Aircraft and Helicopter Design

download Aircraft and Helicopter Design

of 62

Transcript of Aircraft and Helicopter Design

  • 7/26/2019 Aircraft and Helicopter Design

    1/62

    Sec t ion 9

    A I R C R A F T A N D H E L IC O P T E R D E S IG N

    Vehic le De f i n i t i ons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2

    Aerodynam ics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7

    Per f o rmance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-38

    He l i cop t e r Des ign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-47

    B ib l i og raphy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-62

  • 7/26/2019 Aircraft and Helicopter Design

    2/62

    9 - 2 A I R C R A F T A N D H E L I C O P T E R D E S I G N

    V e h i c l e D e f in i t io n s

    G e o m e t r y

    T h e f o l l o w i n g f ig u r e s a n d f o r m u l a s p r o v i d e a n i n t r o d u c t io n o n g e o m e t r i c r e-

    l a ti o n s h i p s c o n c e r n i n g v e h i c l e p h y s i c a l d i m e n s i o n s . T h e s e d i m e n s i o n s a r e u s e d

    t h r o u g h o u t th i s s e c t i o n .

    WING

    45

    DEG

    HORIZONTAL

    TAIL

    ( ~ / ~)~ . I . . . . . 18F T . . . ~ '1 1 CHoRDROOT . TAILPAN24T

    ~ ~ _ _ ~ ] ~ ~ T?MAFCT I~ " 9 FT

    C/4 SW EEP / M A ~ F ~ L ~ b . . . 1

    = ~ - - \ , , , 'T~ iL;~ffM '- - ' - I- , ' I4.SFTI -

    / ~ " 18FT T IP CHORD

    LEoS~EEEP " ~ /

    --=~ 5.4 FT ~-

    TIP CH OR D

    TIP CHOR D

    .=~i 4=_~.~/S VERTICALTAIL

    I VERTICAL / / F " f f

    COCKPIT ~ TAILARM ~ MAC / TAILSPA N /

    PILOT VISION ~ 14 F A , -

    T 9 FT HE f G HT

    13 D E G - ' ~ 1 ~ 9 ; T 18 FT

    , '

    I u OVERA LLLENGTH60 FT m

    I WING SPAN 4.2 FT

    I I FOLDEDSPA N 33 FT ---'

    I

    / VERTICAL k i I

    ITAIL DIHEDRAL~ I

    .?, ,O D E G ~ , ~ /

    i I - - i1,

    / , ~ \~ ~ h" 4 . , WING DIHEDRAL

    J ~ ~ -3 DEG

    HORIZONTAL ~ ~'% ~ 40 - 45 DEG

    TAIL DIHEDRAL

    L " " OVER SIDE VISIONANGLE

    -3 DEG ~ D I WHEELT RA CK l ~

    / 11 FT /

  • 7/26/2019 Aircraft and Helicopter Design

    3/62

    AIRCRAFT AND HELICOPTER DESIGN

    Vehic le De f in i t ions , cont inued

    9-3

    Geometry Unit Wing H-Tail V-Tail

    LE sweep angle deg 30.0 45.0 45.0

    c/4 sweep angle deg 23.1 42.2 33.6

    Reference area ft2 491.4 162 63 each

    Projected span ft 42 24 9

    m.a.c, ft 12.83 7 7.42

    Aspect ratio AR 3.59 3.55 1.28

    Taper ratio L 0.3 0.5 0.4

    Thickness ratio t / c 0.05 0.04 0.03

    Dihedral F - 3 deg - 3 deg 70 deg

    Airfoil MOD NACA 65A MOD NACA 65A MOD NACA 65A

    Tail volume V n/a 0.462 0.28

    I I I

    where

    La = wheel base

    W = wheel track

    H = he ight c.g. to gro und reference

    /3 = tip bac k angle

    0 = tail down angle

    ot = turn over angle

    Gear in normal static position

    Use most aft c.g. for/~, keep/~ > 0

    Use most forward c.g. for ol

    Use l andin g weight c.g. for 0

  • 7/26/2019 Aircraft and Helicopter Design

    4/62

    9 -4 A I R C R A F T A N D H E L I C O P T E R D E S I G N

    V e h i c l e D e f i n i t i o n s , c o n t i n u e d

    G e o m e t r y , c o n t i n u e d

    The following definitions and equations apply to trapezoidal planforms, as

    illustrated here.

    r S ~ / m ( ~ r'I 1

    _ I .

    0,4

    ~ = b / 2 =

    " ~ b

    ~ Y

    ,p,, : E \ /

    r A XE ~ r _ S f C

    . r ~ ,

    - I

    x

    C o = overall length of zero-taper-ratio planform havin g same leading- and

    trailing-edge sweep as subject planf orm

    (~ = ratio of chordwise position of lead ing edge at tip to the root chord length

    = (b/2 ) tan

    A L E ( 1 / C r )

    7,. 72 = span stations of bou nda ry of arbitrary increment of win g area

    Am, A. = sweep angles of arbitrary chordwi se locations

    rn, n = non dime nsi onal chordwise stations in terms of C

    G e n e r a l

    y

    7 =

    b / 2

    ~. = C , / C r

    C = C r [ 1 - 7 ( 1 -

    X)]

    tan A = 1 tan E

    XLE = (b /2)7 tan ALE

    b 1 - aZ

    = - tan ALE + C t = C r - -

    2 1-a

    A r e a

    b 2 b b

    S -- AR -- 2 Cr(1 + X ) ---- - ~ C o ( 1 - a ) ( 1 - X )

    CoZ(1 - a)(1 - Z 2)

    tan ALE

    b -q l

    A S = E C r [ 2 - ( 1 - ) v ) ( 7 1 - 0 2 ) ] 7 2

  • 7/26/2019 Aircraft and Helicopter Design

    5/62

    AIRCRAFT AND HELICOPTER DESIGN 9-5

    V e h i c l e De f i n i t i o n s , c o n t i n u e d

    A s p e c t R a t i o

    A R - -

    b 2

    S

    2 b 4 ( 1 - X )

    Cr(l q- )~)

    ( 1 - - a ) ( 1 + X ) t a n A L E

    C u t o u t F a c t o r

    a D

    t a n A T E

    Cr(1 -

    ~) 4( 1 - )~)

    - - - 1 - 1 -

    t a n

    A L E ( b / 2 ) t a n A L E A R ( 1 + X ) ta n A L E

    S w e e p A n g l e s

    1 C r 1 -

    X ) 4 ( 1 - X )

    t a n

    A L E : - -

    t a n

    A T E - -

    a ( b / 2 ) ( 1 - a ) A R ( 1 + X )( 1 - a )

    Co(1 - X ) A R ( 1 q - ) ~ ) t a n

    Ac/4 -1-

    ( 1 - ~ , ) 4 t a n

    A c / 4

    b / 2 A R ( 1 + X ) 3 + a

    t a n A m = t a n A L E [ 1 - - (1 - a ) m ]

    t a n A m = t a n A L E - - ~ --~ ] - ~

    1

    c o s A m = a n A L E , - , { 1 ) 2

    ~LE "[- [1 - - ( 1 - - a ) m ] 2

    M e a n A e r o d y n a m i c C h o r d m .a . c . )

    2 f b /2

    2 ( )v2 )

    e = ~ , o C 2 d y = ~ C r 1 + 1 ~ - ~

    = 5 C o ( 1 - a ) +

    1

    4 S ~ X

    2 C r x C ~ t

    = -~ Cr + G Cr-7-

    2

    f b / 2 1 - - ( ( J / C r )

    rl = S . , o C y d y - - 1 - )v - -

    1

    3 \ l + X /

    X L E = y t a n A L E

  • 7/26/2019 Aircraft and Helicopter Design

    6/62

    9-6 AIRCRAFT AND HELICOPTER DESIGN

    V e h i c l e D e f i n i t i o n s , c o n t i n u e d

    Geom etry , continued

    R o o t C h o r d

    C r - -

    S 4 ( b / 2 )

    ( b / 2 ) ( 1 + )~) A R ( 1 + )~)

    C h o r d w i s e L o c a t i o n o f L e a d i n g E d g e a t T ip

    C r ~ - m

    AR

    ( 1 + ) 0 t a n A L E

    4

    Force-Velocity

    A i r p l a n e A x i s S y s t e m

    . k . ~ , . " I L r- x r , T r

    W I N O ~ a - . 1 ~ - - " . - -. -- -- - I F L I G H T

    '~tw

    V w m

    F orce M om en t L inea r Ang . o f

    Ax is along abo ut ve loci ty An g. disp. A ng. vel . Inertia attack

    X Fx L u q~ p Ix a

    Y F y M v 0 q l y

    Z F z N w g t r I z f i

  • 7/26/2019 Aircraft and Helicopter Design

    7/62

    A I R C R A F T A N D H E L I C O P T E R D E S I G N 9 -7

    A e r od y n a m ic s

    Basic Aer od y nam ic Relationships

    A R = a s p e c t r a t io = b2 /S

    C o = d r a g c o e f f i c i e n t = D / q S = C o o + C ol

    CDi = i n d u c e d d r a g c o e f f i c i e n t = CeL/(rcARe)

    C L = l i f t c o e f f i c i e n t =

    L / q S

    Ct

    = r o l l i n g - m o m e n t c o e f f i c i e n t = r o l l i n g

    m o m e n t / q b S

    Cm

    = p i t c h i n g - m o m e n t c o e f f i c i e n t = p i t c h i n g

    m o m e n t / q c S

    C n = y a w i n g - m o m e n t c o e f f i c i e n t = y a w i n g m o m e n t / q b S

    Cy = s i d e - f o r c e c o e f f i c i e n t = s i d e f o rc e /qS

    D = d r a g = CDqS

    d = e q u i v a l e n t b o d y d i a m e t e r = ~ / 4A M A x /Y r

    F R = f i n e n e s s r a t i o =

    / d

    L = l i f t =

    C L q S

    M = M a c h n u m b e r =

    V / a

    P = p l a n f o r m s h a p e p a r a m e t e r = S/be

    q = d y n a m i c p r e s s u r e = ( P V 2 ) =

    (pa2M2)

    R n = R e y n o l d s n u m b e r =

    Vgp / t z

    Ro = d /2

    = e q u i v a l e n t b o d y r a d iu s

    (t/C)RMS = r o o t - m e a n - s q u a r e t h i c k n e s s r a t io

    1

    i 1

    [b /2

    2 d y ] ~

    (t/C)RMS

    ~-

    b / 2 - r ~ r ( t /c )

    V = t r u e a i r s p e e d = V e /ff 1/2

    = c h o r d w i s e l o c a t i o n f r o m a p e x to C / Z ( e q u i v a l e n t t o c h o r d w i s e l o c a -

    t i o n o f c e n t r o i d o f a r e a )

    = - c x + y

    Sjo

    )LE = c h o r d w i s e l o c a t i o n o f l e a d i n g e d g e o f m . a . c .

    XLE ~ X -- --

    2

    I = s p a n w i s e l o c a t i o n o f C ( e q u i v a l e n t t o s p a n w i s e l o c a t i o n o f c e n t r o i d o f

    a r e a )

    2

    f b / 2

    = -- cy dy

    S u o

    /~ = ~ - 1 ( s u p e r s o n i c ) , ~ /1 - - M 2 ( s u b s o n i c )

    = c o m p l e m e n t t o w i n g s w e e p a n g l e = 9 0 d e g - -A L E

    O = n o n d i m e n s i o n a l s p a n s t a t i o n =

    y / ( b / 2 )

    )~ = t a p e r r a t io , t i p - t o - r o o t c h o r d = C t /C r

    a = a i r d e n s i t y r a t i o = P/Po

    v = k i n e m a t i c v i s c o s i t y =

    # / p

  • 7/26/2019 Aircraft and Helicopter Design

    8/62

    9-8 AIRCRAFT AND HELICOPTER DESIGN

    Sym bols

    a

    A MA X

    a . c .

    b

    C

    CDO

    c.g.

    c.p.

    Cr

    Ct

    d

    (dA/dx )AFT =

    e =

    g =

    i

    KBODY

    K L E

    =

    S, SREF =

    SEXP

    T =

    t =

    t / c

    v ~ =

    X

    y =

    Og

    Ol Lo

    F =

    6 =

    y =

    A =

    ALE ~---

    A T E

    A H L

    #

    P

    R

    Aerody nam ics , continued

    = speed of sound

    = max imu m cross-sectional area

    = aerodynamic center

    = wing span a

    = chord a

    = mean aerodyna mic chord (m.a.c.)

    = drag coefficient at zero lift

    = center of gravity

    = center of pressure

    = root chord a

    = tip chord a

    = diameter

    slope of aft end of configuration distribution curve

    Oswal d (wing) efficiency factor

    acceleration due to gravity

    angle of incidence

    body wave-drag factor

    wing shape factor

    characteristic lengtha

    reference area a

    exposed pl anform area

    temperature

    airfoil max imu m thickness at span station y

    airfoil thickness ratio (parallel to axis of sy mmetry)

    equivalent velocity

    general chordwise location, parallel to plane of symmetrya

    general spanwise location, perpendicular to plane of s ymmetrya

    angle of attack, chord plane to relative wind

    angle of attack for zero lift

    dihedral angle

    surface deflection angle

    ratio of specific heats

    sweep-back angle

    wing leading-ed ge sweep anglea

    wing trailing-edge sweep anglea

    flap-hinge-line sweep angle

    = coefficient of absolu te viscosity

    = density

    = specific gas const ant

    aDefined in figure appearing on page 9-4.

  • 7/26/2019 Aircraft and Helicopter Design

    9/62

    A I R C R A F T A N D H E L I C O P T E R D E S I G N 9 - 9

    A e r o d y n a m i c s , c o n t in u e d

    S p e e d o f S o u n d v s T e m p e r a tu r e

    2 0 0

    1 8 0

    1 6 0

    1 5 0

    1 4 0

    1 2 0

    1 0 0

    8 0

    4 0

    2 0

    0

    2 0

    4 0

    5 0

    6 0

    8 0

    1 0 0

    - - S p e e d o f s o u n d ( a ) i n

    d r y a i r

    = ~

    w h e r e

    1 , = 1 . 4 a n d

    - - T = a b s o l u t e t em p e ra t u r e in R .

    /

    /

    /-

    J

    /

    / -

    J i i

    9 2 0 9 6 0 1 0 0 0 1 0 4 0

    6p 6~o

    5 ~ o

    I 1 I I

    1 0 8 0 1 1 2 0 t 1 6 0 1 2 0 0

    7 0 0 7 5 0 8 0 0

    I i i

    6~o 760

    S P E E D O F S O U N D

    /

    I

    1 2 4 0 f t / s

    8 5 0 m p h

    i

    7 5 0 k n o t s

    D y n a m ic P r e s su r e (q ) v s M a ch N u m b e r

    1 0 , 0 0 0

    8 0 0 0 - -

    6 O O O

    5 0 0 0

    4 0 0 0 - -

    2 0 0 0

    1 0 0 0

    ~ L, 8 0 0 - -

    . a 6 0 0 - -

    5 0 0

    u J 4 0 0 - -

    E

    U )

    0 ~

    " ' 2 0 0

    n -

    o -

    .

    G I

    ///Y// I/b

    @ I , ~. I _ ~ I , / i

    7 X . V ~ I I ~ , I

    ,o o i i l , % ~ - ~ i ~ ' J i

    :o '7 ;, i ~ ' j

    - / i , < / z ' J / / / / ,

    ,o l i i l ,

    2 0

    /

    o Y / / / / / / / / / / I / , ,

    0 .1 0 .2 0 . 4 0 . 5 0 . 6 0 . 8 1 . 0 2 4. 5 6 8 1 0

    M A C H N U M B E R

  • 7/26/2019 Aircraft and Helicopter Design

    10/62

    9 - 1 0 A I R C R A F T A N D H E L I C O P T E R D E S I G N

    A er o d y n a m ics , co n tin u ed

    Standard A tm osphere

    S t a n d a r d a t m o s p h e r e i s a h y p o t h e t i c a l v e r t ic a l d i s tr i b u t i o n o f a t m o s p h e r i c t e m -

    p e ra tu r e, p r e s s u r e , a n d d e n s i t y w h i c h , b y i n t e r n a t i o n a l o r n a t i o n a l a g r e e m e n t , i s

    t a k e n t o b e t h e r e p r e s e n t a t iv e o f t h e a t m o s p h e r e f o r th e p u r p o s e o f a l ti m e t e r c a l c u -

    l a t io n s , a ir cr aft d e s i g n , p e r f o r m a n c e c a l c u l a t i o n s , e t c . T h e i n t e r n a t i o n a l l y a c c e p t e d

    s t an d a r d a t m o s p h e r e i s c a l l e d t h e I n t e r n a t io n a l C i v i l A v i a t i o n O r g a n i z a t i o n ( IC A O )

    S t a n d a rd A t m o s p h e r e o r t h e I n t er n a t io n a l S t an d a r d A t m o s p h e r e ( I S A ) .

    T e m p e r a t u r e p , p x 1 0 4 v x 1 0 4 S o- K n o t s

    R K

    i n .

    H g s l u g l f t 3 f t 2 s

    ( P / P o ) ( p / p o ) a 112 q / M 2 a a o I /2

    0 5 1 8 . 7 2 8 8 . 2 2 9 . 9 2 2 3 . 7 7 1 . 5 7 6 1 . 0 0 0 0 t . 0 0 0 0 1 . 0 0 0 0 1 4 8 3 6 6 1 . 3 6 6 1 . 3

    1 , 0 0 0 5 1 5 .1 2 8 6 . 2 2 8 . 8 6 2 3 .0 8 1 . 6 1 4 0 . 9 6 4 4 0 . 9 7 1 1 0 . 9 8 5 4 1 4 3 0 6 5 9 . 0 6 4 9 . 4

    2 , 0 0 0 5 1 1 . 6 2 8 4 .2 2 7 . 8 2 2 2 . 4 1 1 . 6 53 0 . 9 2 9 8 0 . 9 4 2 8 0 . 9 7 1 0 1 3 7 9 6 5 6 . 7 6 3 7 . 7

    3 , 0 0 0 5 0 8 . 0 2 8 2 . 2 2 6 . 8 2 2 1 . 7 5 1 . 6 9 4 0 . 8 9 6 2 0 . 9 1 5 1 0 . 9 5 6 6 1 3 2 9 6 5 4 . 4 6 2 6 . 0

    4 , 0 0 0 5 0 4 . 4 2 8 0 . 2 2 5 . 8 4 2 1 .1 1 1 .7 35 0 . 8 6 3 7 0 . 8 8 8 1 0 . 9 4 2 4 1 2 8 0 6 5 2 .1 6 1 4 .5

    5 , 0 0 0 5 0 0 . 9 2 7 8 . 3 2 4 . 9 0 2 0 . 4 8 1 . 7 7 8 0 . 8 3 2 0 0 . 8 6 1 7 0 . 9 2 8 2 1 2 3 4 6 4 9 .8 6 0 3 . 1

    6 , 0 0 0 4 9 7 . 3 2 7 6 . 3 2 3 . 9 8 1 9 .8 7 1 . 82 3 0 . 8 0 1 4 0 . 8 3 5 9 0 . 9 1 4 2 1 1 8 8 64 7 . 5 5 9 1 . 9

    7 , 0 0 0 4 9 3 . 7 2 7 4 . 3 2 3 . 0 9 1 9 . 2 7 1 . 8 69 0 . 7 7 1 6 0 . 8 1 0 6 0 . 9 0 0 3 1 1 4 4 6 4 5 . 2 5 8 0 . 9

    8 , 0 0 0 4 9 0 . 2 2 7 2 . 3 2 2 . 2 2 1 8 . 68 1 . 9 1 6 0 . 7 4 2 8 0 . 7 8 6 0 0 . 8 8 6 6 1 1 0 1 6 4 2 . 9 5 7 0 . 9

    9 , 0 0 0 4 8 6 . 6 2 7 0 . 3 2 1 . 3 9 1 8 .1 1 1 . 96 5 0 . 7 1 4 8 0 . 7 6 2 0 0 . 8 7 2 9 1 0 6 0 6 4 0 . 5 5 5 9 .1

    1 0 , 0 0 0 4 8 3 .0 2 6 8 . 3 2 0 . 5 8 1 7 .5 5 2 . 0 1 5 0 . 6 8 7 7 0 . 7 3 8 5 0 . 8 5 9 3 1 0 1 9 6 38 . 1 5 4 8 . 3

    1 1 , 0 0 0 4 7 9 . 5 2 6 6 . 4 1 9 . 7 9 1 7.0 1 2 . 0 6 7 0 . 6 6 1 4 0 . 7 1 5 5 0 . 8 4 5 9 9 8 0 . 5 6 3 5 .8 5 3 7 . 8

    1 2 , 0 0 0 4 7 5 . 9 2 6 4 . 4 1 9 .0 3 1 6 . 4 8 2 .1 2 1 0 . 6 3 6 0 0 . 6 9 3 2 0 . 8 3 2 6 9 4 2 . 8 6 3 3 . 4 5 2 7 . 4

    1 3 , 0 0 0 4 7 2 . 3 2 6 2 . 4 1 8 . 2 9 1 5 .9 6 2 . 1 7 7 0 . 6 1 1 3 0 . 6 7 1 3 0 . 8 1 9 3 9 0 6 . 3 6 31 .1 5 1 7 . 1

    1 4 , 0 0 0 4 6 8 . 8 2 6 0 . 4 1 7 . 5 8 1 5 . 4 5 2 . 2 3 4 0 . 5 8 7 5 0 . 6 5 0 0 0 . 8 0 6 3 8 7 0 . 9 6 2 8 . 7 5 0 6 . 9

    1 5 , 0 0 0 4 6 5 . 2 2 5 8 . 4 1 6 . 8 9 1 4 .9 6 2 . 2 9 4 0 . 5 6 4 3 0 . 6 2 9 2 0 . 7 9 3 3 8 3 6 . 6 6 2 6 . 3 4 9 6 . 8

    1 6 , 0 0 0 4 6 1 . 6 2 5 6 . 4 1 6 . 2 2 1 4 . 4 7 2 . 3 5 5 0 . 5 4 2 0 0 . 6 0 9 0 0 . 7 8 0 3 8 0 3 . 5 6 2 3 . 9 4 8 6 . 8

    1 7 , 0 0 0 4 5 8 .1 2 5 4 . 5 1 5 . 5 7 1 4 .0 1 2 . 4 1 9 0 . 5 2 0 3 0 . 5 8 9 2 0 . 7 6 7 6 7 7 1 . 3 6 2 1 . 4 4 7 7 . 0

    1 8 , 0 0 0 4 5 4 . 5 2 5 2 . 5 1 4 . 9 4 1 3.5 5 2 . 4 8 5 0 . 4 9 9 4 0 . 5 6 9 9 0 . 7 5 4 9 7 4 0 . 3 6 1 9 . 0 4 6 7 . 3

    1 9 , 0 0 0 4 5 0 . 9 2 5 0 . 5 1 4 . 3 4 1 3 .1 0 2 . 5 5 3 0 .4 7 9 1 0 . 5 5 1 1 0 . 7 4 2 4 7 1 0 . 2 6 1 6 . 6 4 5 7 . 8

    2 0 , 0 0 0 4 4 7 . 4 2 4 8 . 6 1 3 . 7 5 1 2 . 6 6 2 . 6 2 4 0 . 4 5 9 5 0 . 5 3 2 8 0 . 7 2 9 9 6 8 t . 2 6 1 4 . 1 4 4 8 . 2

    2 1 , 0 0 0 4 4 3 . 8 2 4 6 . 6 1 3 . 1 8 1 2 .2 4 2 . 6 9 6 0 . 44 0 6 0 . 5 1 5 0 0 . 7 1 7 6 6 5 3. 1 6 1 1 . 7 4 3 9 .0

    2 2 , 0 0 0 4 4 0 . 2 2 4 4 . 6 1 2 . 6 4 1 1 .8 3 2 . 7 7 2 0 . 4 2 2 3 0 . 4 9 7 6 0 . 7 0 5 4 6 2 6 .1 6 0 9 . 2 4 2 9 . 7

    2 3 , 0 0 0 4 3 6 . 7 2 4 2 . 6 1 2 .1 1 1 1 .4 3 2 . 8 5 0 0 . 4 0 4 6 0 . 4 8 0 7 0 . 6 9 3 3 5 9 9 . 9 6 0 6 . 8 4 2 0 . 7

    2 4 , 0 0 0 4 3 3 . 1 2 4 0 . 6 1 1 . 6 0 1 1 . 0 3 2 . 9 3 2 0 . 3 8 7 6 0 . 4 6 4 2 0 . 6 8 1 3 5 7 4 . 6 6 0 4 . 3 4 1 1 . 7

    Po = s t a n d a r d p r e s s u r e a t s e a l e v e l 2 9 . 9 2 i n . H g , 1 4 . 7 0 l b / in 2 , 1 . 0 1 3 1 0 5 N / m 2 o r P a

    Po = s t a n d a r d d e n s i t y a t s e a l e v e l 2 3 . 7 7 x 1 0 - 4 s l u g s / f t 3 , 1 . 2 2 5 x 1 0 3 k g / m 3

    = t e m p e r a t u r e r a t i o

    ct = d e n s i t y r a t i o

    a = s p e e d o f s o u n d

    ( c o n t i n u e d )

  • 7/26/2019 Aircraft and Helicopter Design

    11/62

    A I R C R A F T A N D H E L I C O P T E R D E S I G N

    Aerody nam ics , continued

    9 - 1 1

    Temperature p, p, 104 v, 104 8 tr Knots

    R K in. Hg slug/ft3 ft2s

    ( P / P o ) ( P / P o ) c rl /2 q / M 2 a a a t/2

    25,000 429.5 238.6 11.10 1 0 . 6 5 3.016 0.3711 0.4481 0.6694 550.2 601.8 402.8

    26,000 426.0 236.7 1 0 . 6 3 10.28 3.103 0.3552 0.4325 0.6576 526.6 599.3 394.1

    27,000 422.4 234.7 1 0 . 1 7 9.918 3.194 0.3398 0.4173 0.6460 503.8 596.8 385.5

    28,000 418.8 232.7 9.725 9.567 3.287 0.3250 0.4025 0.6344 481.8 594.2 377.0

    29,000 415.3 230.7 9.297 9.225 3.385 0.3107 0.3881 0.6230 460.7 591.7 368.6

    30,000 411.7 228.7 8.885 8.893 3.486 0.2970 0.3741 0.6117 440.2 589.2 360.4

    31,000 408.1 226.7 8.488 8.570 3.591 0.2837 0.3605 0.6005 420.6 586.6 352.3

    32,000 404.6 224.8 8.106 8.255 3.700 0.2709 0.3473 0.5893 401.6 584.0 344.2

    33,000 401.0 222.8 7.737 7.950 3.813 0.2586 0.3345 0.5783 383.4 581.5 336.3

    34,000 397.4 220.8 7.382 7.653 3 . 9 3 1 0.2467 0.3220 0.5674 365.8 578.9 328.5

    35,000 393.9 218.8 7.041 7.365 4.053 0.2353 0.3099 0.5567 348.8 576.3 320.8

    36,000 390.3 216.8 6.712 7.086 4.181 0.2243 0.2981 0.5460 332.6 573.6 313.2

    36,089 390.0 216.7 6.683 7.061 4.192 0.2234 0.2971 0.5450 331.2 573.4 312.5

    37,000 390.0 216.7 6.397 6.759 4.380 0.2138 0.2844 0.5332 317.0 573.4 305.7

    38,000 390.0 216.7 6.097 6.442 4.596 0.2038 0.2710 0.5206 302.1 573.4 298.5

    39,000 390.0 216.7 5.811 6.139 4.822 0.1942 0.2583 0.5082 287.9 573.4 291.4

    40,000 390.0 216.7 5.538 5.851 5.059 0.1851 0.2462 0.4962 274.4 573.4 284.5

    41,000 390.0 216.7 5.278 5.577 5.308 0.1764 0.2346 0.4844 261.5 573.4 277.8

    42,000 390.0 216.7 5.030 5.315 5.570 0.1681 0.2236 0.4729 249.2 573.4 271.2

    43,000 390.0 216.7 4.794 5.066 5.844 0.1602 0.2131 0.4616 237.5 573.4 264.7

    44,000 390.0 216.7 4.569 4.828 6.132 0.1527 0.2031 0.4507 226.4 573.4 258.4

    45,000 390.0 216.7 4.355 4.601 6.434 0.1455 0.1936 0.4400 215.8 573.4 252.3

    46,000 390.0 216.7 4.151 4.385 6.750 0.1387 0.1845 0.4295 205.7 573.4 246.3

    47,000 390.0 216.7 3.950 4.180 7.083 0.1322 0.1758 0.4193 196.0 573.4 240.4

    48,000 390.0 216.7 3.770 3.983 7.432 0.1250 0.1676 0.4094 186.8 573.4 234.7

    49,000 390.0 216.7 3.593 3.797 7.797 0.1201 0.1597 0.3996 178.0 573.4 229 .1

    50,000 390.0 216.7 3.425 3.618 8.181 0.1145 0.1522 0.3902 169.7 573.4 223.7

    51,000 390.0 216.7 3.264 3.449 8.584 0.1091 0.1451 0.3809 161.7 573.4 218.4

    52,000 390.0 216.7 3 . 1 1 1 3.287 9.007 0.1040 0.1383 0.3719 15 4 . 1 573.4 213.2

    53,000 390.0 216.7 2.965 3.132 9.450 0.0991 0.1318 0.3630 146.9 573.4 208.1

    54,000 390.0 216.7 2.826 2.986 9.916 0.0944 0.1256 0.3544 140.0 573.4 203.2

    55,000 390.0 216.7 2.693 2.845 10.40 0.0900 0.1197 0.3460 133.4 573.4 198.4

    56,000 390.0 216.7 2.567 2.712 1 0 . 9 2 0.0858 0.1141 0.3378 127.2 573.4 193.7

    57,000 390.0 216.7 2.446 2.585 1 1 . 4 5 0.0818 0.1087 0.3298 121.2 573.4 189.1

    58,000 390.0 216.7 2.331 2.463 12.02 0.0779 0.1036 0.3219 1 1 5 . 5 573.4 184.6

    59,000 390.0 216.7 2.222 2.348 1 2 . 6 1 0.0743 0.0988 0.3143 111.0 573.4 180.2

    60,000 390.0 216.7 2.118 2.238 1 3 . 2 3 0.0708 0.0941 0.3068 104.9 573.4 175.9

    61,000 390.0 216.7 2.018 2.132 13.88 0.0675 0.0897 0.2995 99.98 573.4 171.7

    62,000 390.0 216.7 1.924 2.032 1 4 . 5 6 0.0643 0.0855 0.2924 95.30 573.4 1 67 .7

    63,000 390.0 216.7 1 . 8 3 3 1.937 15.28 0.0613 0.0815 0.2855 90.84 573.4 163.7

    64,000 390.0 216.7 1.747 1.846 16.04 0.0584 0.0777 0.2787 8 6 . 6 1 573.4 1 59 .8

    65,000 390.0 216.7 1 . 6 6 5 1.760 16.82 0.0557 0.0740 0.2721 82.48 573.4 156.0

    Po = standard pressure at sea level 29.92 in. Hg, 14.70 lb/in 2, 1.013 x 105 N/m2 or Pa

    /90 = standard densi ty at sea level 23.77 x l0 g slugs/ft3, 0.1249 kgs2/m4

    = temperature ratio

    ~7 = density ratio

    a = speed of sound

  • 7/26/2019 Aircraft and Helicopter Design

    12/62

    9-12 AIRCRAFT AND HELICOPTER DESIGN

    Aerody nam ics , continued

    Airspeed Relationships

    I A S - - i n d i c a t e d a i r sp e e d ( r e a d f r o m c o c k p i t i n s tr u m e n t a ti o n , i n c lu d e s c o c k p it -

    i n s t r u m e n t e r r o r c o r r e c t i o n )

    C A S - - c a l i b r a t e d a i r sp e e d ( i n d ic a te d a i r sp e e d c o r r e c te d f o r a i rs p e e d -i n st ru -

    m e n t a t i o n p o s i t i o n e r r o r )

    E A S - - e q u i v a l e n t a i r s p e e d ( c a l ib r a t ed a i rs p e e d c o r r e c t e d f o r c o m p r e s s i b i li t y

    e f f e c t s )

    T A S - - t r u e a i r s p e ed ( e q u i v a le n t a i r sp e e d c o r r ec t e d fo r c h a n g e in a t m o s p h e r i c

    d e n s i t y )

    E A S

    T A S - -

    M a c h n u m b e r :

    w h e r e

    Va = t rue a i r speed

    a = s o n i c v e l o c i t y

    y = s p e c i f i c h e a t r a t i o

    g = g r a v i t a t i o n a l c o n s t a n t

    R = g a s c o n s t a n t

    T = a m b i e n t t e m p e r a t u r e

    M - -

    v o - vo/,/7 Rr

    a

    C h a n g e i n v e l o c i t y w i t h c h a n g e i n a i r d e n s it y , p , a t c o n s t a n t h o r s e p o w e r ,

    hp:

    V2 = Vl ,3 //~ ]S ( a pp rox im a t e )

    V /92

    C h a n g e i n v e l o c i t y w i t h c h a n g e i n h o r s e p o w e r a t c o n s t a n t a i r d e n s it y :

    3/hp2 ( a p p r o x i m a t e )

    V2 = V1 V hpl

    T h e f o l l o w i n g a r e e q u i v a l e n t a t 1 5 , 0 0 0 f t , 3 0 C d a y :

    M = 0 . 4 2 8

    T A S = 2 9 0 k n

    C A S = 2 1 5 k n

    E A S = 2 1 3 k n

  • 7/26/2019 Aircraft and Helicopter Design

    13/62

    A I R C R A F T A N D H E L IC O P T E R D E S I G N 9 - 1 3

    Aerod y nam ics , continued

    A i r s p e e d C o n v e r s i o n C h a r t s

    1.1

    1.0

    0.9

    0 . 8

    r-t

    iii

    CO

    0,7

    -r

    0.6

    0,5

    0.4

    0.3

    0.2

    100

    = ~ ~ ~ - / /

    V T ~

    i

    , /

    / /

    150 200 250 300 350

    EAS, K NOT S

    400

  • 7/26/2019 Aircraft and Helicopter Design

    14/62

    9 - 1 4 A I R C R A F T A N D H E L IC O P T E R D E SIG N

    A e r o d y n a m i c s , c o n t i n u e d

    A i r s p e e d C o n v e r s i o n C h a r ts , c o n t in u e d

    n"

    LU

    t,n

    Z

    .40

    0

    P R E S S U R E A L T I T U D E , 1 0 3F T

    5 0 4 0 3 0 2 0 1 0

    .50 500

    ~ , . . ] B Soo

    / , / I ' ~ . ~ / o O / 40 0

    ~20

    2 0 0

    ' , ' o ,,.: ~ A CAS=215kt

    ~ ~ i B A l ti tu d e = 1 5 , 0 0 0 f t

    C M = . 4 2 8

    D T A S (I C A O s td . d a y )= 268 k t

    | E Tam= 3 0 C I

    I F T A S = 2 9 0 k t

    l

    10 A | j 100

    1 0 0 2 0 0 3 0 0 4 0 0

    C A L IB R A T E D A I R S P E E D , K N O T S

    CB

    I--

    O

    Z

    v

    d

    W

    ILl

    O .

    CS~

    rr

    W

    rr

  • 7/26/2019 Aircraft and Helicopter Design

    15/62

    A I R C R A F T A N D H E L I C O P T E R D E S I G N 9 - 1 5

    Pt-

    u J

    m

    Z

    T

    J

    [

    A e r o d y n a m i c s , c o n t i n u e d

    P R E S S U R E A L T I T U D E , 1 0 3 F T

    5 0 4 0 3 O 2 O

    ~.2o / / /

    3 0 0 4 0 0 5 0 0 6 0 0

    C A L I B R A T E D A I R S P E E D , K N O T S

    0 3

    I - -

    O

    Z

    C ~

    UJ

    LU

    O 3

    n -

  • 7/26/2019 Aircraft and Helicopter Design

    16/62

    9-16 AIRCRAFT AND HELICOPTER DESIGN

    A e r o d y n a m ic s , c o ntin u e d

    M in im um Drag

    S u b s o n i c

    T h e b a s ic m i n i m u m d r a g o f a n a e r o d y n a m i c v e h i c le c o n s i st s o f n o t o n l y fr ic t io n

    dr ag bu t a l s o d r ag du e t o t he p res s u r e f o r ces ac t ing on t he v eh i c le .

    T h e f o l lo w i n g e q u a t io n s p r e s e n t a m e t h o d o f p re d i c ti n g m i n i m u m d ra g :

    M i n im u m d ra g = Com i.q S

    ~_,(Cfoom p )< z . . . . p )

    C Om in = S -~-

    COcamber -~- CDbase -~-

    C Omisc

    wh er e t he com po nen t s k i n - f ri c ti on coe f fi c i en ts a r e ev a l ua t ed accor d i ng t o t he f o l -

    l owi ng equa t i ons .

    A w co mp

    C

    Cfcom p =

    C fwing =

    Cffuselage =

    C f n a c e l l e

    =

    C fcanopy =

    C fhoriz & vert ails onepiece)

    C fhoriz & vert ails hinged)

    C L ....... =

    C D~.mbe~

    C Dbase

    CDm i n

    C Dmi~c

    C fFP =

    F R =

    c o m p o n e n t w e t t e d a r ea

    l if t ing s u r face expo s ed s t ream wi s e m .a .c .

    c o m p o n e n t d r a g c o e f fi c ie n t

    C fF p[1 + L ( t / c ) + l O 0 ( t /c ) 4 ] R e s

    C f~ [1 + 1.3 /P--Ii,15 + 44/F-t~3]Rfus

    CSFP Q[1 + 0.35/(F--1~)1

    CfFp[1 +

    1 .3 /F l~ 15 -Jr 44/F--I~3

    C f ~ [ 1 + L ( t / c ) + l O 0 ( t / c ) 4 ] R t s

    (1 .1 )CfFp[l +

    L ( t / c ) -I- l O 0 ( t / c ) a ] R t s

    CfFo X Q[1 + 1 .3 / F -R 1'5 + 4 4 / ~ 3]

    0 . 7 ( A C 2 ) ( S E x p / S ) ( d o n o t u s e f o r c o n i c a l c a m b e r )

    bas e d rag: a goo d es t i ma t e can be ob t a i ned b y us i ng a bas e

    pr es s u re coe f f i c ien t o f Cp = - 0 . 1 . ( M o r e d e t a il e d d i sc u s s io n

    o f b a s e d r a g m a y b e f o u n d in H o e r n e r ' s F l u i d D y n a m i c D r a g . )

    m i n i m u m d r a g c o e f f ic i e n t

    m i s ce l laneou s d r ag coe f f i c ien t

    Whi te-Chr i s toph ' s f l a t -p la t e turbulent -sk in- f r i c t ion coef f i -

    c i e n t b a s e d o n M a c h n u m b e r a n d R e y n o l d s n u m b e r ( in w h i c h

    charac ter i st i c l ength o f l i f ting sur face equ al s exp osed m .a .c .)

    f ineness r a t io

    l eng t h / d i am e t e r ( f o r c l os ed bod i es o f c i r cu la r c r os s s ec ti on )

    l e n g t h / ~ / ( w i d t h ) ( h e i g h t ) ( f o r c lo s e d b o d i e s o f i rr e g u la r c ro s s

    s ec t i on and f o r nace l le s )

    / V/ 1 (1 ~ ) (~ )2 ( for c losed bod ies of e l l ip t i c

    eng th a 1 -4-g -

    c r os s s ec ti on , wh er e a = m i nor ax i s and b = m a jo r ax is )

  • 7/26/2019 Aircraft and Helicopter Design

    17/62

    AIRCRAFT AND HELICOPTER DESIGN 9-17

    L

    m.a.c

    A maxt/c

    q

    Q

    RLS

    Rfus

    S

    SEXP

    t

    Aerod y nam ics , continued

    = thickness location parameter

    = 1.2 for (t/C)max loca ted at x > 0 .3c

    = 2.0 for (t/C)max located at x < 0.3c

    = mean aerodynamic chord

    = sweep of lifting-surface at max im um thickness

    t i c

    = dynami c pressure

    = interf erence factor

    = 1.0 for nacelles and external stores mou nted out of the local

    velocity field of the wi ng

    = 1.25 for external stores mou nte d symmetri call y on the wing tip

    = 1.3 for nacelles and external stores if mounte d in moderat e

    proximit y of the wing

    = 1.5 for nacelles and external stores mounted flush to the wing

    (The same variation of the interference factor applies in the

    case of a nacelle or external store stru t-mounted to or flush-

    moun ted on the fuselage.)

    = lifting surface factor (see Lifting Surface Correct ion graph)

    ---- fuselage correction factor (see Fuse lage Correct ions graph),

    Refus based on length

    = win g gross area

    = exposed wing area

    -- max im um thickness of section at exposed streamwise m.a.c.

    Example

    Calculatio n of uncamb ered -wi ng drag coefficient for subsoni c case.

    Reference wing area, S = 1000 ft 2

    Wetted area, A w = 1620 ft 2

    Velocity, V = 556 ft/s = 0.54 M

    Altitude, H = 22,000 ft

    Mea n chord, g = 12.28 ft

    Sweep at max im um thickness

    t i c

    = 11% at 35% chord = 24 deg

    Reynolds number, R e = V ~ / v = (556)(12.28) /2.7721 10 -4 = 24.63 x 106

    Thickness location parameter, L = 1.2

    Lift ing surface factor, RLS = 1.13 (see Lif ting Surface Correct ion graph)

    Basic skin-fr iction coefficient, CfFP = 0.00255 (see Turbulent Skin Friction

    Coefficient graph)

    Win g skin-f riction factor, C f = 0.0033

    Wing min imu m-dr ag coefficient, Cd = 0.00535

  • 7/26/2019 Aircraft and Helicopter Design

    18/62

    9 -1 8 A I R C R A F T A N D H E L I C O P T E R D E S I G N

    A e r o d y n a m i c s , c o n t i n u e d

    M i n i m u m D r ag , c o nt in u e d

    S u b s o n i c -C o m p o n e n t C o r r e c t i o n F a c t o r s

    O UT BO A R D P A N E L S I

    ~ - -

    1 . 3 - - ' ' ' " I N B O A R D P A N E L S ~ I

    1.1

    - - - - -

    1 . 0 ' " " ' ' . . . . I

    o.9 .~_ t 1 L

    0 . 8

    0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0

    I

    O S A M A X t / c

    I

    I

    e x a m p l e

    L i f t in g s u r f a c e c o r r e c t i o n .

    A p p ly r a t i o

    A w e t / S r e

    v a lu e f o r t h e f u s e l a g e p lu s a t t a c h e d i t e m s ( t o re s p e c t iv e

    se ts o f cu rv es , dashed o r so l id ) .

    1 . 1

    1 . 0

    0 . 9

    ~ o . 8

    t r

    0 . 7

    0 . 6

    0 . 5

    m - . 6

    I I

    . . . .

    5 1 0 5

    7

    1 . 5

    4 . 0

    r

    2 0 2 5

    R E Y N O L D S N U M B E R x 1 0 - 6

    F u s e l a g e C o r r e c t i o n s .

  • 7/26/2019 Aircraft and Helicopter Design

    19/62

    AIRCRAFT AND HELICOPTER DESIGN 9-19

    A e r o d y n a m i c s , c o n t i n u e d

    1.0

    0.9

    rr

    0.8

    0.7

    f

    I

    6

    10

    M = . 5

    ~ 4

    ~ 2

    I I

    20 40 50 60 100 200 400 600

    REYNOLDS NUMBER x 10 -6

    For Mach < 0.5.

    T u r b u l e n t

    Skin-Friction Coefficient

    0 0 5 ~ ~ , _ M A C H ( M )

    C F '

    ~ - , ~ N

    R E Y N O L D S N U M B E R x 1 0 6

    e x a m p l e

    I n s u l a t e d f ia t p l a te ( W h i t e - C h r i s t o p h ) .

  • 7/26/2019 Aircraft and Helicopter Design

    20/62

    9 -2 0 A I R C R A F T A N D H E L I C O P T E R D E S I G N

    A e r o d y n a m ic s , c o n tin u e d

    M in im um Drag , continued

    S u p e r s o n i c

    Wave drag.

    A t s u p e r s o n i c s p e e d s , t h e p r e s s u r e d r a g is a s s o c i a t e d w i t h th e s h o c k -

    w a v e p a t te r n a b o u t t he v e h i c l e a n d is c a ll e d w a v e d r a g . " A r e a - r u l e " t e c h n i q u e s a r e

    g e n e r a l l y e m p l o y e d f o r d e t e rm i n i n g t h e w a v e d r a g o f a c o n fi g u r a ti o n . D u e t o t h e

    l e n g t h y c a l c u l a ti o n s i n v o l v e d i n s o l v i n g t h e w a v e - d r a g e q u a t i o n , d i g i ta l c o m p u t e r s

    a r e u s e d e x c l u si v e l y ; a c c u r a c y p ri m a r i l y d e p e n d s o n th e m e t h o d s e m p l o y e d f o r

    g e o m e t r ic a l m a n i p u l a t io n . T h e N A S A H a r r is a r e a - r u le p r o g r a m i s u s e d e x te n s iv e l y

    i n w a v e - d r a g c a l c u la t io n s .

    Skin friction.

    S u p e r s o n i c s k i n - f r i c t i o n d r a g i s c a l c u l a t e d f o r e a c h c o m p o n e n t

    u t i l i z i n g f l a t - p l a t e s k i n - f r i c t i o n c o e f f i c i e n t s ( s e e I n s u l a t e d F l a t P l a t e g r a p h ) .

    Wave drag--wing.

    A s p r e v i o u s l y d i s c u s s ed , t h e c a lc u l a t io n o f w a v e d r a g f o r m o s t

    c o n f i g u r a t i o n s r e q u i re s t h e r e s o u r c e s o f a d i g i ta l c o m p u t e r . A s a fi rs t a p p r o x i m a t i o n

    f o r w a v e d r a g o f a n u n c a m b e r e d , u n t w i s te d , c o n v e n t i o n a l t r a p e z o i d a l w i n g w i t h

    s h a r p - n o s e d a i r fo i l s e c ti o n , t h e f o l l o w i n g c a n b e u s e d .

    KLE t/e)2

    CD

    . . . . ~.g f i ( f or f l t an ~ > 1 )

    CD

    . . . . ,,g =

    KLEtanE t/c)2

    ( f o r f i t a n < 1 )

    ( f o r E = 9 0 d e g

    --ALE)

    w h e r e t h e sh a p e f a c t o r

    KLE

    i s s h o w n i n t h e f o l l o w i n g t a b le .

    Conf igura t ion

    KLE

    S ing le wedg e 1

    S ym met r i ca l doub l e wedge 4

    Doub l e wedge with m ax imum

    c/x)

    thickness at

    x/c

    (1 -

    x/c)

    Biconv ex sect ion 5 .3

    Streamline foil w ith

    x/c

    = 50 % 5 .5

    Ro und-no se fo i l wi th

    x/c

    = 3 0 % 6 .0

    Sle nde r elliptical airfoil sectio n 6.5

  • 7/26/2019 Aircraft and Helicopter Design

    21/62

    A I R C R A F T A N D H E L IC O P T E R D E S IG N 9 -2 1

    Aerod y nam ics , continued

    Wave drag--body.

    A f ir st a p p r o x i m a t i o n f o r a b o d y c a n b e o b t a i n e d f r o m t h e

    p r e l i m i n a r y w a v e - d r a g e v a l u a t io n g r a p h h e r e f o r M = 1 .2 u s in g t h e e x p r e s s i o n :

    AMAX KBODY

    C D w a v e b o d y - - - -

    S ~ F ~ - - ~ 2

    E x a m p l e

    C a l c u l a t e t h e w i n g w a v e - d r a g c o e f f ic i e n t f o r th e f o l l o w i n g c o n d i t io n s .

    M a c h n u m b e r = 1 .2

    A i r f o i l = 6 % t h i c k s y m m e t r i c a l d o u b l e w e d g e ( K LE = 4 . 0 )

    f l = 0 . 6 6 3

    = 9 0 d e g

    /3 t a n E = o ~

    C o . . . . . i.g = 0 . 0 2 1 7

    E x a m p l e

    C a l c u l a t e t h e b o d y w a v e - d r a g c o e f f i c i en t fo r th e f o l l o w i n g c o n d i t i o n s .

    M a c h n u m b e r = 1 .2

    F u s e l a g e = 3 f t d i a m e t e r , 3 0 f t l e n g t h ( F R = 1 0 )

    d A / d x = 2 0 f t

    R e f e r e n c e w i n g a r e a = 6 7 f t 2

    KBODY = 1 8 ( s e e P r e l i m i n a r y W a v e - D r a g E v a l u a t i o n g r a p h )

    C D . . . ~ y = 0 . 0 1 9 0

    P r e l i m i n a r y W a v e -D r a g E v a l u a t io n

    30

    2 5

    o 2 0

    , , I I , ~

    10

    ( dA

    )AFT

    END

    A M A x K

    C D w S R E F F - ' R 2

    9 1 0

    F IN E N E S S R A T IO F R )

    32.5

    3O

    _)7.5

    25

    22.5

    2O

  • 7/26/2019 Aircraft and Helicopter Design

    22/62

    9-22 AIRCRAFT AND HELICOPTER DESIGN

    Aerody nam ics , continued

    Indu ced Dra g

    S u b s o n i c

    T h e d r a g d u e t o li ft , o r i n d u c e d d r a g , r e f l e c ts l i f t - p r o d u c i n g c i r c u l a t io n . P o t e n t i a l

    f l o w t h e o r y s h o w s t h a t t h e r e l a t io n s h i p t o d r a g i s a f u n c t i o n o f l i ft s q u a r e d . H e n c e ,

    t h e b a s i c p o l a r i s p a r a b o l i c . T h e p a r a b o l i c p o l a r i s s h i f t e d f r o m t h e o r i g i n b y

    c a m b e r , w i n g i n c i d e n c e , m i n i m u m d r a g , e tc . a n d d e v i a t e s f r o m it s p a r a b o l i c s h a p e

    a t h i g h e r l i f t s w h e n f l o w s e p a r a t i o n e x i s t s .

    CDi = KC2L

    w h e r e C L is t o t a l li ft , i n c l u d i n g c a m b e r e f f e c t s , a n d K ---- h e p a r a b o l i c d r a g c o n -

    s ta n t. F o r p l a i n w i n g s b e l o w t h e p a r a b o l i c p o l a r b r e a k l if t c o e f f ic i e n t,

    1

    K - - - -

    7 t ( A R e )

    T h e v a l u e o f e , t h e w i n g e f f i c i e n c y f a c t o r, a c c o u n t s f o r t h e n o n - e l l i p t i c i ty o f t h e li f t

    d i s tr i b u ti o n ; t y p i c a l v a l u e s o f e f o r h i g h - s u b s o n i c j e t s a r e 0 . 7 5 - 0 . 8 5 . T h e h i g h e r

    t h e w i n g s w e e p a n g l e , t h e l o w e r t h e e f a c t o r .

    F o r w i n g s w i t h s h a r p l e a d in g e d g e s , t h e d r a g d u e t o li ft c a n b e a p p r o x i m a t e d b y

    C D i ~ - 0 . 9 5 C L t a n ~ ( or = w i n g a n g l e o f a t t a c k ) .

    E x a m p l e

    I n d u c e d d r a g a t a li f t c o e f f i c ie n t o f 0 . 8 f o r a v e h i c l e w i t h a n e f f e c t i v e O s w a l d

    e f f i c ie n c y f a c t o r e o f 0 . 8 0 a n d a n a s p e c t r a t io o f 8 .5 w i l l b e

    c ~ ( 0 . 8 ) 2

    CD,

    J r A R e J r ( 8 .5 ) ( 0 . 8 0 ) = 0 . 0 3 0

    S u p e r s o n i c

    A t s u p e r s o n i c s p e e d s , t h e w a v e d r a g d u e to l if t i n c r e a s e s a s v / M - 1 a n d i s a

    f u n c t i o n o f p l a n f o r m g e o m e t r y . F o r p r e l i m i n a r y d e s i g n e v a l u a ti o n , t h e f o l lo w i n g

    g r a p h s p r o v i d e s u f f i ci e n t a c cu r a c y . A t s u p e r s o n i c s p e e d s , t h e p o l a rs g e n e r a l l y s h o w

    n o t e n d e n c y t o d e p a r t f r o m a p a r a b o l i c s h a p e . T h u s , t h e r e i s n o c o r r e s p o n d i n g p o l a r

    b r e a k a s a t s u b s o n i c s p e e d s .

    E x a m p l e

    F o r s t ra i g h t t a p e r e d p l a n f o r m w i t h s h a r p l e a d i n g e d g e s ,

    M a c h n u m b e r = 1 . 2 W i n g a r e a , S = 6 7 f t 2

    A s p e c t r a t i o = 1 .5 L e n g t h = 6 . 6 9 f t

    S pa n , b ---- 1 0 . 0 2 f t Ta per r a t i o = 1 . 0

    y rA R ---- 0 .6

    P = S/bg. = 1 .0

    /3 = 0 .663

    f i ( b / 2 e ) = 0 . 4 9 7

    Co, ----0 . 2 5 5 C ~

  • 7/26/2019 Aircraft and Helicopter Design

    23/62

    A I R C R A F T A N D H E L I C O P T E R D E S I G N 9 -2 3

    A e r o d y n a m i c s , c o n tin u e d

    S u p e r s o n i c D r a g D u e t o L i f t E m p i r i c a l )

    Straight Tapered W ings Irregular-Shaped W ings

    2 . 0 2 . 0

    1 . 8 / /

    "

    R O UN O ~ / i

    1 .6

    1

    'EAD~NGE D G E S / /

    0 ~ # , ~

    ' ~ 1 ~

    , ~

    P 1 . 0

    .8

    P = ' b q '

    .~.- -~ .~ _ . /

    .4 ~ .4

    0 .4 .8 1 .2 1 ,6 2 .0 0 .4 .8 1 .2

    / ~ ( b / 2 f ) / 3 ( b 1 2 e

    /

    /

    /

    /

    1 . 6 2 . 0

    Cr itica l M a ch Num ber

    Subsonic drag evaluation terminates at a Mach num ber where the onset of shock

    formations on a configuration causes a sudden increase in the drag l ev el --t he so-

    called critical Mach number. The following graphs show simple workin g curves

    for it.

    Example

    Find critical Mach nu mbe r for CL = 0.4.

    t/c

    = 0.068

    CLo~,oN = 0.2

    Aspect ratio = 3

    Ac/4

    = 45

    MCRcL=0 = 0.895 (see Cri tical Mach Numb er graph)

    MCRcL=o,/McRc,=o

    = 0.97 (see Lift Effect on Critical Mach Nu mb er graph)

    MCRcL=04 = (0.97)(0.895) = 0.868

  • 7/26/2019 Aircraft and Helicopter Design

    24/62

    9-24 AIRCRAFT AND HELICOPTER DESIGN

    A e r o d y n a m i c s , c o n t i n u e d

    Cr i tica l M ach Num ber , cont inued

    C r i t i c a l M a c h N u m b e r C h a r t

    [ C L , ~

    CONVENTIONAL DE

    ADVANCED DESIGN

    I I I I I I I I

    0.4

    Acl4

    1.0

    .9

    O

    I

    . _ 1

    o

    o .8

    I

    o l

    e

    e J

    AR

  • 7/26/2019 Aircraft and Helicopter Design

    25/62

    AIRCRAFT AND HELICOPTER DESIGN

    A e r o d y n a m i c s , c o n t i n u e d

    L i f t E f f e c t o n C r i t i c a l M a c h N u m b e r F o r C o n v e n t i o n a l A i r f o i l s )

    1 . 0

    o

    t4

    i

    .9

    .8

    9 - 2 5

    . o 2

    / / o

    .0 6 .1 - -

    . 0 8

    1 6 1 8g ~

    .4

    . 1 8

    .5

    D r a g R i s e

    F o l l o w i n g t h e c r i t i c a l M a c h n u m b e r , t h e d r a g l e v e l i n c r e a s e s a b r u p t l y . T h i s

    p h e n o m e n o n i s a s s o c i a te d w i t h s t ro n g s h o c k s o c c u r r i n g o n th e w i n g o r b o d y ,

    c a u s i n g f l o w s e p a r a ti o n . T o e s t i m a t e t h e d r a g r i s e i n c r e m e n t a t t h e s e c o n d i t i o n s ,

    H o e r n e r , i n

    Fluid Dynamic Drag,

    g i v e s t h e f o l l o w i n g e m p i r i c a l r e la t io n .

    A C D R ,s e = K /IO 3 )[ IO A M / c o s 1 -A L E

    C R ) ] n

    w h e r e

    K = 0 . 3 5 f o r 6 - s e r i e s a i r f o i ls i n o p e n t u n n e l s

    = 0 . 4 0 f o r a ir f o il s e c t io n s w i t h

    tic ~

    6 %

    = 0 . 5 0 f o r th i c k e r a i r fo i ls a n d f o r 6 - s e r ie s a i r f o il s

    A M = M - M CR

    n = 3 /( 1 + ~-~R)

  • 7/26/2019 Aircraft and Helicopter Design

    26/62

    9 -2 6 A I R C R A F T A N D H E L I C O P T E R D E S I G N

    Aerody nam ics , continued

    Drag Rise , continued

    Example

    D e t e r m i n e t h e d r a g r i s e i n c r e m e n t f o r th e f o l lo w i n g .

    A M ----0 . 0 5

    A s p e c t r a ti o = 3 . 0

    t /c = 0 . 0 6 8 ( K = 0 . 4 0 )

    ALE = 50

    M c R = 0 . 8 9 5

    0 .4 F 1 0 (0 .0 5) ] ,+-]/3

    m foR ise - - 1 0 0 0 k c o s ( 5 ~ i

    ~ - 0 . 8 9 5

    = 0 . 0 0 0 2 1 3 6

    Aerody na m ic Cente r

    T h e p r e d i c t i o n o f w i n g - a l o n e a e r o d y n a m i c c e n t e r ( a . c . ) m a y b e m a d e f r o m

    c u r v e s p r e s e n t e d i n th e f o l l o w i n g g r a p h s w h i c h s h o w a .c . l o c a t io n a s a f r a ct i o n o f

    t h e w i n g r o o t c h o r d . T h e s e c u r v e s a r e b a s e d o n p l a n f o r m c h a r a c t e r is t i cs o n l y a n d

    a r e m o s t a p p l i c a b l e t o l o w - a s p e c t - ra t i o w i n g s . T h e c h a r a c te r i st i c s o f h i g h - a s p e c t -

    r a t io w i n g s a r e p r i m a r i l y d e t e r m i n e d b y t w o - d i m e n s i o n a l s e c t io n c h a r a c te r i st i cs

    o f t h e w i n g .

    T h e w i n g i s t h e p r i m a r y c o m p o n e n t d e t e rm i n i n g t h e l o c a t i o n o f t h e a i r p la n e a .c .,

    b u t a e r o d y n a m i c e f f e c ts o f b o d y , n a c e l le s , a n d t a il m u s t a l s o b e c o n s i d e re d . T h e s e

    e f f e c t s c a n b e t a k e n i n t o a c c o u n t b y c o n s i d e r i n g e a c h c o m p o n e n t ' s i n c r e m e n t a l

    l i ft w i t h i t s a s s o c i a t e d c e n t e r o f p r e s s u r e a n d u t i l i z i n g t h e e x p r e s s io n ,

    CM~

    a.c.--

    CL~

    Example

    D e t e r m i n e t h e lo c a t i o n o f t h e a e r o d y n a m i c c e n t e r o f a w i n g u n d e r t h e f o l lo w i n g

    c o n d i t i o n s .

    M a c h n u m b e r = 1 .2 ( fl = 0 . 6 6 3 )

    A LE = 4 5 d e g

    A s p e c t r a t io = 2 . 0

    T a p e r r a t i o ( ~.) = 0 . 2

    Xac

    - - 0 . 5 1 ( s ee L o c a t i o n o f W i n g A e r o d y n a m i c C e n t e r g r a p h )

    Cr

  • 7/26/2019 Aircraft and Helicopter Design

    27/62

    A I R C R A F T A N D H E L I C O P T E R D E S IG N

    Aerody nam ics , continued

    Locat ion o f W ing Aerody nam ic Center

    X = O

    9 - 2 7

    1 . 2

    1 . 0

    . 8

    X a c

    . 6

    . 4

    . 2

    0 0

    . r J

    A R T a n A L E

    6

    5

    4

    3

    2

    1

    r I - - ' I '

    S U B S O N I C - . ~ ~ , - S U P E R S O N I C

    | I

    1 0 1 0

    T a n A L E 3 (3 T a n A L E

    ; ~ = 0 . 2

    1

    /

    , , ~ , ~ / A R T a n A L E

    .4

    S U B S O N I C -4 --= .-- S U P E R S O N I C

    0 1 I =

    0 T a nA L E 1 B 0 3 1 T a n A L E 0

  • 7/26/2019 Aircraft and Helicopter Design

    28/62

    9 -2 8 A IR C R A F T A N D H E L I C O P T E R D E S I G N

    A e r o d y n a m i c s , c o n t i n u e d

    A e r o d y n a m i c C e nte r, c o n t i n u e d

    Locat ion o f W ing Aerod ynam ic Center, con t inued

    1 . 2

    1 . 0

    . 8

    Xa.c~ .6

    .4

    .2

    0 0

    k = 0 . 2 5

    ~ ~ . ~ A R T a nA L E

    S U B S O N I C - ~ - . ~ S UP E R S O N IC J

    T anAL E 1 /3 0 (3 1 T a nAL E 0

    B-- ~LE T~ E B-

    1 . 2

    1 . 0

    . 8

    X a C .

    ---C-;--r .6

    . 4

    .2

    0 0

    ; k = 0 . 3 3

    U N S W E P T T E

    I

    S U B S O N I C

    l

    T anALE 1 ( j

    I

    . .. ..AR T anALE

    - - ~ 5

    4

    f - - 3

    ,..... ~ 2

    1

    . .= , , , . SUPERSONIC

    0 1

    /3 TanALE

  • 7/26/2019 Aircraft and Helicopter Design

    29/62

    X a c

    X a . c .

    c T-,

    1 . 4

    1 2

    1 0

    8

    .6

    .4

    .2

    0

    2 . 0

    1 , 8

    1 . 6

    1 . 4

    1 , 2

    1 . 0

    . 8

    A I R C R A F T A N D H E L I C O P T E R D E S I G N

    A e r o d y n a m i cs , co n ti nu e d

    ; ~ = 0 . 5

    I

    S U B S O N I C . , ~

    I

    0 T a n A L E 1 /3

    T

    M..

    _ - -

    I

    A R T a nA L E

    6

    ~ 5

    4

    ~ a

    ~ 2

    S U P E R S O N I C

    I

    0 1

    T a n A L E

    - . T ~ - R - ~ L E ~ r

    ; ~ = 1 . 0

    I

    A R T a nA L E

    ~ s

    /

    _...~ J

    3

    1

    - j'f

    . 6 - -

    J

    " ' - " " ~

    I

    S U B S O N I C -,~ .-.m ,,- S U P E R S O N I C

    , 2 I I

    0 1 0 1

    T a n A L E ~ /3 T a n A L E

    9 - 2 9

  • 7/26/2019 Aircraft and Helicopter Design

    30/62

    9 -3 0 A I R C R A F T A N D H E L I C O P T E R D E S I G N

    A e r o d y n a m i c s , c o n t i n u e d

    M a x im u m L ift C o e f fi cien t (CLmax)

    D e t e r m i n a t io n o f m a x i m u m l if t d e p e n d s e x c l u s i v e l y o n t h e v i s co u s p h e n o m e n a

    c o n t r o l li n g t h e f l o w o v e r th e w i n g . A s w i n g i n c i d e n c e i n c r e a s e s , f lo w s e p a r a te s

    f r o m t h e s u r f a ce , a n d l i ft i n g p r e s s u r e s c e a s e t o b e g e n e r at e d . T h e s e p h e n o m e n a

    d e p e n d o n t h e w i n g g e o m e t r y : s w e e p , a s p e c t r a t i o , t a p e r r a t i o , t h i c k n e s s r a t i o ,

    a n d a i r f o il s e c ti o n . T h e t h i c k n e s s r a t io h a s a d e c i d e d l y m a r k e d e f f e c t t h r o u g h t h e

    i n f lu e n c e o f t h e l e a d i n g - e d g e r a d iu s . B e i n g a v i s c o u s p h e n o m e n o n , a s t ro n g e f f e c t

    o f R e y n o l d s n u m b e r i s a p p a re n t . A s a c o n s e q u e n c e , t h e p r e c i s e d e te r m i n a t i o n

    o f C L m ax f o r a n a r b i t ra r y w i n g h a s n e v e r b e e n s a t is f a c to r i ly a c c o m p l i s h e d . T h e

    U S A F S ta b i li ty a n d C o n tr o l H a n d b o o k

    ( W A D D - T R - 6 0 - 2 6 1 : L i b . 5 7 2 1 1 ) d o e s

    c o n t a in s u c h a m e t h o d . H o w e v e r , c o r r e la t i o n s i n d i ca t e e r ro r s e x c e e d i n g 2 5 % . T h i s

    m e th o d w o r k s w i th s e c t i o n l i f t d a t a a n d a p p l i e s c o r r e c t i o n s f o r f i n i t e a i r p l a n e

    e f fe c ts . T h e r e f o r e , p r e d i c t io n s m u s t d e p e n d o n e x i s t i n g t e s t d a t a a n d e x p e r i e n c e .

    High-L i f t Devices

    M a x i m u m L i f t I n c r e m e n t D u e t o F l a p s

    H i g h - l if t d e v i c e s a r e d e s i g n e d f o r c e r t a in s p e c i a l iz e d f u n c t io n s . G e n e r a l l y th e y

    a r e u s e d t o i n c r e a s e t h e w i n g c a m b e r o r i n s o m e o t h e r w a y t o c o n t r o l t h e f l o w

    o v e r t h e w i n g , f o r e x a m p l e , t o p r e v e n t f l o w s e p a r a ti o n . W i n g f la p s in c r e a s e th e

    c a m b e r a t t h e w in g t r a i l i n g e d g e , t h u s i n d u c in g a h ig h e r l i f t d u e t o i n c r e a s e d

    c i r c u l a t i o n a t t h e s a m e a n g l e o f a t t a c k a s t h e p l a i n w in g . P l a in - f l a p e f f e c t i v e n e s s

    c a n b e d e t e r m i n e d v e r y a c c u ra t e ly . O t h e r d e v i c e s c u s t o m a r i l y e m p l o y e d a r e s la ts ,

    s lo t s, a n d s p e c i a l l e a d i n g - e d g e m o d i f i ca t i o n . E v a l u a t i o n o f t h e s e d e v i c e s d e p e n d s

    o n t h e a p p l i c a t io n o f N A S A r e su l ts . B r i ti s h re p o r t A e r o 2 1 8 5 a n d N A S A T e c h n i ca l

    N o t e 3 9 1 1 c o n t a i n p r e d i c ti o n c u r v e s a n d t e c h n i q u e s f o r t h e s e d e v i c e s .

    A t s u p e r s o n i c s p e e d s , h ig h - l i f t d e v i c e s a r e g e n e r a l l y n o t r e q u i r e d f o r f l o w s t a -

    b i li z a t io n . H o w e v e r , f l a p - t y p e c o n t r o ls m a y b e u s e d t o t r i m t h e a i r p l a n e p i tc h i n g

    m o m e n t s .

    T h e d e t e r m i n a t i o n o f m a x i m u m l if t i n c r e m e n t d u e t o t r a il i n g - e d g e f la p d e f le c t io n

    u s es t he m e t h o d o f N A S A T N 3 9 1 1 . T h e m a x i m u m l if t i n c re m e n t i s g i v e n b y

    CL.

    A CL ma x = A C e max - - KcKb

    Ct~

    w h e r e A C e max : i n c r e m e n t o f s e c t i o n l i f t c o e f f i c i e n t d u e t o f l a p d e f l e c t i o n ( s e e

    P r i n c e to n R e p o r t N o . 3 4 9 ) .

  • 7/26/2019 Aircraft and Helicopter Design

    31/62

    AIRCRAFT AND HELICOPTER DESIGN 9-31

    Aerody nam ics , continued

    A R

    c L o / C , o =

    o o [ @ ) 2 c A s

    + 71- \co sA c/2]

    j

    w h e r e

    ao

    = s e c t i o n l if t -c u r v e s l o p e , p e r r a d i a n

    Kb

    = f la p s p a n f a c t o r ( s e e F l a p S p a n F a c t o r g r a p h )

    K c = f la p c h o r d f a c t o r ( s e e F l a p C h o r d F a c t o r g r a p h )

    C a r e s h o u l d b e e x e r c i s e d i n u s e o f a l l p r e d i c t i o n t e c h n i q u e s f o r A C L m ax d u e t o fl a p

    d e f l e c ti o n , b e c a u s e f la p e f f e c t i v e n e s s i s m o d i f i e d t o a la r g e e x t e n t b y t h e a b i l it y o f

    t h e w i n g - l e a d i n g - e d g e d e v i c e s t o m a i n t a i n a t t a c h e d f l o w .

    Example

    D e t e r m i n e A f L m a x d u e t o f la p d e f le c t i o n , w i t h t h e f o l l o w i n g w i n g c h a r a c t e r i s -

    t i cs .

    A s p e c t r a ti o = 4 . 0

    S e c t i o n l if t - c u r v e s l o p e = 5 . 7 3 p e r r a d i a n

    S e m i c h o r d s w e e p = 2 0 de g

    T a p e r r a t io = 0 . 2

    4 . 0

    CL,/Ceo

    = 1 = 0 . 6 1 9 7

    5.73 [ ( _ ~ ) 2 [ 4 .0 , ~ 1 ~

    --Y- + + ~cos(20)t j

    F o r p l a in f l ap s w i t h 5 0 d e g d e f l e c ti o n , 1 6 % c h o r d ,

    ACemax = 0 . 8 0 f o r a t y p i c a l p l a in f l a p

    I n b o a r d s p a n , r h = 0 . 1 5

    g b i

    =

    0 . 2 2 ( s ee F l a p S p a n F a c t o r g r a ph )

    O u t b o a r d s p a n , r /o = 0 . 6 5

    Kbo

    = 0 . 8 0 ( s e e F l a p S p a n F a c t o r g r a p h )

    K b = 0 . 8 -- 0 . 2 2 = 0 . 5 8

    (otS)Ce

    = 0 . 5 ( s e e F l a p C h o r d F a c t o r g r a p h )

    Kc

    = 1 .1 ( s e e F l a p C h o r d F a c t o r g r a p h )

    CLmax = ( 0 . 8 ) ( 0 . 6 1 9 7 ) ( 1 . 1 ) ( 0 . 5 8 ) = 0 . 3 1 6 3

  • 7/26/2019 Aircraft and Helicopter Design

    32/62

    9 - 3 2 A I R C R A F T A N D H E L I C O P T E R D E S I G N

    A e r o d y n a m i c s , c o n t i n u e d

    H i g h - L i f t D e v i c e s , c o n t i n u e d

    F l a p C h o r d Fa c to r , K c

    1 . 0

    G

    .6

    .2

    I

    I

    0

    0 . 2

    I

    I

    e x a m p l e

    S

    J

    J

    J

    .4 c f /c ,6

    . 8 1 . 0

    2 . 0

    1 . 8

    K c

    I

    1 . 4 ~

    , , 2 i - -

    i

    l o l

    0 2 4 6 8 1 0

    ~ A R

    I

    I

    example

  • 7/26/2019 Aircraft and Helicopter Design

    33/62

    A I R C R A F TA N D H E L IC O P T E RD E S I G N

    A e r o d y n a m i c s , c o n t i n u e d

    F l ap S p a n F a c t o r , K b

    9-33

    1 .0=

    Kb

    0

    0

    k\\\\\x~

    )

    i

    /

    bf 1.0

    I )/ 2

    1.0

    .8 411, X

    .6 ~ 1 , 0 I

    Kb / I

    .4 I

    I

    I

    I

    - - I

    .2 / i

    I I

    I

    I

    I

    0 |

    0 2 .4 .6 .8

    -

    ' 1

    /2

    e x a m p l e e x a m p l e

    1.0

  • 7/26/2019 Aircraft and Helicopter Design

    34/62

    9 -3 4 A I R C R A F T A N D H E L I C O P T E R D E S I G N

    A e r o d y n a m ic s , c o nt in u e d

    High-Lift D evices, continued

    E f f e c t s o f F l a p D e f l e c t i o n o n Z e r o - L i f t A n g l e o f A t t a c k

    The set of Plain-Flap Effectiveness graphs may be used with the following

    expression to obtain subsonic, plain-flap effectiveness. Correction factors for body

    effect, partial span, and flap-leading-edge gap are shown.

    AOtLo = ( 0 t ~ / 0 ~ ) C O S A H L S [ I - - ( a +

    bf) l~l ]

    Example

    Determine At~Lo due to plain-flap deflection, with the following wing charac-

    teristics.

    Aspect ratio = 4.0

    Sweep at flap hinge line = 10 deg

    Sweep at wing leading edge = 32 deg

    For inboard plain flaps with 25 deg deflection, 15% flap chord,

    Flap gap ratio, GAP/(f = 0.002

    Inboard span, 01 = 0.15

    Outboard span, qo = 0.65

    Ratio of body diameter to wing span,

    2Ro/b

    = 0.15

    Approach Mach number = 0.1

    ,6 = ~ - M 2 = 0.995

    Flap effectiveness = -0ot /0~ = 0.49 (see Plain-Flap Effectiveness graph)

    Sweep factor:

    -a = 0.039

    (see Sweep factor graph)

    b = 0.034

    Fuselage factor:

    A~Lo)wB

    -- 0.93 (see Wing-body graph)

    AOILo)W

    Flap span factor:

    S F ( P s ) / S F ( F S ) = ~ 0 - - ~1 = 0 . 6 5 - - 0 . 1 5 = 0 . 5 0

    ( A O t L o ) P S

    - - -- 0.55 (see Flap span graph)

    ( A O t L o ) F S

    Flap gap factor:

    ( A O t L ) g a p - - 0.96 (see Flap Gap graph)

    ( A O t L o ) s e a l e d

    AotLo = (--0.49)cos(10 deg)(25)[1 - ( -0 .039 + 0.034(0.995))(25)]

    x (0.93)(0.55)(0.96) ---- -6 .69 deg

  • 7/26/2019 Aircraft and Helicopter Design

    35/62

    A I R C R A F T A N D H E L I C O P T E R D E S I G N 9 - 3 5

    Aerod y nam ics , continued

    Plain-F lap

    E f f e c t i v e n e s s

    1 . 0

    _ . 7 5

    . 8 ~ L ~ . , , , , , . ~ . 4 0 /

    .4 ~

    .2 ~ ~

    C f / C

    o I

    0 1 2 3

    A R 0 .2 .4 . 6

    C f iG

    Full-span effectiveness.

    f

    . 8 1 . 0

    0 5 ~, .

    04

    an~ 0 3 . ~ . . . ~

    b

    . 0 2

    - -

    '

    I

    . 0 1 I

    I

    0 I

    0 . 2 . 4 . 6

    1 - C O S A L E

    Sweep factor.

    1 . 0

    , , ~ . e

    A

    o ,

    . 6

    \

    ~ ,

    \

    . ~ o . 1 . 2

    2 R o / b

    0 W ' = = ' 1

    0 . 2 . 4 . 6 . 8 1 . 0

    SF (p S . )/ SF(F S )

    Wing-body.

    . 3

    k

    ~ o q l I _~

    e ' ,

    0

    . 0 2 . 0 4 . 0 6

    G A P I ~ f

    Flap span. Flap gap.

  • 7/26/2019 Aircraft and Helicopter Design

    36/62

    9 -3 6 A I R C R A F T A N D H E L I C O P T E R D E S I G N

    Aerody nam ics , continued

    High-Lift Devices, continued

    I n d u c e d D r a g d u e t o F l a p s D e p l o y e d

    S u b s o n i c .

    T r a i l i n g - e d g e f l a p s o n a w i n g g i v e i t a c a m b e r f o r i m p r o v i n g l i f t .

    E l e v o n s i n a s i m i l a r m a n n e r c a m b e r th e w i n g , a l t h o u g h t h e y a r e u t i li z e d f o r c o n t r o l

    a t c r u i s e l i ft v a l u e s . D r a g d u e t o l if t r a t io c a n b e e x p r e s s e d a s f o l lo w s .

    C D i ~ ( l _ _ F ) ( O l ~ O l L o $ ) 2 ( ~ - - O l L ~

    - - - - + F

    C oi8 = 0 \ Ol -- OlLo -- OILo .]

    w h e r e F = s i n A c / 4 ( 0 . 2 9 5 + 0 . 0 6 6 c t - 0 . 0 0 1 6 5 o t 2 ) .

    T h e f o l l o w i n g g r a p h s h o w s w o r k i n g p l o t s o f t h e s e re l a t io n s h i p s . Z e r o - l i ft a n g l e

    o f a t t a c k w i t h f la p s d e f l e c te d i s o b t a i n e d f r o m t h e p r e c e d i n g s e c t io n .

    S u p e r s o n i c . A t t h e s u p e r s o n i c s p e e d s , f l a p s a s s u c h a r e n o t l i k e l y t o b e u s e d .

    H o w e v e r , e l e v o n s s t il l a r e r e q u i r e d o n t a i ll e s s c o n f i g u r a t i o n s f o r p i tc h c o n t r o l . T h e

    s u b s o n i c d a t a l i st e d a b o v e m a y b e u s e d .

    E x a m p l e

    F i n d i n d u c e d - d r a g r a t i o f o r f la p s d e p l o y e d f o r t h e f o l l o w i n g w i n g c h a r a c t e ri s ti c s :

    an g l e o f a t t ack a t z e ro l i f t C~Loo f - - 6 d e g a n d q u a r t e r- c h o r d s w e e p Ac /4 :

    2 6

    deg .

    F o r a p l a i n f l a p w i t h 2 5 d e g d e f l e c t io n , a n d w i t h a n g l e o f a tt a c k a t z e r o - l if t w i t h

    f la p s d e f le c t e d aL o ~ o f - 1 0 d e g , th e i n d u c e d - d r a g r a t i o a t 1 0 d e g a n g l e o f a t t a c k

    w i l l b e a s f o l l o w s .

    F

    - -

    - - 0 . 7 9 ( s e e D r a g - D u e - t o - L i f t R a ti o w i th F l a p D e f le c t io n g r a p h )

    s i n A c / 4

    CDi~

    Coi8 = 0

    - O t L o ~ _ 1 0 - ( - 1 0 ) _ 1 . 2 5

    o t - O tLo 1 0 - ( - 6 )

    F = ( 0 . 7 9 ) s i n ( 2 6 de g ) = 0 . 3 4 6 3

    - - - - 1 .4 54 ( se e D r a g -D u e - to - L if t R a ti o w i th F la p D e f l e c t i o n g ra ph )

  • 7/26/2019 Aircraft and Helicopter Design

    37/62

    A I R C R A F T A N D H E L I C O P T E R D E S I G N 9 -3 7

    A e r o d y n a m ic s , c o n tin u e d

    Drag-D ue- to -L i ft Rat io w i th F lap D ef lect ion

    2.5 ~--

    2.0 ,///~.6'

    I I I / / . o

    . 5

    .~. . . . . # / / / /

    ~'~ )

    ~ j

    1 . 0 - I

    j ,

    F

    I

    1 . 0 - . - . - , . . ~ I

    0 .5 . 8 ~ I

    j ~ ,

    ~ 0 I

    I

    I

    I

    0 I

    0 0.5 ot--

  • 7/26/2019 Aircraft and Helicopter Design

    38/62

  • 7/26/2019 Aircraft and Helicopter Design

    39/62

    A I R C R A F T A N D H E L I C O P T E R D E S IG N 9 - 3 9

    gstall

    VTD

    A V

    W

    %

    Y

    /z

    /ZBRK

    P

    Per fo rm an ce, co n t in ued

    = ( 2 W / S p C L m a x ) U2 = s t al l s p e e d

    = A V stan = l a n d i n g v e l o c i t y

    = v e l o c i ty i n c r e m e n t

    = w e i g h t

    = f u e l f l o w

    = f l i g h t - p a t h a n g l e

    = c o e f f i c i e n t o f r o l l in g f r i c t io n

    = c o e f f i c i e n t o f b r a k i n g f r i c ti o n

    = a i r d e n s i t y a t a n a l ti t u d e

    = r a t e o f t u r n

    T a k e o f f

    T a k e o f f - d i s t a n c e c a l c u l a t i o n s t r e a t g r o u n d r o l l a n d t h e d i s t a n c e t o c l e a r a n o b -

    s ta c le . O b s t a c l e r e q u i r e m e n t s d i f f e r f o r c o m m e r c i a l ( 3 5 f t) a n d m i l i t a r y ( 5 0 f t)

    a i r c ra f t .

    T a k e o f f G r o u n d R o l l

    Sgnd ~-

    w/s

    g p ( C D - - # C L )

    6 1 1 - A 2 ( C D - I Z C L )

    T h e s ta l l m a r g i n A t y p i c a l l y is 1 .2 .

    T o t a l T a k e o f f D i s t a n c e

    STO = (Sgnd) ( Fpl )

    T h e f a c t o r t o c l e a r a n o b s t a c l e d e p e n d s g r e a t l y o n a v a i l a b l e e x c e s s t h r u s t , f l i g h t

    p a t h, a n d p i l o t te c h n i q u e . T h e f o l l o w i n g t y p i c a l f a c t o r s c h a r a c t e ri z e p l a n f o r m s i n

    a b i l it y t o c l e a r a 5 0 - f t o b s t a c l e .

    Plan for m Fpl

    S t ra igh t w ing 1 .15

    S wep t w ing 1 .36

    D el ta w ing 1 .58

  • 7/26/2019 Aircraft and Helicopter Design

    40/62

    9-40 AIRCRAFT AND HELICOPTER DESIGN

    P e r fo r m a n c e , c o n t in u e d

    Takeoff, continu ed

    T o t a l T a k e o f f D i s t a n c e , c o n t i n u e d

    Exam ple

    T a k e o f f d i s t a n c e f o r a s t r a i g h t - w i n g a i r c r a f t w i t h t h e f o l l o w i n g c h a r a c t e r i s ti c s :

    W = 2 2 ,0 96 lb Sgna = 1 2 55 f t A -----1 . 2

    S = 2 6 2 f t2 CLmax = 1 .8 STO = 1 44 4 f t

    C c = 0 . 4 6 F = 1 9 , 2 9 0 p = 0 . 0 0 2 3 7 6 9 l b - s2 - f t 4

    C o = 0 . 3 5 3 8 / z = 0 . 0 2 5

    T a k e o f f F u e l A l l o w a n c e

    F o r b r a k e r e l e a s e t o i n i t i a l c l i m b s p e e d ,

    W t

    Vl

    F u e l - - g ( ~ - - - D 1 )

    _ ( W f ' ~ ) W f '

    w h e r e

    W 1 ---- w e i g h t a t s t a r t o f c l i m b

    Vl ----- n i t i a l c l im b spe e d , f t / s

    g = 3 2 . 1 7 4 f t /s 2

    F1 ---- m a x i m u m p o w e r t h r u s t a t i n i t i a l c l i m b s p e e d

    D 1 = d r a g a t 1 - g f li g h t c o n d i t i o n , in i t i a l c l i m b s p e e d

    Wfo = m a x i m u m p o w e r f ue l f lo w a t b r a k e re l e a se , lb / s

    Wf,

    = m a x i m u m p o w e r f u el f l o w at i n i t ia l c l i m b s p e e d , l b /s

    Clim b

    T i m e , f u e l , a n d d i s t a n c e t o c l i m b f r o m o n e a l t i t u d e ( h i ) t o a n o t h e r ( h 2 ) c a n

    b e c a l c u l a t e d i n i n c r e m e n t s a n d t h e n s u m m e d . B y u s i n g t h i s t e c h n i q u e , s p e c i f ic

    c l im b s p e e d s c h e d u l e s - - i . e . , c o n s ta n t M a c h n u m b e r c l i m b a n d m a x i m u m r a t e o f

    c l i m b - - - c a n b e d e p i c t e d .

    R a t e o f C l i m b

    F o r s m a l l a n g le s , th e r a t e o f c l i m b c a n b e d e t e r m i n e d f r o m

    /

    / C : (F - D ) V W 1 - - .

    g T

    w h e r e V / g d V / d h i s t h e c o r r e c t i o n t e r m f o r f l ig h t a c c e l e r a t io n .

  • 7/26/2019 Aircraft and Helicopter Design

    41/62

    AIRCRAFT AND HELICOPTER DESIGN 9-41

    Per fo r m ance, con tinu ed

    T h e f o l l o w i n g t a b l e g iv e s a c c e l e r a t i o n c o r r e c t i o n s f o r ty p i c a l f l ig h t p r o c e d u r e s .

    V dV

    Altitude, fl Pr oc ed ur e g ' d--h-

    36 ,089 Cons tan t CA S 0.566 8 M 2

    o r le ss C o n s ta n t M a c h - 0 . 1 3 3 2 M 2

    O v e r C o n s ta n t C A S 0.7 M 2

    36 ,0 8 9 Cons t an t M ach Zero

    F o r l o w s u b s o n i c c l i m b s p e e d s , t h e a c c e l e r a t i o n t e r m i s u s u a l l y n e g l e c t e d .

    R/ C = F - D)V /W

    F l i g h t - P a t h G r a d i e n t

    T im e t o C l i m b

    D i s t a n c e t o C l i m b

    F u e l t o C l i m b

    S u m i n c r e m e n t s f o r to ta l.

    y = sin-X ( - ~ )

    A t =

    2 ( h 2 - - h i )

    (R / C) l -Iv (R /C )2

    As-- V At)

    A F u e l =

    W f A t )

  • 7/26/2019 Aircraft and Helicopter Design

    42/62

    9-42 AIRCRAFT AND HELICOPTER DESIGN

    P e r fo r m a n c e , c o n t in u e d

    Accelerat ion

    T h e t i m e , f u e l , a n d d i s t a n c e f o r a c c e l e r a t i o n a t a c o n s t a n t a l t i t u d e f r o m o n e

    s p e e d t o a n o th e r c a n b e c a l c u l at e d i n in c r e m e n t s a n d t h e n s u m m e d u p . B y u s i n g

    t h is t e c h n iq u e , s p e c i fi c f u n c ti o n s c a n b e s i m u l a t e d ( e . g. , e n g i n e p o w e r s p o o l - u p ) .

    T i m e - t o - A c c e l e r a t e I n c r e m e n t

    A t - - - -

    A V

    g

    D i s t a n c e - t o - A c c e l e r a t e I n c r e m e n t

    A S = V ( A T )

    F u e l - t o - A c c e l e r a t e I n c r e m e n t

    A F u e l =

    W f ( A t )

    S u m i n c r e m e n t s t o y i e l d to t a l t i m e , f u e l, a n d d i s t a n c e t o a c c e le r a t e .

    Cruise

    T h e b a s i c c ru i s e d i s t a n c e c a n b e d e t e r m i n e d b y u s i n g t h e B r e g u e t r a n g e e q u a t i o n

    f o r j e t a i r c r a f t , a s f o l l o w s .

    C r u i s e R a n g e

    R = L / D ( V / S F C ) f i~ (W o /W ~ )

    w h e r e s u b s c r i p ts " 0 " a n d " 1 " s t an d f o r in i ti a l a n d fi n al w e i g h t , r e sp e c t iv e l y .

    C r u i s e F u e l

    Fu el = W0 - W, =

    W f ( e R /k -

    1 )

    w h e r e k , t h e r a n g e c o n s t a n t , e q u a l s

    L / D ( V / S F C ) .

    D a s h R a n g e

    F o r f li g h t a t c o n s t a n t M a c h n u m b e r a n d c o n s t a n t a l t it u d e , t h e fo l l o w i n g e q u a t i o n

    g i v e s d a s h r a n g e .

    R = (F u e l )

  • 7/26/2019 Aircraft and Helicopter Design

    43/62

    A I R C R A F T A N D H E L I C O P T E R D E S I G N 9 -4 3

    Per fo rm an ce, co n t in u ed

    F o r l a r g e e x c u r s i o n s o f w e i g h t , s p e e d , a n d a l t i tu d e d u r i n g c r u i s e , i t i s r e c o m -

    m e n d e d t h a t t h e r a n g e c a l c u la t io n s b e d i v i d e d i n to in c r e m e n t s a n d s u m m e d u p f o r

    t he t o t a l.

    Example

    F i n d c r u i s e d i s t a n c e f o r a n a i r c r a f t w i t h t h e f o l l o w i n g c h a r a c t e r i s ti c s .

    W 0 = 1 5 , 8 0 0 lb

    W 1 = 1 4 , 6 0 0 l b

    V = 2 6 8 k n

    S F C = 1 . 2 6 l b / h /l b

    L / D

    = 9 . 7

    R = 9 . 7 ( 2 6 8 / 1 . 2 6 ) ~ ( 1 5 , 8 0 0 / 1 4 , 6 0 0 ) = 1 6 3 n m i le

    C r u i s e S p e e d s

    C r u i s e - s p e e d s c h e d u l e s f o r s u b s o n i c f li g ht c a n b e d e t e r m i n e d b y t h e f o l l o w i n g

    e x p r e s s i o n s .

    O p t im u m M a c h N u m b e r M D D ), O p t im u m -A l t i t u d e C r u i s e

    F i r s t c a l c u l a t e t h e p r e s s u r e a t a l ti t u d e .

    W

    P =

    0.7(MZoo)(CLoo)S

    T h e n e n t e r v a l u e f r o m C r u i s e -A l t i tu d e D e t e r m i n a t i o n g r a p h f o r c r u is e a l ti tu d e .

    O p t i m u m M a c h N u m b e r , C o n s t a n t -A l t i t u d e C r u i s e

    O p t i m u m o c cu rs a t m a x i m u m

    M ( L / D ) .

    f , s f

    =

    0 . - V c o n

    C o n s t a n t M a c h N u m b e r , O p t im u m -A l t i t u d e C r u i s e

    D e r i v e o p t i m u m a l t i t u d e , a s a b o v e , e x c e p t M o o a n d CLoo are r e p l a c e d w i t h

    v a l u e s f o r t h e s p e c i f ie d c r u i s e c o n d i t i o n s .

  • 7/26/2019 Aircraft and Helicopter Design

    44/62

    9 -4 4 A IRCRAFT AND HELICOPTER DESIGN

    P e r f o r m a n c e , c o n t in u e d

    C r u i se , c o n t in u e d

    C r u i s e - A l t i t u d e D e t e r m i n a t i o n

    I -

    LL

    E ,

    t.u

    a

    i -

    _J

    , ' ] ' L i m i t /

    7 0 0 - S ea-Level Std

    l< 5 0 0 5 , ~ ~ S td D ay

    If) I ~ ~ T. C). Lim it

    o

    4 0 0

    3 0 O

    / ~ / , ~ / / . , , ~ " 1 5,0 00 ' S td

    2 0 0 ~ . . ~ / / . . , ~ " " 2 0 , O 0 0 ' S t d

    l O O . 5 , o o o s t .

    \ 30 ,000 ' Std

    O 0 2 6 0 ' 6 ( ) 0 ' I 0 ( )0 ' 1 4 ' 0 0 ' 1 8 ' 0 0 ' 2 2 ' 0 0

    E n g i n e S h a f t H o r s e p o w e r

    Typ ica l engine fue l f low charac ter is t ics . ( Source :

    Helicopter Pe rform ance, Stabili ty, a nd

    Control,

    page 2 76, f igure 4 .3 , by R . W . Prouty . Cop yrig ht (~) 1995, K rieg er Publish ing

    Com pany , M alaba r , FL . Rep roduced w i th pe rmiss ion o f Kr iege r. )

  • 7/26/2019 Aircraft and Helicopter Design

    59/62

    A I R C R A F T A N D H E L I C O P T E R D E S I G N 9 - 5 9

    Helicopter Design, continued

    Bas ic F l i gh t L o a d i n g C o n d i t i o n s

    C r i ti c al f li g h t l o a d i n g c o n d i t i o n s n o r m a l l y c o n s i d e r e d i n t h e d e s i g n o f a p u r e

    h e l i c o p t e r a r e d e f i n e d a s fo l l o w s .

    M a x i m u m s p e e d ( d e s ig n l im i t s p e e d V u )

    S y m m e t r i c a l d i v e a n d p u l l o u t a t d e s i g n l i m i t s p e e d VDL a n d a t 0 . 6 VH, a p p r o x -

    i m a t e l y th e s p e e d o f m a x i m u m l o a d f a c to r c ap a b i l it y

    V e r ti ca l t a k e o f f ( j u m p t a k e o f f )

    Ro l l i n g p u l l o u t

    Y a w ( p e d a l k i c k s )

    A u t o r o t a ti o n a l m a n e u v e r s

    3.0

    r.~ 2.5

    2.0

    1.5

    1 . 0

    Level Flight

    0.5

    0

    - - 0 .5

    4 .0

    3.5

    /

    -40 --20 0 20 40 60 80 100 ~20 140 160 180 200

    T r u e A i r s p e e d ( V) , k no t s

    A typical design V - N diagram. (Source: Hel icopter Aerod yna m ics (Rotor & W ing In-

    ternational) , b y R . W .

    Prouty. Co pyright

    (~) 1995 , PJS Pub l ica t ions . Rep rodu ced w i th

    permiss ion from Raym ond W. Prou ty . )

    T h e s e , a n d o t h e r l im i t s , a re n o r m a l l y s e t b y t h e c u s t o m e r o r c e r ti f y i n g a u t h o r i t y

    a n d a r e d e p i c t e d i n t h e v e l o c i t y - l o a d ( V - N ) d i a g r a m . O t h e r p a r a m e t e r s u s u al ly

    d e f i n e d i n t h e V - N d i a g r a m a re n e v e r - t o - e x c e e d v e l o c i t y (V N E) a n d m a x i m u m

    r e a r w a r d v e l o c i t y ( V A v r ) . T h e d e s i g n s t r u c t u r a l e n v e l o p e m u s t s a t i s f y t h e V - N

    d i a g r a m l i m i t s.

  • 7/26/2019 Aircraft and Helicopter Design

    60/62

    9 -6 0 A I R C R A F T A N D H E L I C O P T E R D E S I G N

    H e l i c o p t e r D e s ig n , c o n t i n u e d

    P e r f or m a n c e , c o n t in u e d

    R o t o r Thrus t Cap ab i l it ies

    T h e m a x i m u m r o t o r t h r u st c a p a b i li t ie s a re s h o w n b e l o w .

    0 . 18

    0 . 1 6

    0 . 1 4

    E

    0 . 1 2

    0 . 1 0

    0 . 08

    0 . 0 6

    0 . 0 4

    0 . 0 2

    0 0 . 1 0 0 . 2 0 0 . 3 0 0 . 4 0 0 . 5 0

    L o w D ra g

    H ig h D ra g

    T ip s p e e d ra t io , / J

    Source:

    Helicopter Performance, Stability, and Control,

    page 345, f igure 5.2 , by R. W.

    Prouty. Copyright (~ 1 995 , Krieger Publishing Com pany, M alabar, FL. Reproduced with

    permission of Krieger.)

    R o t o r t h r u st c a p a b i l i t y

    C v R o t o r t h ru s t

    D e n s i t y o f a i r x b l a d e a re a x ( t ip s p e e d ) 2

    "

    a n d t i p s p e e d r a ti o

    F o r w a r d s p e e d o f h e l i co p t e r

    T i p s p e e d

  • 7/26/2019 Aircraft and Helicopter Design

    61/62

    A I R C R A F T A N D H E L I C O P T E R D E S I G N 9 -6 1

    Helicopter Design, continued

    One- Hou r He l icopte r Des ign Process

    R e q u i r e m e n t s

    A s a n i l lu s t r a ti o n o f th e p r o c e d u r e , i t i s h e l p f u l t o u s e a s p e c i fi c e x a m p l e . T h i s

    w i l l b e a s m a l l b a t t l e f i e l d t r a n s p o r t h e l i c o p t e r d e s i g n e d t o m e e t t h e f o l l o w i n g

    p e r f o r m a n c e r e q u i r e m e n t s .

    P a y l o a d : fi v e f u l l y - e q u i p p e d t r o o p s @ 2 2 8 lb = 1 7 6 0 lb

    C r e w : tw o p e o p l e @ 2 0 0 l b = 4 0 0 lb

    M a x i m u m s p e e d a t s e a l ev e l : 2 0 0 k n a t t h e 3 0 - m i n r a ti n g

    C r u i s e s p e e d a t s e a l ev e l : a t l e a st 1 7 5 k n a t t h e m a x i m u m c o n t i n u o u s e n g i n e

    r a t i n g

    R a n g e : 3 0 0 n m i l e a t c o n t i n u o u s e n g i n e r a ti n g w i th 3 0 - m i n f u e l r e s e rv e

    V e r ti ca l r a t e - o f- c l im b : 4 5 0 f t / m i n @ 4 0 0 0 f t, 9 5 F , w i t h 9 5 % o f 3 0 - m i n r a t in g

    E n g i n e s : tw o w i t h s e a l ev e l m a x i m u m c o n t i n u o u s r a ti n g o f 6 5 0 h p e a c h , 3 0 - m i n

    r a ti n g o f 8 0 0 h p e a c h .

    I n i t i a l G r o s s W e ig h t E s t i m a t i n g

    E s t i m a t e t h e f u e l r e q u i re d t o d o t h e m i s s io n . A s s u m e a s p ec i fi c fu e l c o n s u m p t i o n

    o f 0 . 5 lb p e r h p - h . F o r c r u i s e a t c o n t i n u o u s e n g i n e r a t i n g a n d 1 7 5 k n f o r 3 0 0 n

    m i l e , th is g i v e s 4 4 0 l b i n c l u d in g r e s e rv e . W h e n a d d e d t o t h e p a y l o a d a n d t h e c r e w

    w e i g h t , t h e r e s u l t a n t " u s e f u l l o a d " is 3 6 0 0 lb .

    E s t i m a t e t h e g r o s s w e i g h t u s i n g t h e H i s to r i c T r e n d o f U s e f u l L o a d t o G r o s s

    W e i g h t c u rv e . T w o l in e s a r e s h o w n o n t h e cu r v e , o n e f o r c o m m e r c i a l h e l i c o p t e rs

    a n d a s li g h tl y l o w e r o n e f o r c o m b a t h e l ic o p t e rs , w h i c h a r e p e n a l i z e d b y t h e n e -

    c e s s it y t o c a r r y t h in g s s u c h a s r e d u n d a n t c o m p o n e n t s , a r m o r p r o t e c ti o n , a n d s e lf -

    s e a l in g f u e l t a n k s. F o r a d e s i g n o f t h e 1 9 9 0 ' s , t h e r a ti o f o r th e c o m b a t h e l i c o p t e r

    h a s b e e n c h o s e n a s 0 . 5 , w h i c h m e a n s t h a t t h e e x a m p l e h e l i c o p t e r s h o u l d h a v e a

    g r o s s w e i g h t o f a b o u t 7 2 0 0 lb .

    C h e c k o n M a x im u m F o r w a r d S p e e d

    E s t i m a t e t h e d r a g c h a r a c t e r i s ti c s b y u s i n g t h e s t at is t ic a l t r e n d f o r e q u i v a l e n t

    p l a t e a r e a a s s h o w n i n t h e S t a t i s t i c a l T r e n d f o r E q u i v a l e n t F l a t P l a t e A r e a c u r v e ,

    w h i c h i s b a s e d o n a n u m b e r o f e x is t in g h e l i c o p te r s . C h o o s i n g t o u se t h e l in e l a b e l e d

    " A v e r a g e D r a g , " t h e h e l i c o p t e r w i ll h a v e a n e q u i v a l e n t f l at p l a t e a r e a o f 1 6 ft 2 . T h e

    m a x i m u m s p e e d c a n b e e s t im a t e d b y a s s u m i n g t h a t 7 0 % o f t h e i n st a ll e d p o w e r is

    b e i n g u s e d t o o v e r c o m e p a r as it e d r a g a t h i g h s p e e d u s i n g t h e f o l lo w i n g e q u a t i o n .

    [ 3 0 - m i n r a ti ng o f b o t h e n g i n e s ~ 1/3

    M a x S p e e d = 4 1 1 . . . . . | ,

    \ e q u i v a l e n t f l at p l a t e a r e a )

  • 7/26/2019 Aircraft and Helicopter Design

    62/62

    9 -6 2 A I R C R A F T A N D H E L I C O P T E R D E S I G N

    Bibliography

    Ab bot , I . H., and Von Doenhoff , A. E . ,

    Theory o f Wing Sect ions ,

    Dover, New York, 1958.

    A M C P 7 0 6 - 2 0 1 ,

    Engineer ing De sign Han dbook, Hel icopter Engineer ing, Pa r t One: Pre-

    l im inary De sign , Headquarters, U.S . A rm y Mater ie l Com m and, Aug. 1 974 .

    Anon . , " Je t T ranspo r t P e r fo rmance M ethods, " The B oe ing Co . , Docum en t D6 -1 46 0 , 1 96 7 .

    Bl igh, J . A ., "M ethod s Rep ort for Aircraft Perform anc e Est imat ion," N orthro p Aircraft ,

    Rept . MR-l , 1964 .

    Coming , G . ,

    Supe rsonic and S ubsonic, C TO L and VTO L, Airp lane D esign ,

    publ ished by

    author, 1960.

    Do mm asch , D . O . ,

    Airp lane Aerodynam ics ,

    Pi tman, London, 1961 .

    Etkin, B., Dy nam ics o f F l igh t , S tabi li ty a nd Control, Wiley, N ew Y ork, 1959.

    Hoerner, S. E, Flu id -Dyna m ic D rag , pub l ished by author, 1965.

    Nicolai , L . M.,

    Funda m en ta ls o f A ircra f t D es ign ,

    METS, Inc . , 1975 .

    Perkins , C. D., and H age, R. E. ,

    Airp lane Pe r form ance S tabi li ty a nd Control,

    Wiley, New

    York, 1967.

    Pope, A. ,

    Aerody nam ics o f Supe rsonic Fl ight ,

    Pitman, London, 1958.

    Prouty, R. W.,

    Hel icopter Aerod yna m ics (Rotor & W ing In ternat ional ),

    PJS Publications,

    Inc. , 1985.

    Prouty, R. W .,

    Hel icopter P er forma nce , S tabil ity , and Control,

    1995 Edition, Krieger, M el-

    bourne , FL, 1995 .

    Prouty, R. W.,

    Military Helicopter Design Technology,

    Jane ' s D efence Data , UK , 1 989 .

    Seckel, E.,

    Stabi li ty a nd Control o f A irp lanes a nd H el icopters ,

    Ac adem ic , N ew York , 1964.

    Torenbeek, E.,

    Synthe s i s o f Subsonic Airp lane De sign ,

    D elft Univ ., Delft , Th e Netherlands,

    1981 .

    Wood, K. D.,

    Aerospa ce V ehic le De sign--Volum e h Aircraf t Design ,

    John son Publ ishing

    Co., 1966.