Ajodo Crawford Cervical Bmd

download Ajodo Crawford Cervical Bmd

of 7

Transcript of Ajodo Crawford Cervical Bmd

  • 8/9/2019 Ajodo Crawford Cervical Bmd

    1/7

    Cervical vertebral bone mineral density changes inadolescents during orthodontic treatment

    Bethany Crawford,a Do-Gyoon Kim,b Eun-Sang Moon,c Elizabeth Johnson,a Henry W. Fields,d J. Martin Palomo,e

    and William M. Johnstonf

    Columbus and Cleveland, Ohio

    Introduction: The cervical vertebral maturation (CVM) stages have been used to estimate facial growth status.

    In this study, we examined whether cone-beam computed tomography images can be used to detect changes of

    CVM-related parameters and bone mineral density distribution in adolescents during orthodontic treatment.

    Methods:   Eighty-two cone-beam computed tomography images were obtained from 41 patients before

    (14.47   6  1.42 years) and after (16.15   6   1.38 years) orthodontic treatment. Two cervical vertebral bodies

    (C2 and C3) were digitally isolated from each image, and their volumes, means, and standard deviations of

    gray-level histograms were measured. The CVM stages and mandibular lengths were also estimated after 

    converting the cone-beam computed tomography images. Results: Signicant changes for the examined vari-

    ables were detected during the observation period (P #0.018) except for C3 vertebral body volume (P 5 0.210).

    The changes of CVM stage had signicant positive correlations with those of vertebral body volume (P #0.021).

    The change of the standard deviation of bone mineral density (variability) showed signicant correlations with

    those of vertebral body volume and mandibular length for C2 (P  #0.029).  Conclusions:   The means and

    variability of the gray levels account for bone mineral density and active remodeling, respectively. Our results

    indicate that bone mineral density distribution and the volume of the cervical vertebral body changed because

    of active bone remodeling during maturation. (Am J Orthod Dentofacial Orthop 2014;146:183-9)

    E

     valuation of patients' facial growth status is impor-tant in developing optimal orthodontic treatment

    plans.1,2 Skeletal maturity status should beconsidered to determine effective timing for the use of 

    growth-modication appliances such as Class II func-tional appliances and headgears. It has been demon-

    strated that the cervical vertebrae (C2 to C6) are a validanatomic reference for estimating skeletal maturation,

    providing comparable results with those obtained by hand-wrist radiographic assessment.3 The cervical verte-

     bral maturation (CVM) method has been widely used toestimate the skeletal maturity for orthodontists.3-6

     However, many clinical studies observed that the CVMmethod has poor reliability    and repeatability for

    evaluation of bone maturity.7-9

    A major limitation of the CVM method is that it clas-sies the stages of maturation based on qualitative de-scriptions of cervical vertebral shape on a 2-dimensional

    (2D) cephalogram. Thus, the estimated CVM stages vary  because of possible observer bias. On the other hand,more dental providers are using 3-dimensional (3D) im-ages of clinical cone-beam computed   tomography 

    (CBCT) for diagnosis and treatment planning.10

    Since theCBCTimageeldof view caninclude thecervicalvertebrae,

    recent studies have examined the applica bility of CBCT tothe assessment of skeletal maturity.11-13  However, thosestudies investigated only the general morphology of thecervical vertebrae, whereas CBCT can provide additionalinformation including bone mineral density (BMD).

    It was observed that the BMD changes reect the phys-iology  of bone development during childhood and adoles-

    cence.14 A clinical computed tomography image has beenused as a standardized method to assess orthopedic

     BMD.15  Many clinical studies have indicated that CBCT

    a Resident, Division of Orthodontics, College of Dentistry, Ohio State University,

    Columbus, Ohio. bAssociate professor, Division of Orthodontics, College of Dentistry, Ohio State

     University, Columbus, Ohio.c Predoctoral student, College of Dentistry, Ohio State University, Columbus, Ohio.d Professor, Division of Orthodontics, College of Dentistry, Ohio State University,

    Columbus, Ohio.eAssociate professor, Department of Orthodontics, School of Dental Medicine,Case

     Western Reserve University, Cleveland, Ohio.f  Professor, Division of Restorative, Prosthetic and Primary Care Dentistry, College

    of Dentistry, Ohio State University, Columbus, Ohio.

    All authors have completed and submitted the ICMJE Form for Disclosure of 

     Potential Conicts of Interest, and none were reported.

     Financial support from the Delta Dental Foundation through the Dental Master's

    Thesis Award Program.

    Address correspondence to: Do-Gyoon Kim, Division of Orthodontics, College of 

     Dentistry, Ohio State University, 4088 Postle Hall, 305 W 12th Ave, Columbus,

    OH 43210; e-mail, [email protected].

    Submitted, June 2013; revised and accepted, April 2014.

    0889-5406/$36.00

    Copyright 2014 by the American Association of Orthodontists.

    http://dx.doi.org/10.1016/j.ajodo.2014.04.019

    183

    ORIGINAL ARTICLE

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-mailto:[email protected]://dx.doi.org/10.1016/j.ajodo.2014.04.019http://dx.doi.org/10.1016/j.ajodo.2014.04.019mailto:[email protected]://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-

  • 8/9/2019 Ajodo Crawford Cervical Bmd

    2/7

    images can be used for volumetric assessment of 

     BMD.16-20 Combining the observations from theseprevious studies, we hypothesized that the clinicalCBCT-based 3D morphologic and volumetric BMD ana-

    lyses for the cervical vertebrae can provide quantitative in-formation to estimate a patient's skeletal maturity. Thus,the objectives of this study were to examine (1) whether

    CBCT images can be used to detect changes of cervical vertebral volume and BMD distribution and (2) whetherthose changes are associated with changes of the CVMstages and mandibular length. We used a longitudinalcomparison of those parameters measured in teenagedpatients before and after orthodontic treatment.

    MATERIAL AND METHODS

    The institutional review board of Ohio State Univer-sity approved this retrospective study. The CBCT images

     were originally taken as diagnostic pretreatment andposttreatment records on routine orthodontic patientsat a collaborating university's graduate orthodonticclinic. This is their standard record procedure. Patientsreceived comprehensive orthodontic treatment withfull    xed appliances and were excluded if they had

    craniofacial anomalies, facial asymmetries, orthognathicsurgery, rapid palatal expansion, headgear, or extrac-tions (except third molars). Each image was taken at2 mA and 120 kV with a Hitachi CB MercuRay scanner(Hitachi Medical Systems America, Twinsburg, Ohio)

    ( Fig 1). The voxel size of the 3D CBCT image was either292 or 377  mm. Eighty-two paired images from 41 pa-

    tients (15 boys, 26 girls) randomly selected before (T1)and after (T2) orthodontic treatment were included forthis study. The average patient ages were 14.47   61.42 years at T1, and 16.15 6 1.38 years at T2. Individ-

    ual patient treatment duration ranged from 9 to26 months, with an average duration of 20.17 months.

    The 3D CBCTimages were imported to image-analysissoftware (ImageJ, National Institutes of Health,

     Bethesda, Md). Two cervical vertebrae (C2 and C3) inthe same CBCT image were digitally cropped, separated,

    and saved as individual image les ( Fig 1). Segmentationof bone voxelsfrom nonbone voxelsoutside thevertebrae

     was performed automatically  using a heuristic algorithmas in previous studies.21,22  Posterior processes weredigitally removed at 10 voxels from each side of the

     vertebral end plate, leaving only the vertebral body inthe  nal image ( Fig 1). Vertebral body volume was esti-

    mated by multiplying the total bone voxel counts aftersegmentation by the volume per voxel. The gray level of each bone voxel, which is equivalent to BMD, was main-tained inside the vertebral body during the segmentationprocess. Gray-level histograms were obtained for the C2

    and C3 vertebral bodiesat T1 and T2 ( Fig 2). A mean value

     was computed by dividing the sum of gray levels by thetotal count of voxels, and a standard deviation of gray-level distribution was also computed using the histogram

    for each vertebral body. We used BMD-equivalent gray levels that were obtained from both bone and nonbone(bone marrow) voxels inside the vertebral body because

    the rough resolution of the clinical images limited precisesegmentation between those voxels. Thus, our gray-level

     values are comparable with conventional BMD values, but they would not be identical to those of bone tissuemineral density-equivalent gray levels that were obtainedfrom only bone voxels in a previous study.19

    The CVM stage and mandibular length were assessed

    in 2D cephalometric views by converting the same 3DCBCT images to their corresponding 2D lateral cephalo-metric views with orthodontic imaging software (Dol-phin3D; Dolphin Imaging & Management Solutions,

    Chatsworth, Calif). The CVM stage was assigned accord-ing to the 5-stage method developed previously.6 Thismethod categorizes patients into 1 of 5 stages based onthe shape of the cervical vertebrae (C3 and C4) by assess-ing whether they are trapezoidal or rectangular in thehor-izontal dimension, square, or rectangular in the vertical

    dimension, and by evaluating for the presence or absenceof a concavity on the inferior borders of C2, C3, and C4.

     When using this method, peak mandibular growth is pre-sumed to occur between stages II and III. The mandibularlength was measured using the same 2D cephalometric

     view for each patient at T1 and T2. The mandibular lengthmeasurement was based on the distance from condylion,

     which was dened as the most posterior-superior pointon the condyle, to anatomic gnathion, which was denedas the midpoint between the most anterior-inferior pointon the bony chin.

    All CVM stage evaluations were performed by a blinded examiner (B.C.) using the randomly coded CBCT

    images. Five images were randomly selected for repeatedmeasurements by the same examiner for an intrarater reli-ability test. An additional 5 images were randomly selected and evaluated by a second examiner (E.J.) to

    determine the interrater reliability. Intrarater and inter-rater agreements were analyzed with the intraclass corre-lation coef cient with the Shrout-Fleiss random setmethod and single score method, respectively (SAS[r]

     Proprietary Software 9.2; SAS Institute Inc, Cary, NC).23

    Although this statistical test is intended for continuousrather than ranked data, this data set was perfectly 

    ranked, making this an appropriate evaluation.A paired t test was used to compare the vertebral vari-

    ables (mean, standard deviation, and vertebral volume),CVM stage, and mandibular length between T1 and T2.The changes in all parameters between T1 and T2 were

    184   Crawford et al 

     August 2014   Vol 146    Issue 2 American Journal of Orthodontics and Dentofacial Orthopedics

  • 8/9/2019 Ajodo Crawford Cervical Bmd

    3/7

    obtained using an absolute difference by subtractingmeasurements at T1 from those at T2. Then, the pairedt test was used to compare the values and the changes of 

    the vertebral parameters (mean, standard deviation, and vertebral volume) between C2 and C3. Pearson correla-tions were examined for all parameters between T1and T2, and also between changes of the vertebral pa-rameters and the mandibular length. Spearman rank

    correlations were tested between changes of the CVMstage and all other parameters. Signicance was set atP #0.05.

    RESULTS

    Interrater reliability between the 2 raters (B.C. and E.J.) was 0.54 for CVM. Intrarater reliability for the  rstrater was 0.90 for the same variable.

    Fig 2.   Typical histograms of gray level at A, T1, and B, T 2 o f C 2 (black ) and C3 (gray ) vertebral bodies

    of the same patient.

    Fig 1.   A typical CBCT image process to isolate the cervical vertebrae (C2 and C3). From the initial full

    eld-of-view 3D image, thevertebrae are cropped and viewed as a single slice. Next, using thecropped

    image, the vertebral voxels are separated from nonvertebral voxels, and the vertebral body is cropped

    from the entire image.

    Crawford et al    185

     American Journal of Orthodontics and Dentofacial Orthopedics August 2014   Vol 146    Issue 2

  • 8/9/2019 Ajodo Crawford Cervical Bmd

    4/7

    The cervical vertebrae were successfully isolated from

    the CBCT images ( Fig 1), providing the gray-level histo-grams at T1 and T2 ( Fig 2).

    All variables at T1 had signicant positive correla-

    tions with those at T2 (P #

    0.027). The correlations be-tween T1 and T2 of the CVM stage and mandibularlength are shown in Figure 3.

    The BMD means of both C2 and C3, CVM stage, andmandibular length signicantly increased during theobservation period (P \0.001) (Table I). The BMD stan-dard deviation and vertebral body volume of C2 signi-cantly decreased (P    #0.018); the BMD standarddeviation of C3 signicantly decreased (P #0.006), butthe vertebral body volume of C3 was not signicantly 

    different (P 5 0.210) during the observation period.The mean of the gray levels for the C2 vertebral body 

     was signicantly lower than that for the C3 vertebral body at both T1 and T2 (P \0.001) (Table I). In contrast,

    the mean of the standard deviation values for the C2 vertebral body was signicantly higher than that forthe C3 vertebral body at T1 (P \0.001), whereas no sig-nicant difference was detectable at T2 (P 5 0.669). Themean of the vertebral body volume for the C2 vertebral

     body was signicantly higher than that for the C3 verte-

     bral body at both T1 and T2 (P \0.001).The changes of BMD mean and standard deviation

     were signicantly different between C2 and C3, as wasthe vertebral body volume (P \0.001) (Table II).

    The changes of BMD standard deviation for C2 were

    signicantly correlated with those of vertebral body vol-ume and mandibular length (P #0.029) (Table III). The

    changes of BMD standard deviation for C3 and that of mandibular length were signicantly correlated(P   5   0.018). The changes of vertebral body volumeand CVM were positively correlated for both C2 and C3

    (P #0.021).

    DISCUSSION

    The means of the gray levels, which are equivalent to BMD, were signicantly different between the C2 and C3

    cervical vertebrae and increased during the observationperiod. In contrast, the higher variability (standard devi-ation) of gray-level distribution for C2 at T1 decreased tothe same level as C3 at T2. Consistently, we found thatthe mean, standard deviation, and vertebral body vol-ume of C2 changed signicantly more than those of C3 during the observation period. These results imply 

    that more bone remodeling occurred in the C2 vertebral body than in the C3 vertebral body during the observa-tion period for growing adolescents, resulting in thealteration of BMD distribution. This seems to indicatethat changes were occurring in the C2 vertebra that

     were robust enough to be biologically meaningful dur-

    ing this period. This activity cannot be dismissed, eventhough many view this as a nearly nongrowing periodas judged by CVM. It is still an active area of change

    and development. We also found that the CVM leveland mandibular length increased during the sameperiod. Taken together, these results indicate that the

    3D clinical CBCT-based analysis could provide informa-tion of BMD distribution and changes in both skeletalmaturation and facial growth.

     Many studies have evaluated the applicability of CBCT for the assessment of BMD for patients in clinicalpractice.16-20  However, the consistency of CBCT-based

     BMD measurements is still open to debate because of 

    questions regarding the variations of scanning condi-tions and target locations to scan.24-27 The patient-specic variations include the thickness of soft tissuesand the head position during the scan.28,29 On the

    other hand, many recent studies have shown   that theCBCT-based BMD measurement is reliable.16,19,30-32

    Similar to these previous studies, we also found thatthe changes of gray-level variability could explain thedifference of the morphologic parameter (volume) of C2 that showed more alteration during the observation

    period.The mean of gray levels is equivalent to the averaged

     BMD of each vertebral body. The standard deviation of gray levels accounts for variability of BMD   resultingfrom bone modeling and remodeling.22,33,34 Activated

     bone modeling is an uncoupled process by whichresorption of preexisting bone tissue and formation of 

    new bone tissue occur independently. The coupled bone remodeling process   comprises new boneformation after resorption.35-39  Because the newly forming bone tissue has less tissue mineral density 

    than does preexisting bone tissue, the variability of tissue mineral density inherently increases. Prolonged

    progressive mineralization of bone tissue after new bone formation alters the variability of tissue mineraldensity. In this study, the C2 vertebral body hadgreater variability but a lower mean of gray levels,

    indicating that more active bone modeling andremodeling occurred in the C2 vertebral body than inthe C3 vertebral body during the observation period.The high degree of bone remodeling of the C2

     vertebral body subsided at T2, reaching a similar levelto that of the C3 vertebral body. These   ndings wereconsistent with observations from a previous study 

    that showed a growth rate approximately twice as highfor C2 than for C3 in 14.5-year-old girls and progres-sively declining to the same level between C2 and C3in the same patients at the age of 16.5 years.40  Hence,these cervical vertebrae are an active region of bony 

    186   Crawford et al 

     August 2014   Vol 146    Issue 2 American Journal of Orthodontics and Dentofacial Orthopedics

  • 8/9/2019 Ajodo Crawford Cervical Bmd

    5/7

    change in adolescents; this would be related to othermaturational changes and specically at C2.

    The lower level of bone remodeling in the C3 verte- bral body at T1 most likely resulted from the develop-

    ment of greater bone mineralization with lessresorption of the highly mineralized preexisting boneand less formation of the less mineralized new bone, re-sulting in the high mean of BMD values for C3 at T2. Thegreater change in vertebral body volume for C2 than C3

     vertebral bodies at T2 supported these observations

     because this volume change could result from the active

     bone modeling and remodeling during the observationperiod. Again, C2 is a focus of activity.

    The skeletal maturity estimated using CVMsignicantly increased along with the changes of other

    parameters during the observation period. The signi-cant correlations between the changes of CVM stageand vertebral body volume indicated that the 2Dimage-based morphologic analysis of vertebrae usedfor CVM could partly account for the 3D changes of 

     vertebral volume. In addition, the values obtained at

    T1 had signicant correlations with those at T2,

    Fig 3.  Correlations of A, CVM stage (T2 5 0.5317 T1 1 2.0048; r 5 0.692; P \0.001) and B, mandib-

    ular length (T2 5 1.028 T1; r 5 0.999;  P \0.001) between T1 and T2.

    Table I.   Comparison between T1 and T2 for all parameters

    Parameter T1 T2   P value 

     BMD mean

    C2 1948.312 6 81.873 1997.257 6 50.028   \0.001

    C3 1969.746 6 87.370 2054.788 6 2.916   \0.001

     BMD SD

    C2 141.635 6 27.739 121.063 6 13.299   \0.001

    C3 133.530 6 23.642 120.504 6 13.829   \0.001

     Vertebral body volume (mm3)

    C2 6348.342 6 1109.801 5652.91 6 1933.960 0.018

    C3 3411.728 6 671.176 3205.432 6 1115.353 0.210

    CVM stage 2.9276

    1.010 3.5616

    0.776   \0.001 Mandibular length (mm) 115.827 6 5.261 119.022 6 5.813   \0.001

    Table II.  Comparison of changes (DT5 jT2-T1j) of vertebral parameters between C2 and C3, and DT values for CVMstages and mandibular length

    Variable C2 vertebral body C3 vertebral body     P value 

    DT BMD mean 65.022 6 44.566 91.450 6 55.838   \0.001

    DT BMD SD 27.773 6 18.285 21.606 6 13.086   \0.001

    DT (vertebral body volume) (mm3) 1436.676 6 1270.435 850.389 6 612.565   \0.001

    DT (CVM stage) 0.63 6 0.733

    DT (mandibular length) (mm) 3.278 6 2.717

    Crawford et al    187

     American Journal of Orthodontics and Dentofacial Orthopedics August 2014   Vol 146    Issue 2

  • 8/9/2019 Ajodo Crawford Cervical Bmd

    6/7

  • 8/9/2019 Ajodo Crawford Cervical Bmd

    7/7

    3.  Lamparski DG. Skeletal age assessment utilizing cervical vertebrae

    [Thesis]. Pittsburgh, Pa: University of Pittsburgh; 1972.

    4.   Perinetti G, Contardo L, Gabrieli P, Baccetti T, Di Lenarda R. Diag-

    nostic performance of dental maturity for identication of skeletal

    maturation phase. Eur J Orthod 2012;34:487-92.

    5.  Franchi L, Baccetti T, De Toffol L, Polimeni A, Cozza P. Phases of the dentition for the assessment of skeletal maturity: a diagnostic

    performance study. Am J Orthod Dentofacial Orthop 2008;133:

    395-400.

    6.   Baccetti T, Franchi L, McNamara JA Jr. An improved version of the

    cervical vertebral maturation (CVM) method for the assessment of 

    mandibular growth. Angle Orthod 2002;72:316-23.

    7.   Nestman TS, Marshall SD, Qian F, Holton N, Franciscus RG,

    Southard TE. Cervical vertebrae maturation method morphologic

    criteria: poor reproducibility. Am J Orthod Dentofacial Orthop

    2011;140:182-8.

    8.   Gabriel DB, Southard KA, Qian F, Marshall SD, Franciscus RG,

    Southard TE. Cervical vertebrae maturation method: poor repro-

    ducibility. Am J Orthod Dentofacial Orthop 2009;136:478.e1-7.

    9.   Santiago RC, de Miranda Costa LF, Vitral RW, Fraga MR,

     Bolognese AM, Maia LC. Cervical vertebral maturation as a biologicindicator of skeletal maturity. Angle Orthod 2012;82:1123-31.

    10.   Scarfe WC, Farman AG, Sukovic P. Clinical applications of cone-

     beam computed tomography in dental practice. J Can Dent Assoc

    2006;72:75-80.

    11.   Shi H, ScarfeWC, FarmanAG. Three-dimensionalreconstruction of 

    individual cervical vertebrae from cone-beam computed tomogra-

    phy images. Am J Orthod Dentofacial Orthop 2007;131:426-32.

    12.  Shim JJ, Heo G, Lagrav ere MO. Assessment of skeletal maturation

     based on cervical vertebrae in CBCT. Int Orthod 2012;10:351-62.

    13.  Joshi V, Yamaguchi T, Matsuda Y, Kaneko N, Maki K, Okano T.

    Skeletal maturity assessment with the use of cone-beam comput-

    erized tomography. Oral Surg Oral Med Oral Pathol Oral Radiol

    2012;113:841-9.

    14.   Rauch F, Schoenau E. Changes in bone density during childhood

    and adolescence: an approach based on bone's biological organi-

    zation. J Bone Miner Res 2001;16:597-604.

    15.  Genant HK, Engelke K, Fuerst T, Gl€uer CC, Grampp S, Harris ST,

    et al. Noninvasive assessment of bone mineral and structure: state

    of the art. J Bone Miner Res 1996;11:707-30.

    16.   Parsa A, Ibrahim N, Hassan B, Motroni A, van der Stelt P,

     Wismeijer D. Reliability of voxel gray values in cone beam

    computed tomography for preoperative implant planning assess-

    ment. Int J Oral Maxillofac Implants 2012;27:1438-42.

    17.  Reeves TE, Mah P, McDavid WD. Deriving Hounseld units using

    grey levels in cone beam CT: a clinical application. Dentomaxillo-

    fac Radiol 2012;41:500-8.

    18.  Norton MR, Gamble C. Bone classication: an objective scale of 

     bone density using the computerized tomography scan. Clin Oral

    Implants Res 2001;12:79-84.19.   Taylor TT, Gans SI, Jones EM, Firestone AR, Johnston WM,

     Kim DG. Comparison of micro-CT and cone beam CT-based

    assessments for relative difference of grey level distribution in a

    human mandible. Dentomaxillofac Radiol 2013;42:25117764.

    20.   Huang H, Richards M, Bedair T, Fields HW, Palomo JM,

     JohnstonWM, et al. Effects of orthodontic treatment on humanalve-

    olar bone density distribution. Clin Oral Investig 2013;17:2033-40.

    21.   Zauel R, Yeni YN, Christopherson GT, Cody DD, Fyhrie DP.

    Segmentation algorithm for accurate 3D representation of micro-

    computed tomographic images of human vertebral bodies. Trans-

    actions of the Orthopaedic Research Society 2004;29:1018.

    22.  Ames MS, Hong S, Lee HR, Fields HW, Johnston WM, Kim DG. Es-

    trogen deciency increases variability of tissue mineral density of 

    alveolar bone surrounding teeth. Arch Oral Biol 2010;55:599-605.

    23.  Shrout PE, Fleiss JL. Intraclass correlations—uses in assessing rater

    reliability. Psychol Bull 1979;86:420-8.

    24.  Hua Y, Nackaerts O, Duyck J, Maes F, Jacobs R. Bone quality assessment based on cone beam computed tomography imaging.

    Clin Oral Implants Res 2009;20:767-71.

    25.  Hsu JT, Chang HW, Huang HL, Yu JH, Li YF, Tu MG. Bone density 

    changes around teeth during orthodontic treatment. Clin Oral In-

     vestig 2011;15:511-9.

    26.  Naitoh M, Hirukawa A, Katsumata A, Ariji E. Evaluation of voxel

     values in mandibular cancellous bone: relationship between

    cone-beam computed tomography and multislice helical

    computed tomography. Clin Oral Implants Res 2009;20:503-6.

    27.   Katsumata A, Hirukawa A, Okumura S, Naitoh M, Fujishita M,

    Ariji E, et al. Relationship between density variability and imaging

     volume size in cone-beam computerized tomographic scanning of 

    the maxillofacial region: an in vitro study. Oral Surg Oral Med Oral

     Pathol Oral Radiol Endod 2009;107:420-5.

    28.   Katsumata A, Hirukawa A, Okumura S, Naitoh M, Fujishita M,Ariji E, et al. Effects of image artifacts on gray-value density in

    limited-volume cone-beam computerized tomography. Oral Surg

    Oral Med Oral Pathol Oral Radiol Endod 2007;104:829-36.

    29.  Bryant JA, Drage NA, Richmond S. Study of the scan uniformity 

    from an i-CAT cone beam computed tomography dental imaging

    system. Dentomaxillofac Radiol 2008;37:365-74.

    30.  Nomura Y, Watanabe H, Honda E, Kurabayashi T. Reliability of 

     voxel values from cone-beam computed tomography for dental

    use in evaluating bone mineral density. Clin Oral Implants Res

    2010;21:558-62.

    31.   Hsu JT, Chen YJ, Tsai MT, Lan HH, Cheng FC, Chen MY, et al.

     Predicting cortical bone strength from DXA and dental cone-

     beam CT. PloS One 2012;7:e50008.

    32.  Cassetta M, Stefanelli LV, Pacici A, Pacici L, Barbato E. How

    accurate is CBCT in measuring bone density? A comparative

    CBCT-CT in vitro study. Clin Implant Dent Relat Res 2013 [Epub

    ahead of print].

    33. Kim DG,Shertok D, Ching Tee B, YeniYN. Variability of tissuemin-

    eral density can determine physiological creep of human vertebral

    cancellous bone. J Biomech 2011;44:1660-5.

    34.   Martin RB, Burr DB, Sharkey NA. Skeletal tissue mechanics. New

     York: Springer; 1998. p. 79.

    35.  Turner RT, Riggs BL, Spelsberg TC. Skeletal effects of estrogen.

     Endocr Rev 1994;15:275-300.

    36.  Marcus R. The nature of osteoporosis. J Clin Endocrinol Metab

    1996;81:1-5.

    37.   BoivinG, VediS, PurdieDW, Compston JE,MeunierPJ.Inuenceof 

    estrogen therapy at conventional and high doses on the degree of 

    mineralization of iliac bone tissue: a quantitative microradio-graphic analysis in postmenopausal women. Bone 2005;36:562-7.

    38.  Garnero P, Sornay-Rendu E, Chapuy MC, Delmas PD. Increased

     bone turnover in late postmenopausal women is a major determi-

    nant of osteoporosis. J Bone Miner Res 1996;11:337-49.

    39.  Yao W, Cheng Z, Koester KJ, Ager JW, Balooch M, Pham A, et al.

    The degree of bone mineralization is maintained with single intra-

     venous bisphosphonates in aged estrogen-decient rats and is a

    strong predictor of bone strength. Bone 2007;41:804-12.

    40.   Altan M, Nebioglu Dalci O, Iseri H. Growth of the cervical vertebrae

    ingirls from 8 to17 years.A longitudinalstudy.EurJ Orthod2012;

    34:327-34.

    Crawford et al    189

    American Journal of Orthodontics and Dentofacial Orthopedics August 2014 Vol 146 Issue 2

    http://refhub.elsevier.com/S0889-5406(14)00471-5/sref3http://refhub.elsevier.com/S0889-5406(14)00471-5/sref3http://refhub.elsevier.com/S0889-5406(14)00471-5/sref4http://refhub.elsevier.com/S0889-5406(14)00471-5/sref4http://refhub.elsevier.com/S0889-5406(14)00471-5/sref4http://refhub.elsevier.com/S0889-5406(14)00471-5/sref4http://refhub.elsevier.com/S0889-5406(14)00471-5/sref4http://refhub.elsevier.com/S0889-5406(14)00471-5/sref5http://refhub.elsevier.com/S0889-5406(14)00471-5/sref5http://refhub.elsevier.com/S0889-5406(14)00471-5/sref5http://refhub.elsevier.com/S0889-5406(14)00471-5/sref5http://refhub.elsevier.com/S0889-5406(14)00471-5/sref6http://refhub.elsevier.com/S0889-5406(14)00471-5/sref6http://refhub.elsevier.com/S0889-5406(14)00471-5/sref6http://refhub.elsevier.com/S0889-5406(14)00471-5/sref7http://refhub.elsevier.com/S0889-5406(14)00471-5/sref7http://refhub.elsevier.com/S0889-5406(14)00471-5/sref7http://refhub.elsevier.com/S0889-5406(14)00471-5/sref7http://refhub.elsevier.com/S0889-5406(14)00471-5/sref8http://refhub.elsevier.com/S0889-5406(14)00471-5/sref8http://refhub.elsevier.com/S0889-5406(14)00471-5/sref8http://refhub.elsevier.com/S0889-5406(14)00471-5/sref9http://refhub.elsevier.com/S0889-5406(14)00471-5/sref9http://refhub.elsevier.com/S0889-5406(14)00471-5/sref9http://refhub.elsevier.com/S0889-5406(14)00471-5/sref10http://refhub.elsevier.com/S0889-5406(14)00471-5/sref10http://refhub.elsevier.com/S0889-5406(14)00471-5/sref10http://refhub.elsevier.com/S0889-5406(14)00471-5/sref11http://refhub.elsevier.com/S0889-5406(14)00471-5/sref11http://refhub.elsevier.com/S0889-5406(14)00471-5/sref11http://refhub.elsevier.com/S0889-5406(14)00471-5/sref12http://refhub.elsevier.com/S0889-5406(14)00471-5/sref12http://refhub.elsevier.com/S0889-5406(14)00471-5/sref12http://refhub.elsevier.com/S0889-5406(14)00471-5/sref13http://refhub.elsevier.com/S0889-5406(14)00471-5/sref13http://refhub.elsevier.com/S0889-5406(14)00471-5/sref13http://refhub.elsevier.com/S0889-5406(14)00471-5/sref13http://refhub.elsevier.com/S0889-5406(14)00471-5/sref14http://refhub.elsevier.com/S0889-5406(14)00471-5/sref14http://refhub.elsevier.com/S0889-5406(14)00471-5/sref14http://refhub.elsevier.com/S0889-5406(14)00471-5/sref15http://refhub.elsevier.com/S0889-5406(14)00471-5/sref15http://refhub.elsevier.com/S0889-5406(14)00471-5/sref15http://refhub.elsevier.com/S0889-5406(14)00471-5/sref15http://refhub.elsevier.com/S0889-5406(14)00471-5/sref16http://refhub.elsevier.com/S0889-5406(14)00471-5/sref16http://refhub.elsevier.com/S0889-5406(14)00471-5/sref16http://refhub.elsevier.com/S0889-5406(14)00471-5/sref16http://refhub.elsevier.com/S0889-5406(14)00471-5/sref17http://refhub.elsevier.com/S0889-5406(14)00471-5/sref17http://refhub.elsevier.com/S0889-5406(14)00471-5/sref17http://refhub.elsevier.com/S0889-5406(14)00471-5/sref17http://refhub.elsevier.com/S0889-5406(14)00471-5/sref17http://refhub.elsevier.com/S0889-5406(14)00471-5/sref18http://refhub.elsevier.com/S0889-5406(14)00471-5/sref18http://refhub.elsevier.com/S0889-5406(14)00471-5/sref18http://refhub.elsevier.com/S0889-5406(14)00471-5/sref18http://refhub.elsevier.com/S0889-5406(14)00471-5/sref18http://refhub.elsevier.com/S0889-5406(14)00471-5/sref19http://refhub.elsevier.com/S0889-5406(14)00471-5/sref19http://refhub.elsevier.com/S0889-5406(14)00471-5/sref19http://refhub.elsevier.com/S0889-5406(14)00471-5/sref19http://refhub.elsevier.com/S0889-5406(14)00471-5/sref19http://refhub.elsevier.com/S0889-5406(14)00471-5/sref20http://refhub.elsevier.com/S0889-5406(14)00471-5/sref20http://refhub.elsevier.com/S0889-5406(14)00471-5/sref20http://refhub.elsevier.com/S0889-5406(14)00471-5/sref21http://refhub.elsevier.com/S0889-5406(14)00471-5/sref21http://refhub.elsevier.com/S0889-5406(14)00471-5/sref21http://refhub.elsevier.com/S0889-5406(14)00471-5/sref21http://refhub.elsevier.com/S0889-5406(14)00471-5/sref22http://refhub.elsevier.com/S0889-5406(14)00471-5/sref22http://refhub.elsevier.com/S0889-5406(14)00471-5/sref22http://refhub.elsevier.com/S0889-5406(14)00471-5/sref22http://refhub.elsevier.com/S0889-5406(14)00471-5/sref22http://refhub.elsevier.com/S0889-5406(14)00471-5/sref23http://refhub.elsevier.com/S0889-5406(14)00471-5/sref23http://refhub.elsevier.com/S0889-5406(14)00471-5/sref23http://refhub.elsevier.com/S0889-5406(14)00471-5/sref23http://refhub.elsevier.com/S0889-5406(14)00471-5/sref23http://refhub.elsevier.com/S0889-5406(14)00471-5/sref24http://refhub.elsevier.com/S0889-5406(14)00471-5/sref24http://refhub.elsevier.com/S0889-5406(14)00471-5/sref24http://refhub.elsevier.com/S0889-5406(14)00471-5/sref25http://refhub.elsevier.com/S0889-5406(14)00471-5/sref25http://refhub.elsevier.com/S0889-5406(14)00471-5/sref25http://refhub.elsevier.com/S0889-5406(14)00471-5/sref26http://refhub.elsevier.com/S0889-5406(14)00471-5/sref26http://refhub.elsevier.com/S0889-5406(14)00471-5/sref26http://refhub.elsevier.com/S0889-5406(14)00471-5/sref26http://refhub.elsevier.com/S0889-5406(14)00471-5/sref27http://refhub.elsevier.com/S0889-5406(14)00471-5/sref27http://refhub.elsevier.com/S0889-5406(14)00471-5/sref27http://refhub.elsevier.com/S0889-5406(14)00471-5/sref27http://refhub.elsevier.com/S0889-5406(14)00471-5/sref27http://refhub.elsevier.com/S0889-5406(14)00471-5/sref28http://refhub.elsevier.com/S0889-5406(14)00471-5/sref28http://refhub.elsevier.com/S0889-5406(14)00471-5/sref28http://refhub.elsevier.com/S0889-5406(14)00471-5/sref28http://refhub.elsevier.com/S0889-5406(14)00471-5/sref29http://refhub.elsevier.com/S0889-5406(14)00471-5/sref29http://refhub.elsevier.com/S0889-5406(14)00471-5/sref29http://refhub.elsevier.com/S0889-5406(14)00471-5/sref30http://refhub.elsevier.com/S0889-5406(14)00471-5/sref30http://refhub.elsevier.com/S0889-5406(14)00471-5/sref30http://refhub.elsevier.com/S0889-5406(14)00471-5/sref30http://refhub.elsevier.com/S0889-5406(14)00471-5/sref31http://refhub.elsevier.com/S0889-5406(14)00471-5/sref31http://refhub.elsevier.com/S0889-5406(14)00471-5/sref31http://refhub.elsevier.com/S0889-5406(14)00471-5/sref32http://refhub.elsevier.com/S0889-5406(14)00471-5/sref32http://refhub.elsevier.com/S0889-5406(14)00471-5/sref32http://refhub.elsevier.com/S0889-5406(14)00471-5/sref32http://refhub.elsevier.com/S0889-5406(14)00471-5/sref32http://refhub.elsevier.com/S0889-5406(14)00471-5/sref32http://refhub.elsevier.com/S0889-5406(14)00471-5/sref32http://refhub.elsevier.com/S0889-5406(14)00471-5/sref32http://refhub.elsevier.com/S0889-5406(14)00471-5/sref33http://refhub.elsevier.com/S0889-5406(14)00471-5/sref33http://refhub.elsevier.com/S0889-5406(14)00471-5/sref33http://refhub.elsevier.com/S0889-5406(14)00471-5/sref34http://refhub.elsevier.com/S0889-5406(14)00471-5/sref34http://refhub.elsevier.com/S0889-5406(14)00471-5/sref35http://refhub.elsevier.com/S0889-5406(14)00471-5/sref35http://refhub.elsevier.com/S0889-5406(14)00471-5/sref36http://refhub.elsevier.com/S0889-5406(14)00471-5/sref36http://refhub.elsevier.com/S0889-5406(14)00471-5/sref37http://refhub.elsevier.com/S0889-5406(14)00471-5/sref37http://refhub.elsevier.com/S0889-5406(14)00471-5/sref37http://refhub.elsevier.com/S0889-5406(14)00471-5/sref37http://refhub.elsevier.com/S0889-5406(14)00471-5/sref37http://refhub.elsevier.com/S0889-5406(14)00471-5/sref37http://refhub.elsevier.com/S0889-5406(14)00471-5/sref38http://refhub.elsevier.com/S0889-5406(14)00471-5/sref38http://refhub.elsevier.com/S0889-5406(14)00471-5/sref38http://refhub.elsevier.com/S0889-5406(14)00471-5/sref39http://refhub.elsevier.com/S0889-5406(14)00471-5/sref39http://refhub.elsevier.com/S0889-5406(14)00471-5/sref39http://refhub.elsevier.com/S0889-5406(14)00471-5/sref39http://refhub.elsevier.com/S0889-5406(14)00471-5/sref39http://refhub.elsevier.com/S0889-5406(14)00471-5/sref39http://refhub.elsevier.com/S0889-5406(14)00471-5/sref40http://refhub.elsevier.com/S0889-5406(14)00471-5/sref40http://refhub.elsevier.com/S0889-5406(14)00471-5/sref40http://refhub.elsevier.com/S0889-5406(14)00471-5/sref40http://refhub.elsevier.com/S0889-5406(14)00471-5/sref40http://refhub.elsevier.com/S0889-5406(14)00471-5/sref40http://refhub.elsevier.com/S0889-5406(14)00471-5/sref39http://refhub.elsevier.com/S0889-5406(14)00471-5/sref39http://refhub.elsevier.com/S0889-5406(14)00471-5/sref39http://refhub.elsevier.com/S0889-5406(14)00471-5/sref39http://refhub.elsevier.com/S0889-5406(14)00471-5/sref38http://refhub.elsevier.com/S0889-5406(14)00471-5/sref38http://refhub.elsevier.com/S0889-5406(14)00471-5/sref38http://refhub.elsevier.com/S0889-5406(14)00471-5/sref37http://refhub.elsevier.com/S0889-5406(14)00471-5/sref37http://refhub.elsevier.com/S0889-5406(14)00471-5/sref37http://refhub.elsevier.com/S0889-5406(14)00471-5/sref37http://refhub.elsevier.com/S0889-5406(14)00471-5/sref36http://refhub.elsevier.com/S0889-5406(14)00471-5/sref36http://refhub.elsevier.com/S0889-5406(14)00471-5/sref35http://refhub.elsevier.com/S0889-5406(14)00471-5/sref35http://refhub.elsevier.com/S0889-5406(14)00471-5/sref34http://refhub.elsevier.com/S0889-5406(14)00471-5/sref34http://refhub.elsevier.com/S0889-5406(14)00471-5/sref33http://refhub.elsevier.com/S0889-5406(14)00471-5/sref33http://refhub.elsevier.com/S0889-5406(14)00471-5/sref33http://refhub.elsevier.com/S0889-5406(14)00471-5/sref32http://refhub.elsevier.com/S0889-5406(14)00471-5/sref32http://refhub.elsevier.com/S0889-5406(14)00471-5/sref32http://refhub.elsevier.com/S0889-5406(14)00471-5/sref32http://refhub.elsevier.com/S0889-5406(14)00471-5/sref31http://refhub.elsevier.com/S0889-5406(14)00471-5/sref31http://refhub.elsevier.com/S0889-5406(14)00471-5/sref31http://refhub.elsevier.com/S0889-5406(14)00471-5/sref30http://refhub.elsevier.com/S0889-5406(14)00471-5/sref30http://refhub.elsevier.com/S0889-5406(14)00471-5/sref30http://refhub.elsevier.com/S0889-5406(14)00471-5/sref30http://refhub.elsevier.com/S0889-5406(14)00471-5/sref29http://refhub.elsevier.com/S0889-5406(14)00471-5/sref29http://refhub.elsevier.com/S0889-5406(14)00471-5/sref29http://refhub.elsevier.com/S0889-5406(14)00471-5/sref28http://refhub.elsevier.com/S0889-5406(14)00471-5/sref28http://refhub.elsevier.com/S0889-5406(14)00471-5/sref28http://refhub.elsevier.com/S0889-5406(14)00471-5/sref28http://refhub.elsevier.com/S0889-5406(14)00471-5/sref27http://refhub.elsevier.com/S0889-5406(14)00471-5/sref27http://refhub.elsevier.com/S0889-5406(14)00471-5/sref27http://refhub.elsevier.com/S0889-5406(14)00471-5/sref27http://refhub.elsevier.com/S0889-5406(14)00471-5/sref27http://refhub.elsevier.com/S0889-5406(14)00471-5/sref26http://refhub.elsevier.com/S0889-5406(14)00471-5/sref26http://refhub.elsevier.com/S0889-5406(14)00471-5/sref26http://refhub.elsevier.com/S0889-5406(14)00471-5/sref26http://refhub.elsevier.com/S0889-5406(14)00471-5/sref25http://refhub.elsevier.com/S0889-5406(14)00471-5/sref25http://refhub.elsevier.com/S0889-5406(14)00471-5/sref25http://refhub.elsevier.com/S0889-5406(14)00471-5/sref24http://refhub.elsevier.com/S0889-5406(14)00471-5/sref24http://refhub.elsevier.com/S0889-5406(14)00471-5/sref24http://refhub.elsevier.com/S0889-5406(14)00471-5/sref23http://refhub.elsevier.com/S0889-5406(14)00471-5/sref23http://refhub.elsevier.com/S0889-5406(14)00471-5/sref22http://refhub.elsevier.com/S0889-5406(14)00471-5/sref22http://refhub.elsevier.com/S0889-5406(14)00471-5/sref22http://refhub.elsevier.com/S0889-5406(14)00471-5/sref21http://refhub.elsevier.com/S0889-5406(14)00471-5/sref21http://refhub.elsevier.com/S0889-5406(14)00471-5/sref21http://refhub.elsevier.com/S0889-5406(14)00471-5/sref21http://refhub.elsevier.com/S0889-5406(14)00471-5/sref20http://refhub.elsevier.com/S0889-5406(14)00471-5/sref20http://refhub.elsevier.com/S0889-5406(14)00471-5/sref20http://refhub.elsevier.com/S0889-5406(14)00471-5/sref19http://refhub.elsevier.com/S0889-5406(14)00471-5/sref19http://refhub.elsevier.com/S0889-5406(14)00471-5/sref19http://refhub.elsevier.com/S0889-5406(14)00471-5/sref19http://refhub.elsevier.com/S0889-5406(14)00471-5/sref18http://refhub.elsevier.com/S0889-5406(14)00471-5/sref18http://refhub.elsevier.com/S0889-5406(14)00471-5/sref18http://refhub.elsevier.com/S0889-5406(14)00471-5/sref17http://refhub.elsevier.com/S0889-5406(14)00471-5/sref17http://refhub.elsevier.com/S0889-5406(14)00471-5/sref17http://refhub.elsevier.com/S0889-5406(14)00471-5/sref16http://refhub.elsevier.com/S0889-5406(14)00471-5/sref16http://refhub.elsevier.com/S0889-5406(14)00471-5/sref16http://refhub.elsevier.com/S0889-5406(14)00471-5/sref16http://refhub.elsevier.com/S0889-5406(14)00471-5/sref15http://refhub.elsevier.com/S0889-5406(14)00471-5/sref15http://refhub.elsevier.com/S0889-5406(14)00471-5/sref15http://refhub.elsevier.com/S0889-5406(14)00471-5/sref15http://refhub.elsevier.com/S0889-5406(14)00471-5/sref14http://refhub.elsevier.com/S0889-5406(14)00471-5/sref14http://refhub.elsevier.com/S0889-5406(14)00471-5/sref14http://refhub.elsevier.com/S0889-5406(14)00471-5/sref13http://refhub.elsevier.com/S0889-5406(14)00471-5/sref13http://refhub.elsevier.com/S0889-5406(14)00471-5/sref13http://refhub.elsevier.com/S0889-5406(14)00471-5/sref13http://refhub.elsevier.com/S0889-5406(14)00471-5/sref12http://refhub.elsevier.com/S0889-5406(14)00471-5/sref12http://refhub.elsevier.com/S0889-5406(14)00471-5/sref12http://refhub.elsevier.com/S0889-5406(14)00471-5/sref11http://refhub.elsevier.com/S0889-5406(14)00471-5/sref11http://refhub.elsevier.com/S0889-5406(14)00471-5/sref11http://refhub.elsevier.com/S0889-5406(14)00471-5/sref10http://refhub.elsevier.com/S0889-5406(14)00471-5/sref10http://refhub.elsevier.com/S0889-5406(14)00471-5/sref10http://refhub.elsevier.com/S0889-5406(14)00471-5/sref9http://refhub.elsevier.com/S0889-5406(14)00471-5/sref9http://refhub.elsevier.com/S0889-5406(14)00471-5/sref9http://refhub.elsevier.com/S0889-5406(14)00471-5/sref8http://refhub.elsevier.com/S0889-5406(14)00471-5/sref8http://refhub.elsevier.com/S0889-5406(14)00471-5/sref8http://refhub.elsevier.com/S0889-5406(14)00471-5/sref7http://refhub.elsevier.com/S0889-5406(14)00471-5/sref7http://refhub.elsevier.com/S0889-5406(14)00471-5/sref7http://refhub.elsevier.com/S0889-5406(14)00471-5/sref7http://refhub.elsevier.com/S0889-5406(14)00471-5/sref6http://refhub.elsevier.com/S0889-5406(14)00471-5/sref6http://refhub.elsevier.com/S0889-5406(14)00471-5/sref6http://refhub.elsevier.com/S0889-5406(14)00471-5/sref5http://refhub.elsevier.com/S0889-5406(14)00471-5/sref5http://refhub.elsevier.com/S0889-5406(14)00471-5/sref5http://refhub.elsevier.com/S0889-5406(14)00471-5/sref5http://refhub.elsevier.com/S0889-5406(14)00471-5/sref4http://refhub.elsevier.com/S0889-5406(14)00471-5/sref4http://refhub.elsevier.com/S0889-5406(14)00471-5/sref4http://refhub.elsevier.com/S0889-5406(14)00471-5/sref3http://refhub.elsevier.com/S0889-5406(14)00471-5/sref3