

AL-6XN alloy show that the AL-6XN alloy is the most resistant of the

alloys and it does not appreciably increase until the solution pH falls

below 0.3.

Galvanic CompatibilityUnless a system is constructed entirely from AL-6XN alloy precautions must be taken to avoid galvanic

corrosion. Predicting the galvanic interaction of a couple is more complex than simply comparing free

corrosion potentials in a given environment, such as the standard galvanic series in seawater. AL-6XN

alloy is less likely to corrode in seawater than conventional stainless steels. In addition, the corrosion

potentials for the common stainless steels are significantly lower when passive than when they are

actively corroding.

Intergranular CorrosionIntergranular corrosion occurs in suscepti-

ble alloys along the grain boundaries. All

metals are composed of randomly oriented

small grains. When these random grains

meet, a mismatch occurs. This mismatch is

called a grain boundary. The grains are

extremely small, about 1,000 grain bound-

aries intersecting a one-inch (25 mm) line

on the surface. Grain boundaries are

regions of high energy. Therefore, chemical

or metallurgical reactions usually occur

here before occurring within the grains. The

most common example is formation of

chromium carbide in the heat-affected zone

(HAZ) of higher carbon stainless steel dur-

ing welding. These carbides form along the

grain boundaries. Because the carbides

require more chromium than is locally avail-

able, the carbon takes chromium from the

area around the carbon. This leaves the

grain boundary zone low in chromium and

5

Figure 3

Critical

crevice

corrosion

temperature

as a function

of the PRE

number.

PRE-Number = %CR + 3.3(%Mo) + 16(%N)

Cri

tica

l C

revic

e T

emper

ature

(°C

) P

er A

ST

M G

-48

Page 7: AL-6XNCatalog

creates a new, low chromium alloy in that

region. Now there is a mismatch in galvanic

potential between the base metal and the grain

boundary; so, galvanic corrosion begins. As the

grain boundaries corrode, the grain and the

chromium carbides drop out as so many parti-

cles of rusty sand. The surface of the metal

develops a “sugary” appearance.

Intergranular corrosion also can occur when-

ever intermetallic compounds such as chi or

sigma phase form. Note that these are com-

pounds, not a random mixture or alloy. These

compounds usually form when some type of

heating occurs, such as welding, heat treatment

or metal fabrication. Understanding how they

form makes it relatively easy to control their for-

mation. Since AL-6XN alloy has low carbon,

chromium carbide formation usually is not a

problem. However, chi phase may be a prob-

lem as it forms when the weld metal cools after

welding, especially in the heat affected zone, if

heat treatment is improperly performed, or if the

alloy is held for a short time in the

1200 - 1800º F (650 - 1000º C)

range.

6

Table VI: ASME & ASTM Specifications

Specification

ASME ASTM

Plate, Sheet & Strip SB-688 A 240/B 688

Rod, Bar & Wire SB-691 B-691

Welded Pipe SB-675/SA-312 B 675/A 312

Heat Exchanger Tubing SA-249 A-249

Sanitary Tubing A-270

Welded Tube (General Applications) SB-676 B-676

Seamless Pipe & Tube SB-690/SB-829 B 690/B 829

Billets and Bars for Reforging B-472

Forged Pipe Flanges, Fittings & Valves B-462

Wrought Nickel Alloy Welded Fittings SB-366 B-366

Nickel Alloy Forgings SB-564 B-564

Pipe Welded w/ Filler SB-804 B-804

Castings A-743

(CN-3MN, UNS J94651) A-744

Product

SpecificationsThe American Society for Mechanical Engineers’ (ASME) and American

Society for Testing and Materials’ (ASTM) specifications for the wide

range of AL-6XN alloy forms are listed in Table VI. AL-6XN alloy is

approved for ASME Boiler and Pressure Vessel Code construction

(Section VIII Div. 1) as Code Case 1997.

The U.S Food and Drug Administration (FDA) and the National Sanitation Foundation (NSF) have

approved the use of AL-6XN alloy in contact with foods.

Page 8: AL-6XNCatalog

The physical properties of AL-6XN alloy are

similar to those of other austenitic stainless

steels (Table VIII). The elastic modulus values

of AL-6XN alloy are lower than those for Type

316L and Alloy 625. However, these moduli are

high in comparison to such non-ferrous alloys

as titanium. The thermal conductivity and coef-

ficient of expansion values are lower than those

for Type 316L but are higher than Alloy 625.

Typical physical properties of AL-6XN alloy are

presented in Table IX (page 8).

The ASME allowable stress values for many AL-6XN alloy product forms are listed in Table VII.Allowable stress values for plate, sheet and welded products are substantially higher than those for the

common stainless steels; therefore, offering substantial savings through reduced pipe and tube thick-

nesses when using AL-6XN alloy.

Elastic Modulus Thermal Conductivity @ 212 °F Expansion Coefficient from 77 to 212 °F

psi x 106 Gpa Btu/hr · ft · °F W/mK 10-6/°F 10-6/°C

Type 316L 29.0 200 9.2 16.0 8.5 17.3

C-276 29.8 205 6.4 9.9 6.2 11.2

C-22® 29.9 206 6.5 10.2 6.9 12.4

Titanium 15.0 103 9.5 16.4 5.0 9.1

Alloy 904L 28.3 195 7.6 13.2 8.3 15.0

AL-6XN 28.3 195 6.8 11.8 8.5 15.3

Alloy 625 29.7 205 6.2 10.7 7.1 12.8

Nickel 200 30.0 207 38.8 67.1 7.4 13.4

7

Table VIII: Comparison of Physical Properties

Alloy

PPHYSICALProperties

Welded Pipe & Tube

For Metal Temperature Not

Exceeding

Table VII: ASME Broiler & Pressure Vessel Code, Section VIII, Div 1 Code Case 1997

* These higher stress values were established at temperatures where short time tensile properties govern to permit usage where

slightly greater deformation is acceptable. Use of these stress values may result in dimensional changes and are not recommended

for flanges of gasketed joints or other applications where slight amounts of distortion can cause leakage or malfunction.

Plate, Sheet, Strip,

Seamless Pipe & Tube

Maximum Allowable Design Stress Values (ksi)

°F °C

200 93 26 26 22.1 22.1

300 149 24.3 24.5* 20.6 20.8*

400 204 22.7 23.5* 19.2 19.9*

500 260 20.9 22.8* 17.7 19.3*

600 316 19.9 22.3* 16.9 18.9*

700 371 19.3 22.1* 16.4 18.7*

750 399 18.7 21.8* 15.8 18.5*

800 427 18.4 21.7* 15.6 18.4*

Page 9: AL-6XNCatalog

• Use alloy weld rings as the filler metal for orbital welding in the field. For other welds, use weld rings or

wire. The filler alloy must have higher molybdenum content than the AL-6XN alloy to compensate for

alloy dilution on cooling. Typically Alloy C-22® (13% Mo) is used. If Alloy C-22 is not available, Alloy

625 (9% Mo) or Alloy C-276 (15% Mo) may be substituted. (Table X - Page 9)• Use inert gas for both the welding and shielding gas. Either helium or argon may be used, although

argon is more commonly used. To compensate for nitrogen that may be lost from the alloy during

welding, 3-5% nitrogen may be added to both the torch and shielding gas.

• Minimize the heat tint on the tubing and

weld, no darker than a light straw color.

A silver weld and heat-affected zone

are the best. Any darker weld heat

tints must be removed before placing in

service. Dark blue heat and black tints

are the most susceptible to corrosion.

Remove these tints using aluminum

oxide grit followed by acid cleaning/

passivation. A poorly cleaned surface

may be just as susceptible to attack as

the original heat tint.

• Do not preheat the weld unless the

material is below 50º F (10º C).

When temperature of the metal is

below the dew point, allow it to warm

above the condensation temperature

to prevent moisture condensate on

the surface. Remember: moisture

causes heat tint.

• Start the weld within the area to be

welded. If that is impossible, grind

the ignition point after welding to

remove it completely.

Why “Over Alloy”

AL-6XN Alloy Weld Areas?Over alloy because of two words: Intergranular Corrosion. Although AL-6XN alloy is classified as a

single-phase alloy, when it is melted -- as in welding -- it will solidify as a three-phase alloy: austenite,

chi phase and delta ferrite.

Chi phase, a chromium-iron-molybdenum compound, depletes the grain boundary in molybdenum and

chromium, which reduces corrosion resistance, and delta ferrite has poor corrosion resistance. When

over-alloyed by using weld insert rings, the alloy balance, and therefore corrosion resistance, of the weld

is equal to or better than the base alloy.

8

WWELDINGAL-6XN Alloy

Table IX: Comparison of Physical Properties

Property Value Units

0.291 lb/in3

8.06 g/cm3

28.3 X 106 psi

195 GPa

2410 to 2550 °F

1320 to 1400 °C

Thermal Conductivity

68 to 212 °F 6.8 Btu/hr · ft · °F

20 to 100 °C 11.8 W/mK

Coefficient of Expansion

68 to 212 °F 8.5 10-6 °F

10 to 100 °C 15.3 10-6 °C

0.11 Btu/lb · °F

500 J/kg · K

535 Ohm · circ mil/ft

0.89 µ m

Magnetic Permeability

Fully Annealed 0.5” Plate

65 % Cold-Worked Plate

1885 °F

1030 °C

Density

Modulus of Elasticity

Melting Range

Specific Heat Capacity

Electrical Resistivity

1.0028

1.0028Oersted

(µ at 200H)

Sealing Temperature

Page 10: AL-6XNCatalog

ClassificationsSpecificationsFiller Metal

Alloy

Bare Welding

Rods and WireTIGGTAW

Bare Welding

Rods and WireMIGGMAW

Welding Process Designations

Weld AppearanceAL-6XN alloy is easily welded using similar weld parameters as Type 316L stainless steel, including

travel speed (RPM) and weld current. When using weld ring inserts, simply place the weld ring between

the two sections to be welded and fusion weld as usual. The weld current must be increased slightly to

compensate for the increased thickness of material contributed by the insert ring.

Weld appearance can be somewhat misleading. Welds in both shop controlled environments and field

installation applications have shown symptoms of “white” and “dark” spots both inside and outside on the

welds. The heat affected zone is generally darker than conventional 316L stainless steel welds as well.

In an effort to identify the discoloration and impact of such on the integrity of AL-6XN welds, the

following analytical techniques were performed:

• Scanning Electron Microscopy (SEM) to determine what the surface “looks like” and to determine

those areas for evaluation with microprobe analysis.

• Energy Dispersive Spectroscopy (EDS), sometimes called microprobe analysis, to determine the

approximate composition of any areas in question.

• X-ray Photoelectron Spectroscopy to determine the molecular composition of areas or compounds

present and to provide light element detection.

• Accelerated corrosion testing in a modified ASTM G 48 solution to identify areas of potential

corrosion attack.

Summary of Results1) The weld discoloration does not appear to have an effect on the corrosion resistance of the weld,

and removal of the discoloration does not seem to be a requirement for good field performance.

2) Most of the discoloration observed originates from inclusions in the steel that are melted during weld-

ing and concentrated as slag on the weld. They have their origin in the steel making process or

enter as tramp elements from the scrap used to make up the alloy.

3) It appears that little, if anything, can be done during the welding operation to eliminate the discol-

oration since it comes from the steel itself.

9

Table X: Consumables for Welding Stainless

Coating

Electrodes

Stick or

Covered

Electrodes

SMW

Consumables

AWS COMMON FORM AWS ASME AWS UNS

625 A5.14 SFA5.14 ERNiCrMo-3 NO6625

276 A5.14 SFA5.14 ERNiCrMo-4 N10276

22 A5.14 SFA5.14 ERNiCrMo-10 N06022

625 A5.14 SFA5.14 ERNiCrMo-3 NO6625

276 A5.14 SFA5.14 ERNiCrMo-4 N10276

22 A5.14 SFA5.14 ERNiCrMo-10 N06022

112 A5.11 SFA5.11 ERNiCrMo-3 W86112

276 A5.11 SFA5.11 ERNiCrMo-4 W80276

22 A5.11 SFA5.11 ERNiCrMo-10 W86022

Page 11: AL-6XNCatalog

Orbital welding equipment consists of a solid-state DC power supply, associated cables and an enclosed

weld head. The weld head contains an internal rotor that holds

the tungsten electrode. This allows the electrode to rotate

around the work and to make the weld. The 115V VAC

portable power supply controls the entire weld sequence start-

ing with the inert-gas pre-purge, the arc strike, rotation delay,

rotational speed (RPM), and multiple timed levels of welding

current with pulsation. This is followed by a down-slope that

gradually terminates the current, and a postpurge to prevent

oxidation of the heated material. These weld parameters are

dialed into the power supply from a weld schedule sheet and

are determined from test welds made on matching samples.

Fusion welding, using automatic orbital TIG welding equipment,

is practical for tubing or small diameter pipe in sizes from 1/8

inch (3mm) OD tubing to 6” schedule 10 pipe with wall thick-

ness up to 0.154 inch (4 mm) wall.

4) The white or silver areas on both surfaces of the weld are areas free from oxides or nitrides. They

represent clean surfaces.

5) The dark areas are composed of a mixture of oxides, silicates and nitrides. They seem to come

from the inclusions in the steel and possibly from the partial decomposition of the oxides in the slag.

They appear to be stable and not attacked by the very aggressive corrosion test.

Autogenous (Without Filler) Welding for AL-6XN AlloyAutogenous welding may be used with the following precautions:

• Use 3 to 5 volume percent nitrogen in the shielding gas, and a post-weld anneal above 2150°F

(1180°C) followed by rapid cooling and pickling if a protective annealing atmosphere is not used.

• The duration of anneal, at least five minutes at temperature, must be sufficient to

re-homogenize the weld segregation and to dissolve any chi phase.

• The G48-B crevice test may be use to assess the quality of autogenously welded and annealed

AL-6XN alloy.

In many applications, a post-weld anneal and pickle may not be possible, as in large vessel fabrication

or field welding of piping systems. In these cases, the exposure conditions must be carefully reviewed

to determine if autogenous welds are satisfactory. Autogenous AL-6XN alloy welds are more resistant

to corrosion than similar welds in Types 316L, 317L and 904L. Such autogenous AL-6XN alloy welds

have a corrosion resistance approximately the same as that of Alloy 904L base metal and superior to

that of Types 316L and 317L base metal.

10

OORBITALWelding Equipment

Page 12: AL-6XNCatalog

11

AAL-6XNAlloy Tubing

CSI Part Number Size Finish ID/OD

T6XN-0.5X.065-W-PL 1/2 20Ra/32Ra

T6XN-0.75X.065-W-PL 3/4 20Ra/32Ra

T6XN-1.0X.065-W-PL 1 20Ra/32Ra

T6XN-1.5X.065-W-PL 1 1/2 20Ra/32Ra

T6XN-2.0X.065-W-PL 2 20Ra/32Ra

T6XN-2.5X.065-W-PL 2 1/2 20Ra/32Ra

T6XN-3.0X.065-W-PL 3 20Ra/32Ra

T6XN-4.0X.065-W-PL 4 20Ra/32Ra

T6XN-0.5X.065-W-PU 1/2 mill/bright anneal

T6XN-0.75X.065-W-PU 3/4 mill/bright anneal

T6XN-1.0X.065-W-PU 1 mill/bright anneal

T6XN-1.5X.065-W-PU 1 1/2 mill/bright anneal

T6XN-2.0X.065-W-PU 2 mill/bright anneal

T6XN-2.5X.065-W-PU 2 1/2 mill/bright anneal

T6XN-3.0X.065-W-PU 3 mill/bright anneal

T6XN-4.0X.083-W-PU 4 mill/bright anneal

SpecificationsIn compliance with ASTM

A270/A249/B676 and ASME

SA249/SB676

ASTM corrosion tested to G28

practice A

• Full Line Stencil on Tube OD

• Plastic Sleeved & Capped on

Polished ID & OD Tubing

• Lengths in 20’-0” (+1/4”, -0)

Size (Tube OD)

1/2

3/4

1

1 1/2

2

3

4

Materials Available: Alloy 625

Hastelloy® C22®

Weld Insert

Rings

Page 13: AL-6XNCatalog

12

Nominal OD

Size (inches)

OD

Tolerance

Center to

Face

Tolerance

Min. Length

of Straight

Tangent

Perpendicularity

of Face to

Tangent

Squareness of

Elbow or Tee

Branches

Wall

Thickness

Wall

Thickness

Tolerance*

1/2 ± .005 ± .050 1.50 0.005 90° ± 1° 0.065

3/4 ± .005 ± .050 1.50 0.005 90° ± 1° 0.065

1 ± .005 ± .050 1.50 0.008 90° ± 1° 0.065 +.005/-.008

1 1/2 ± .008 ± .050 1.50 0.008 90° ± 1° 0.065

2 ± .008 ± .050 1.50 0.008 90° ± 1° 0.065

3 ± .010 ± .050 1.75 0.016 90° ± 1° 0.065

4 ± .015 ± .050 2.00 0.016 90° ± 1° 0.083 +.008/-.010

The American Society of Mechanical Engineers (ASME) has prepared a standard intended for design,

materials, construction, inspection, and testing of vessels, piping and related accessories such as

pumps, valves and fittings for use in the biopharmaceutical industry, referred to as ASME BPE.

This catalog does not intend to address criteria in the BPE specification. The items offered within this

catalog are in accordance with ASME BPE dimensions and tolerances.

(UNS NO8367)

SSTTANDARDTolerances

* Mechanical polish

Page 14: AL-6XNCatalog

B14AM-Size-AL6XN

Tri Clamp® Ferrule - Long

Size (Tube OD) A

1/2 1.750

3/4 1.750

1 1.750

1 1/2 1.750

2 2.250

3 2.250

4 2.250

13

SSTTANDARDItems

14WMPS-Size-AL6XN

Tri Clamp Ferrule - Short

Size (Tube OD) A

1/2 0.500

3/4 0.500

1 0.500

1 1/2 0.500

2 0.500

3 0.500

4 0.625

14MPW-Size-AL6XN

Tri Clamp Ferrule - Heavy Wall

Size (Tube OD) A B C

1 1.625 0.870 1.160

1 1/2 1.625 1.370 1.676

2 1.750 1.870 2.192

3 1.813 2.870 3.224

4 2.125 3.834 4.256

A

A

A

B C

BPE-DT-22

Page 15: AL-6XNCatalog

B2KMP-Size-AL6XN

45° Tri Clamp Ell

Size (Tube OD) A

1 1.125

1 1/2 1.483

2 1.750

3 2.375

4 3.125

B2KS-Size-AL6XN

45° Weld Ell

Size (Tube OD) A

1/2 2.250

3/4 2.250

1 2.250

1 1/2 2.500

2 3.000

3 3.625

4 4.500

14

B2S-Size-AL6XN

90° Weld Ell

Size (Tube OD) A

1/2 3.000

3/4 3.000

1 3.000

1 1/2 3.750

2 4.750

3 6.250

4 8.000

A

A

A

A

A

A

BPE-DT-7

BPE-DT-8

BPE-DT-17

45°

45°

Page 16: AL-6XNCatalog

15

B7WWW-Size-AL6XN

Weld Tee

Size (Tube OD) A

1/2 1.875

3/4 2.000

1 2.125

1 1/2 2.375

2 2.875

3 3.375

4 4.125

B2CMP-Size-AL6XN

90° Tri Clamp Ell

Size (Tube OD) A

1 2.000

1 1/2 2.750

2 3.500

3 5.000

4 6.625

B2CMW-Size-AL6XN

90° Tri Clamp X Weld Ell

Size (Tube OD) A B

1 3.000 2.000

1 1/2 3.750 2.750

2 4.750 3.500

3 6.250 5.000

4 8.000 6.625

A

A

B

A

A

A

BPE-DT-16

BPE-DT-12

BPE-DT-9

Page 17: AL-6XNCatalog

B7RWWW-Size-AL6XN

Reducing Tee

Size (Tube OD) A B

1 1/2 x 1 2.375 2.375

2 x 1 2.875 2.625

2 x 1 1/2 2.875 2.625

3 x 1 3.375 3.125

3 x 1 1/2 3.375 3.125

3 x 2 3.375 3.125

4 x 1 1/2* 4.125 3.625

4 x 2 4.125 3.875

4 x 3 4.125 3.875

BPE-DT-10

* Non-Stocked Item

16

B7WWMS-Size-AL6XN

Short Outlet Tee

Size (Tube OD) A B

1/2 1.875 1.000

3/4 2.000 1.125

1 2.125 1.125

1 1/2 2.375 1.375

2 2.875 1.625

3 3.375 2.125

4 4.125 2.750

B7RWWMS-Size-AL6XN

Short Outlet Reducing Tee

Size (Tube OD) A B

2 x 1/2 2.875 1.625

2 x 3/4* 2.875 1.625

2 x 1* 2.875 1.625

2 x 1 1/2 2.875 1.625

3 x 1* 3.375 2.125

3 x 1 1/2 3.375 2.125

3 x 2 3.375 2.125

BPE-DT-14

* Non-Stocked Item

A

B

A

B

A

B

BPE-DT-15

Page 18: AL-6XNCatalog

28BMP-Size-AL6XN

Tri Clamp True Y

Size (Tube OD) A

1 2.500

1 1/2 3.500

2 4.500

3 5.500

17

28WA-Size-AL6XN

Weld Lateral

Size (Tube OD) A B

1 5.000 7.500

1 1/2 5.000 7.500

2 6.000 9.000

3 7.000 10.500

28BW-Size-AL6XN

Weld True Y

Size (Tube OD) A

1 2.000

1 1/2 3.000

2 4.000

3 5.000

A A

A

A A

A

A

AB

Page 19: AL-6XNCatalog

18

28AMP-Size-AL6XN

Tri Clamp Lateral

Size (Tube OD) A B

1 5.500 8.500

1 1/2 5.500 8.500

2 6.500 10.000

3 7.500 11.500

B31-Size-AL6XN

Concentric Reducer

Size (Tube OD) A

1 x 1/2 4.500

1 x 3/4 4.000

1 1/2 x 1 5.000

2 x 1 7.250

2 x 1 1/2 5.250

3 x 1 1/2 9.250

3 x 2 7.500

4 x 2 11.750

4 x 3 7.750

B32-Size-AL6XN

Eccentric Reducer

Size (Tube OD) A

1 x 1/2 4.500

1 x 3/4 4.000

1 1/2 x 1/2 5.500

1 1/2 x 3/4 5.000

1 1/2 x 1 5.000

2 x 1 1/2 5.250

3 x 1 1/2 9.250

3 x 2 7.500

4 x 3 7.750

A

AB

A

A

BPE-DT-11

BPE-DT-11

Page 20: AL-6XNCatalog

A

19

Tri-Clamp Clamp

(304 Stainless Steel)

Gaskets

Standard Tri-Clamp

16AMP-Size-AL6XN

Solid End Cap

Size (Tube OD) A

1.5 .25

2 .25

3 .25

A

Size (Tube OD) Part Number A

1/2 13MHHS-0.75-S 1 1/8

3/4 13MHHS-0.75-S 1 1/8

1 13MHHM-1.5-S 2 1/8

1 1/2 13MHHM-1.5-S 2 1/8

2 13MHHM-2-S 2 21/23

3 13MHHM-3-S 3 23/32

4 13MHHM-4-S 4 53/64

Material 1/2 3/4 1 1 1/2 2 3 4

40MP-U (Buna) X X X X X

42MP-U (Buna) X X

40MP-X (Silicone) X X X X X

42MP-X (Silicone) X X

40MP-E (EPDM) X X X X X

42MP-E (EPDM) X X

40MP-G (PTFE) X X X X X

42MP-G (PTFE) X X

40MP-SFY (Viton) X X X X X

42MP-SFY (Viton) X X

Page 21: AL-6XNCatalog

Sanitary

Clamp Size

20

SSAANITARYButt-Weld Pipe AdaptersTube OD Weld Adapters for “Schedule” Pipe Welding

A

L

C

A

L

C

1”

A

L

1/4”

3/16”

C

3/16”

Figure 1

Figure 2

Figure 3

A C L Tube End - “A” Pipe End - “C” (Schedule 10)

Nominal

Pipe Size

Overall

Length

Nominal Pipe

OD Size

Wall

Thickness

Ref. DWG

Figure

CSI

Part Number

1/2 1/2 1 3/4 0.065 0.840 0.083 1 SW3105PX05T

3/4 1/2 1 3/4 0.065 0.840 0.083 1 SW3105PX75T

3/4 3/4 1 3/4 0.065 1.050 0.083 1 SW3175PX75T

1 1 1 1/2 0.065 1.315 0.109 2 SW3110PX10T

1 1/2 1 1/2 1 1/2 0.065 1.900 0.109 2 SW3115PX15T

2 2 1 1/2 0.065 2.375 0.109 2 SW3120PX20T

2 1/2 2 1/2 2 1/2 0.065 2.875 0.120 3 SW3125PX25T

3 3 2 1/2 0.065 3.500 0.120 3 SW3130PX30T

4 4 2 1/2 0.083 4.500 0.120 3 SW3140PX40T

Wall

Thickness

Page 22: AL-6XNCatalog

21

A C L Pipe End - “C” (Schedule 10)

Sanitary

Clamp Size

Nominal

Pipe Size

Overall

Length

Nominal Pipe

OD Size

Wall

Thickness

Ref. DWG

Figure

CSI

Part Number

SSAANITARYClamp Pipe AdaptersTube OD Clamp Adapters for “Schedule” Pipe Welding

1/2 1/2 1 3/4 0.840 0.083 1 14MPW05P

3/4 1/2 1 3/4 0.840 0.083 1 14MPW75X05P

3/4 3/4 1 3/4 1.050 0.083 1 14MPW75P

1 1 1 1/2 1.315 0.109 2 14MPW10P

1 1/2 1 1/2 1 1/2 1.900 0.109 2 14MPW15P

2 2 1 1/2 2.375 0.109 2 14MPW20P

2 1/2 2 1/2 2 1/2 2.875 0.120 3 14MPW25P

3 3 2 1/2 3.500 0.120 3 14MPW30P

4 4 2 1/2 4.500 0.120 3 14MPW40P

6 6 CALL 6.625 0.134 N/A 14MPW60P

A

L

C

A

L

C

1”

3/16”A

3/16”

C

L

Figure 1

Figure 2

Figure 3

Page 23: AL-6XNCatalog

22

FFLOWTransfer Panels

Standard Sizes:

2 Line 3 Triangle 3 Around 1

4 Diamond

4 Square

4 Around 1

6 Rectangle

6 Around 1 8 Double Square 8 Around 1

Page 24: AL-6XNCatalog

23

AL-6XN Alloy

Spool Detail

(US Patented)

Size = 1.5” Size = 2.0” Size = 2.5” Size = 3.0”

A B C A B C A B C A B C

2 Line 6 14 7.5 6 16 9.5 8 18 11.0 8 20 12.5

3 Triangle 14 14 7.5 16 16 9.5 18 18 11.0 20 20 12.5

3 Around 1 16 14 7.5 20 16 9.5 22 18 11.0 26 20 12.5

4 Square 14 14 7.5 16 16 9.5 18 18 11.0 20 20 12.5

4 Diamond 14 18 7.5 16 22 9.5 18 26 11.0 20 30 12.5

4 Around 1 16 16 7.5 20 20 9.5 22 22 11.0 26 26 12.5

6 Rectangle 20 14 7.5 26 16 9.5 30 18 11.0 32 20 12.5

6 Around 1 20 20 7.5 26 26 9.5 28 28 11.0 32 32 12.5

8 Double Square 28 14 7.5 34 16 9.5 40 18 11.0 46 20 12.5

8 Around 1 20 20 7.5 26 26 9.5 28 28 11.0 32 32 12.5

Transfer Panel

Port Layout

All dimensions are in inches.

Our AL-6XN alloy spool design (US Patented)

allows installation of product contact AL-6XN

alloy spools into 316L stainless steel panels

while maintaining the integrity of the corrosion

resistant elements of the AL-6XN alloy as

required by ASME-BPE-2002 specifications.

Page 25: AL-6XNCatalog

24

Concentric jacketed tube-in-tube

design features:

• Product tube size range from 1/2” to 4”

• Multiple media jacket connections available

• Pipe or tube size

• All stainless steel construction

• Standard 316L stainless steel outer tubes

• AL-6XN alloy product tubes

• All welded or removable jacket design

• Variety of mounting options available

Jacketed tube and fittings applications:

• Maintaining temperature in holding loops

• In-line cooking

• Transfer unstable products prone to crystallization or solidification

• General heating or cooling of product lines

• Insulating products lines in areas where conventional insulation is impractical

Common industry applications:

• Candy and confection products

• Sauces and salsa

• Cosmetic and health care

• Pharmaceutical products

• Pharmaceutical water systems

HOT WATER HEATING SYSTEMS AVAILABLE

JJAACKETEDTubingFor Superior Corrosion Resistance

Page 26: AL-6XNCatalog

25

CCOORROSIONTablesThese tables of laboratory data are intended as guidance for what alloys might be tested in a given environment.

They must NOT be used as the major basis for alloy selection, or as substitutes for competent corrosion

engineering work.

Alloy Notes Concentration Temperature Time Corrosion Rate Ref

% °C °F mm/yr mils/yr

2205 nitrogen purge 50 80 176 96hr 0.6 2.4 6

2205 nitrogen purge 50 85 185 96hr 0.12 4.8 6

2205 nitrogen purge 50 90 194 96hr 0.15 5.8 6

2205 (boiling) 50 143 290 5x48hr 0.61 24 1

304 (boiling) 50 143 290 5x48hr 4.65 183 1

304L (boiling) 50 143 290 5x48hr 1.8 71 1

316 (boiling) 50 143 290 5x48hr 3.12 123 1

316L (boiling) 50 143 290 5x48hr 1.98 78 1

AL-6XN (boiling) 50 143 290 5x48hr 0.41 16 1

C-276 (boiling) 50 143 290 5x48hr 0.452 17.8 1

625 (boiling) 50 143 290 5x48hr 0.061 2.4 1

Corrosion Rates in Caustic (NaOH)

Temperature for Initiation of Crevice Corrosion in Ferric Chloride (FeCl3•6H2O)

10% FeCl3 • H2O, per ASTM G 48 Practice B, (PRE) N = Cr + 3.3Mo + 30N

Alloy Mo Temperature Pitting Resistance Ref

% °C °F Equivalent, (PRE) N

316L 2.1 -3 27 23 1

2205 3.1 20 68 38 1

AL-6XN 6.2 43 110 48 1

625 9.0 45 113 51 1

625 9.0 55 131 51 13

C-276 15.4 55 130 66 1

Page 27: AL-6XNCatalog

26

Alloy Notes Concentration Temperature Time Corrosion Rate Ref

% °C °F mm/yr mils/yr

2205 plus 0.3% FeCl3 1 30 86 96hr 0.01 0.2 6

2205 plus 0.3% FeCl3 1 45 113 96hr 0.20 7.8 6

2205 plus 0.3% FeCl3 1 55 131 96hr 0.38 15 6

AL-6XN — 1 boiling boiling — 1.49 58.7 1

AL-6XN — 2 23 78 — 0.003 0.12 1

AL-6XN — 3 23 78 — 0.003 0.12 1

AL-6XN — 4 23 78 — 0.003 0.12 1

AL-6XN — 5 23 78 — 0.102 4.02 1

AL-6XN — 6 23 78 — 0.216 8.82 1

AL-6XN — 8 23 78 — 0.270 10.6 1

AL-6XN — 3 52 126 — 0.553 21.8 1

AL-6XN — 4 52 126 — 0.348 13.7 1

AL-6XN — 5 52 126 — 1.698 66.9 1

AL-6XN — 6 52 126 — 1.935 76.2 1

AL-6XN — pH 1.5 65.5 150 — 0.0009 0.035 1

AL-6XN — pH 1.0 65.5 150 — 0.0010 0.039 1

AL-6XN — pH 0.5 65.5 150 — 0.9139 36.0 1

AL-6XN — pH 1.0 79.4 175 — 0.0009 0.035 1

AL-6XN — pH 1.5 93.3 200 — 0.0008 0.031 1

AL-6XN — pH 1.0 93.3 200 — 0.0008 0.031 1

C-276 — 1 boiling boiling — 0.25 10 3

C-276 — 1 boiling boiling — 0.34 13.4 3

C-276 — 1.5 boiling boiling — 0.74 29 3

C-276 — 2 90 194 — 0.025 1 3

C-276 — 2 boiling boiling — 1.55 61 3

C-276 — 3 boiling boiling — 1.78 70 3

C-22 — 1 boiling boiling — 0.076 3 3

C-22 — 1.5 boiling boiling — 0.28 11 3

C-22 — 2 90 194 — nil nil 3

C-22 — 2 boiling boiling — 1.55 61 3

C-22 — 3 90 194 — <1 <1 3

C-22 — 3 boiling boiling — 2.13 84 3

625 — 1.3 40 104 28 days <0.01 <0.4 12

625 welded w 625 1.3 40 104 28 days 0.09 3.5 12

625 — 5 66 150 — 1.8 71 8

625 — 10 66 150 — 2.1 81 8

625 — 15 66 150 — 1.7 65 8

Corrosion Rates in Hydrochloric Acid (HCl)

Page 28: AL-6XNCatalog

Alloy Notes Concentration Temperature Time Corrosion Rate Ref

% °C °F mm/yr mils/yr

316 — 3 21 70 — 1.25 49.1 1

316 — 5 21 70 — 2.33 91.8 1

316 — 5 40 104 — 7.8 306 1

316 — 1 50 122 — 1.82 71.8 1

316 — 2 50 122 — 5.3 209 1

316 — 5 50 122 — 15.9 626 1

AL-6XN — 3 21 70 — 0.08 3.2 1

AL-6XN — 5 21 70 — 0.20 8.0 1

AL-6XN — 5 40 104 — 0.82 32.4 1

AL-6XN — 1 50 122 — 0.10 4.1 1

AL-6XN — 2 50 122 — 0.43 16.9 1

AL-6XN — 3 50 122 — 0.98 38.4 1

AL-6XN — 4 50 122 — 1.42 55.9 1

AL-6XN — 5 50 122 — 2.0 78.7 1

AL-6XN — 1 70 158 — 0.54 21.1 1

AL-6XN — 2 70 158 — 1.98 78 1

AL-6XN — 3 70 158 — 3.05 120 1

C-276 — 2 70 158 — 0.23 9 3

C-276 — 5 70 158 — 0.25 10 3

C-22 — 2 70 158 — 0.23 9 3

C-22 — 5 70 158 — 0.36 14 3

625 — 2 70 158 — 0.51 20 3

625 — 5 70 158 — 0.41 16 3

27

Alloy Notes Concentration Temperature Time Corrosion Rate Ref

% °C °F mm/yr mils/yr

625 — 20 66 150 — 1.3 50 8

625 — 25 66 150 — 1.0 38 8

625 — 30 66 150 — 0.9 34 8

625 — concentrated 66 150 — 0.4 15 8

Corrosion Rates in Hydrochloric Acid (HCl) Continued

Corrosion Rates in Hydrofluoric Acid (HF)

Page 29: AL-6XNCatalog

Alloy Notes Concentration Temperature Time Corrosion Rate Ref

% °C °F mm/yr mils/yr

2205 — 65 boiling boiling 240hr 0.20 7.9 4

2205 — 65.3 boiling boiling — 0.13 5.3 5

304 — 65 116 241 — 0.23 9 1

304L plus 3% HF 10 70 158 4hr 157 6410 1

304L — 75 25 77 >21 days <0.4 <17 11

304L — 75 50 122 >21 days 0.4 17 11

304L — 75 75 167 >21 days 4.8 189 11

304L — 80 25 77 >21 days <0.4 <17 11

304L — 80 50 122 >21 days 0.4 17 11

304L — 80 75 167 >21 days 3.5 138 11

304L — 85 25 77 >21 days 1.3 52 11

304L — 85 50 122 >21 days 1.3 52 11

304L — 85 75 167 >21 days 15 590 11

316 plus 3% HF 5 68 155 — 4.18 165 1

316 — 10 90 194 — 0.22 9 1

316 plus 2% HCl 60 50 122 — 0.28 11 1

316 A 262 C 65 boiling boiling 24hr 0.872 34 1

316L — 65.3 boiling boiling — 0.25 9.8 5

316L plus 3% HF 10 70 158 4hr 64.6 2540 1

AL-6XN plus 3% HF 5 68 155 — 1.55 61 1

AL-6XN plus 3% HF 10 70 158 4hr 2.56 101 1

AL-6XN A 262 C 65 boiling boiling 24hr 0.738 29 1

C-276 — 10 90 194 — <0.01 0.2 2

C-276 plus 3% HF 10 70 158 4hr 6.71 264 1

C-276 — 65 116 241 — 0.74 29 2

C-276 plus 2% HCl 60 50 122 — 0.21 8.2 2

C-22 plus 3% HF 10 70 158 4hr 1.71 67 1

625 plus 3% HF 10 70 158 4hr 3.96 156 1

625 — 65 boiling boiling — 0.76 30 8

Corrosion Rates in Nitric Acid (HNO3)

28

Alloy Notes Concentration Temperature Time Corrosion Rate Ref

% °C °F mm/yr mils/yr

304 — 50 boiling boiling 5x48hr 0.18 7 7

304 — 70 boiling boiling 5x48hr 0.81 32 7

316 — 20 boiling boiling — 0.183 7.2 1

316 — 54 boiling boiling — 0.580 2.28 1

Corrosion Rates in Phosphoric Acid (H3PO4)

Page 30: AL-6XNCatalog

29

Alloy Notes Concentration Temperature Time Corrosion Rate Ref

% °C °F mm/yr mils/yr

316 — 60 boiling boiling — 0.305 12 1

316L — 70 110 230 — 3.9 154 5

AL-6XN — 10 120 248 120hr 0.021 0.81 1

AL-6XN — 10 135 275 120hr 0.197 7.76 1

AL-6XN — 10 150 302 120hr 0.400 15.75 1

AL-6XN — 20 boiling boiling 5x48hr 0.006 0.24 1

AL-6XN — 54 boiling boiling — 0.015 0.059 1

AL-6XN plus 800 ppm Cl- 70 100 212 168hr 1.22 48 1

AL-6XN plus 1% HF 70 100 212 168hr 0.518 20.4 1

C-22 — 85 100 212 24hr 0.19 7.5 10

C-22 — 85 100 212 168hr 0.05 2.0 10

C-22 — 85 154 309 24hr 1.08 42.5 10

625 plus 0.8% HF 55 boiling boiling 48hr 0.42 16.5 8

Corrosion Rates in Phosphoric Acid ( H3PO4) Continued

Corrosion Rates in Sulphuric Acid (H2SO4)

_ 135-140 C

Alloy Notes Concentration Temperature Time Corrosion Rate Ref

% °C °F mm/yr mils/yr

2205 nitrogen purge 10 55 131 96h 0.06 2.3 6

2205 nitrogen purge 10 60 140 96hr 0.17 6.7 6

2205 nitrogen purge 10 70 158 96hr 0.32 13 6

2205 nitrogen purge 60 15 59 96hr 4.0 157 6

2205 nitrogen purge 96.4 20 68 96hr 0.11 4.4 6

2205 nitrogen purge 96.4 25 77 96hr 0.14 5.4 6

304 — 1 35 95 5x48hr 0.71 28 7

304 — 5 35 95 5x48hr 6.1 240 7

304 — 1 80 176 5x48hr 8.9 350 7

304 — 95 30 86 — 0.28 11 2

304 plant test >1 m/s 96-98.5 14 days 0.18 7.1 12

316 — 10 boiling boiling 5x48hr 9.42 371 1

316 reagent grade 10 80 176 5x48hr 2.3 91 9

316 “ + 59 ppm Cl- 10 80 176 5x48hr 5.56 219 9

316 “ + 119 ppm Cl- 10 80 176 5x48hr 5.6 221 9

316 “ + 1187 ppm Cl- 10 80 176 5x48hr 2.0 80 9

316 “ + 10600 ppm Cl- 10 80 176 5x48hr 6.3 250 9

316 reagent grade 30 80 176 5x48hr 60.34 2375 9

316 “ + 80 ppm Cl- 30 80 176 48hr dissolved dissolved 9

Page 31: AL-6XNCatalog

Alloy Notes Concentration Temperature Time Corrosion Rate Ref

% °C °F mm/yr mils/yr

316 “ + 135 ppm Cl- 30 80 176 48hr dissolved dissolved 9

316 “ + 1277 ppm Cl- 30 80 176 5x48hr 10.4 407 9

316 “ + 10900 ppm Cl- 30 80 176 5x48hr 8.84 348 9

AL-6XN — pH 1.5 65.6 150 — 0.0007 0.029 1

AL-6XN — pH 1.0 65.6 150 — 0.0007 0.029 1

AL-6XN — pH 0.5 65.6 150 — 0.0013 0.053 1

AL-6XN — pH 0.5 79.4 175 — 0.0013 0.053 1

AL-6XN — pH 1.5 93.3 200 — 0.0013 0.053 1

AL-6XN — pH 1.0 93.3 200 — 0.0027 0.11 1

AL-6XN — pH 0.5 93.3 200 — 0.541 21.3 1

AL-6XN — 10 boiling boiling 5x48hr 2.14 84.4 1

AL-6XN — 10 boiling boiling 5x48hr 2.34 92.3 1

C-276 — 10 boiling boiling — 1.1 43 3

C-276 — 20 79 174 — 0.076 3 3

C-276 — 20 boiling boiling — 1.1 42 3

C-276 — 30 79 174 — 0.10 4 3

C-276 — 30 boiling boiling — 1.4 55 3

C-276 — 70 38 100 — nil nil 3

C-276 — 95 30 86 — <0.01 0.12 2

C-276 technical grade 20 60 140 — 0.015 0.59 13

C-276 technical grade 40 60 140 — 0.036 1.4 13

C-276 technical grade 60 60 140 — 0.031 1.2 13

C-276 technical grade 80 60 140 — 0.021 0.83 13

C-276 technical grade 20 80 176 — 0.102 4.02 13

C-276 technical grade 40 80 176 — 0.081 3.19 13

C-276 technical grade 60 80 176 — 0.088 3.46 13

C-276 technical grade 80 80 176 — 0.372 14.6 13

C-276 technical grade 20 100 212 — 0.172 6.77 13

C-276 technical grade 40 100 212 — 0.247 9.72 13

C-276 technical grade 60 100 212 — 0.287 11.3 13

C-276 technical grade 80 100 212 — 6.220 245 13

C-22 industrial grade 10 boiling boiling 3x48hr 0.12 4.5 9

C-22 “ + 10000 ppm Cl- 10 boiling boiling 3x48hr 3.26 128 9

C-22 — 10 boiling boiling — 0.28 1 3

C-22 — 20 79 174 — 0.025 1 3

C-22 — 20 boiling boiling — 0.84 33 3

C-22 — 30 79 174 — 0.076 3 3

Corrosion Rates in Sulphuric Acid (H2SO4) Continued

30

Page 32: AL-6XNCatalog

Alloy Notes Concentration Temperature Time Corrosion Rate Ref

% °C °F mm/yr mils/yr

C-22 — 30 boiling boiling — 1.6 64 3

C-22 — 70 38 100 — nil nil 3

625 — 15 80 176 — 0.19 7.4 8

625 — 50 80 176 — 0.43 17 8

625 — 60 80 176 — 0.71 28 8

625 — 70 80 176 — 1.6 64 8

625 — 80 80 176 — 2.3 90 8

625 plus 4.9% HF 28 49-79 120-175 — 1.2 49 8

Corrosion Rates in Sulphuric Acid (H2SO4) Continued

31

References1. AL-6XN® alloy PHYSICAL, MECHANICAL and CORROSION PROPERTIES, Bulletin No. 210, Rolled Alloys

2. H.E. Deverell, C.R. Finn and G.E. Moller, Corrosion Performance of 6 percent Molybdenum Austenitic Alloys AL-6X® and AL-6XN®, Corrosion 88,

Paper No. 313, NACE, Houston, Texas

3. HASTELLOY® alloy C-276, Bulletin H-2002B, Haynes International, Kokomo, Indiana

4. Rolled Alloys Investigation 97-29

5. Steve Bukovinsky, Henrik Gripenberg, Ulf Lundell, Mats Tynell, SANDVIK SAF 2205 – A High-Performance Ferritic-Austenitic Stainless Steel,

Bulletin S-51-26-ENG, Steel Research Centre, Sandvik AB, Sandviken, Sweden

6. MTI-1

7. Armco 17PH Precipitation-Hardening Stainless Steel, Product Data Bulletin No. FS-11, Armco Advanced Materials Co., Butler, Pennsylvania, 1994

8. INCONEL alloy 625, Bulletin T-42, Huntington Alloys Inc., Huntington, West Virginia

9. Private correspondence, Carpenter Technology Corporation, 1991

10. Paper No. 338, Corrosion 95, NACE International, Houston, Texas, 1995

11. Paper No. 115, Corrosion 97, NACE International, Houston, Texas, 1997

12. Paper No. 428

13. R. Kirchheiner, H. Portisch, R. Solomon, M. Jahudka and J. Ettere, Designing Components for Water Treatment Units for Radioactive Waste

Liquids in a Modern NiCrMo-Alloy, Corrosion 98, Paper 166, NACE International, Houston, Texas 1998

TrademarksAL-6XN is a registered trademark of ATI Properties, Inc., licensed to Allegheny Ludlum Corp.

Hastelloy and C-22 are a registered trademarks of Haynes International.

Copyright 2004 Central States Industrial Equipment & Service, Inc. All rights reserved.

No reproduction without permission of the author.