Airborne Wind Energy - AWESCOawesco.eu/talk/schmehl-2020-a/schmehl-2020-a.pdf · AWES...

113
Roland Schmehl, TU Delft Airborne Wind Energy R&D status & outstanding challenges Image source: Makani

Transcript of Airborne Wind Energy - AWESCOawesco.eu/talk/schmehl-2020-a/schmehl-2020-a.pdf · AWES...

  • Roland Schmehl, TU Delft

    Airborne Wind EnergyR&D status & outstanding challenges

    Image source: Makani

  • 2

    Presenter

    • Associate Professor at Delft University of Technology • Co-founder of Kitepower BV• Coordinator of 2 H2020 projects (AWESCO & REACH)• AWE-responsible PI in Dutch NWO project NEON• Co-organizer of AWEC 2015, 2017 and 2019• Co-editor and editor of 2 Springer textbooks on AWE

  • 3

    2013 2018

  • 4

    Outline

    • Fundamental working principles• Classification of concepts• Implemented technology demonstrators• Development challenges• Research challenges• Development of the sector

  • 5

    Drag power:● Flying wing shaft power⇝ shaft power● Shaft power electricity (ω )⇝ shaft power ↑)● Electricity conductive tether⇝ shaft power

    Lift power:● Flying wing traction force⇝ shaft power● Traction force shaft power (ω )⇝ shaft power ↓)● Shaft power electricity⇝ shaft power

    Fundamental concepts Miles L. Loyd (1980)

  • 6

  • 7

    Key aspects +–

    ● Consumes significantly less material● Highly adjustable to wind resource● Access to high altitude wind● Increased mobility

    ● More complex than turbines● Requires reliable & robust control

    ● Depends on high-performance materials● Need to revise current regulatory framework

    Image source: Skysails

  • Introduction

    Kitepower Enerkíte Ampyx Power Kitemill Twingtec

    KPSSkysails Skypull Windswept eWindSolutions

    Technology demonstrators

  • 9

    Man-lifting kite train (1930)AWES classification

    Adapted from: Watson et al. “Future emerging technologies in the wind power sector: a European perspective”, Renewable and Sustainable Energy Reviews, 2019.

    Elelectricity generation

    Flight operation

    crosswind

    rotational someAWE Vertical take-off and landing (VTOL)Horizontal take-off and landing (HTOL)Multi-drone conceptsLigther-than-air concepts

    ~ Flexible wing concepts

    Kitemill Skypull TwingTec E-Kite

    EnerKíte Ampyx KPS Kiteswarms

    Kitepower Kitenergy eWind Solutions

    ~~ KiteGen stem

    SkySails Power~~

    Laddermill Guangdong HAWP

    tether-aligned Omnidea

    Windswept

    AWEsystem

    with fixed GS➡ with fixed GS

    ➡ with fixed GS

    ➡ with fixed GS

    crosswind X-Wind loop track KiteGen carousel~~ with moving GS➡ with fixed GS ➡ with fixed GS

    crosswind

    rotational

    Makani KiteKraft

    Windlift KiteX

    Bladetips Brainwhere

    Altaeros Magenn

    Sky WindPower on flying device➡ with fixed GS

    ➡ with fixed GS

    ➡ with fixed GS

    Kitewinder

    ➡ with fixed GS

  • 10

    Man-lifting kite train (1930)AWES classification

    Adapted from: Watson et al. “Future emerging technologies in the wind power sector: a European perspective”, Renewable and Sustainable Energy Reviews, 2019.

    Elelectricity generation

    Flight operation

    crosswind

    rotational Vertical take-off and landing (VTOL)Horizontal take-off and landing (HTOL)Multi-drone conceptsLigther-than-air concepts

    ~ Flexible wing concepts

    Kitemill Skypull TwingTec E-Kite

    EnerKíte Ampyx KPS Kiteswarms

    Kitepower Kitenergy eWind Solutions

    ~~ KiteGen stem

    SkySails Power~~

    Laddermill Guangdong HAWP

    tether-aligned Omnidea

    someAWEWindswept

    Kitewinder

    AWEsystem

    with fixed GS➡ with fixed GS

    ➡ with fixed GS

    ➡ with fixed GS

    crosswind with moving GS➡ with fixed GS ➡ with fixed GS

    crosswind

    rotational

    Makani KiteKraft

    Windlift KiteX

    Bladetips Brainwhere

    Altaeros Magenn

    Sky WindPower on flying device➡ with fixed GS

    ➡ with fixed GS

    ➡ with fixed GS

    X-Wind loop track KiteGen carousel

    ~~

    ➡ with fixed GS

  • 11

    Man-lifting kite train (1930)Further reading: awesco.eu/awe-explained

    http://awesco.eu/awe-explained/

  • 12

    Technology demonstrators

    • Makani• Ampyx ( presentation Jaap Bosch) → presentation Jaap Bosch) • Enerkite• Twingtec• Kitemill ( presentation Lode Carnel)→ presentation Jaap Bosch) • Kitepower

  • 13

    Wing7 (30 kW)California 2013

  • 14

    M600 (600 kW)California 2017

  • 15

    Hawaii 2018

  • 16

    Norway 2019

  • 17

  • 18

  • 19

  • 20

  • 21

  • 22

  • 23

  • 24

    https://www.youtube.com/watch?v=F6NW0QeKLZAhttps://www.youtube.com/watch?v=F6NW0QeKLZA

  • 25

    AP-2 (50 kW)Noordoostpolder 2013

  • 26

    AP-3 (250 kW)Marin 2018

  • 27

  • 28

  • 29

  • 30

  • 31

  • 32

  • 33

    Ampyx Power AP4: 2 MW

  • 34

    Germany 2012

  • 35

    Germany 2014

  • 36

  • 37

    Germany 2019

  • 39

    https://www.youtube.com/watch?v=utRe_OXNwNohttps://www.youtube.com/watch?v=utRe_OXNwNo

  • 40

    2012

    WIND ENERGY 2.0

  • 41

    2019

    WIND ENERGY 2.0

  • 42

  • 43

    TwingTec pilot next to turbine with same power

  • 44

  • 45

    https://www.youtube.com/watch?v=2-uhsga4aTohttps://www.youtube.com/watch?v=2-uhsga4aTo

  • 46

    25 kW kite power system2012

  • 47

    Sensor Unit

    Bridle Line SystemKite

    Control Unit

    Traction Tether

    Drum/Generator ModuleControl

    CenterBattery Module

    Ground Station

    Power Electronics

    Kite

    Kite

    Wind Meter

    Launch mast (optional)

    System components

  • 48

  • 49 TU Delft V3 25 m2 Genetrix Hydra 14 m2 TU Delft V3 25 m2

  • 50

    Genetrix Hydra 14 m2 TU Delft V3 25 m2TU Delft V3 25 m2

  • 2.55 m

    2.03 m

    0.974 m

    0.876 m

  • 53

  • 54

    Automatic pumping cycles at Maasvlakte II of Rotterdam Harbor

    2012

  • 55

    Kite Power 2.0 (2014-15)

  • 56

    https://www.youtube.com/watch?v=uexBpa7ovts&list=PLecBwCWKeP3Lqrt489F7IdvDXL59NrRps&index=1&autoplay=1

  • https://www.youtube.com/watch?v=uexBpa7ovts&list=PLecBwCWKeP3Lqrt489F7IdvDXL59NrRps&index=1&autoplay=1

  • 59

    40 m2 kite2017

  • 60

    100 kW ground station

  • 61

  • 62

  • 63

  • 64

  • 65

    Kite park power output

  • 66

  • 67

    Kite development: 25 – 40 – 60 m2

  • 68

    Kite development: 100 m2

  • 69

  • 70

    https://vimeo.com/265594887

  • 71

    2016 Q2 Q3 Q4 2017 Q2 Q3 Q4 2018 Q2 Q3 Q4 2019 Q2 Q3 Q4Quarter

    0

    20

    40

    60

    80

    100

    120

    140

    160

    Days

    Actual flight days per quarterCumulative flight days

    Flight days

  • 72

    Development as an industry

  • R&D landscape2018

     

     

     

    Stanford University

    AirLoom Energy 

    Skypoint-e

    EnerKíte

    SkySails Power

    WindLiftUNC Charlotte

    Worchester Polytechnic InstituteUniversity of Delaware

    Fraunhofer IWES

    AnuracChalmers University

    RMIT University

    Guangdong HAWP Technology

     

    DTU-Wind

      

     

      

     

    KitenergyKiteGen

    Politecnico Milano

    EPFLETH Zurich

    TwingTec

    ABB Corporate Research

    TU Munich

    University of Freiburg

     

     

     

    UF Santa Catarina

     

      

    University of VictoriaeWind Solutions

    Makani / X

    Oregon State University

    University of Trento

    Altaeros Energies

     

    University of Zagreb

     

    OmnideaUC3 Madrid

    Beyond the Sea®Kitewinder

    ENSTA Bretagne

    University of Limerick

    Kite Power Systems

    Grenoble INP

    KU LeuvenTU DelftKitepower

    Ampyx Power

    TU Berlin

    Altitude Energy

    KitemillECN

    NLR

     Skypull

    KiteX

    University of Applied

    XsensAenarete

    Sciences of Northwest Switzerland

    E-Kite

    Upwind

    Sky WindPower

    Kyushu UniversityTMIT

    University of Strathclyde Windswept & Interesting

    AirSeas / Airbus

    KiteSwarms

    academiaindustry

    University of Stuttgart

    University of Bonn

  • 74

    Challenges

    • Reliability & Safety– None of the projects has proven more than a few days of operation– Operation in kite parks

    • Durability of materials– Tether and kite are critical components

    • Regulations– Interference with air traffic and ground use

  • KNMI 20 year average wind data for De Bilt, the Netherlands.

  • 76

    AWE resource assessment

  • 77

    VLM simulation

  • 78

    CFD analysis

  • 79

    Oehler & Schmehl. "Aerodynamic characterization of a soft kite by in situ flow measurement". Wind Energy Science, 2019

    http://doi.org/10.5194/wes-4-1-2019

  • 80

  • 81

  • 82

    CFD simulation with OpenFOAM Streamlines around the kite colored With the spanwise velocity component, computed for Re=3x106 and 12° AoA

  • 84

    safety line

    GNSS & IMU unit

    8.08 m

    0.40 m

    depower winchsteering winch

    steering line

    2.63 m8.32 m

    3.13 m

    steering tape

    knot

    depower tape

    bridle point

    9.05 m

    knot

    power line

    tether

    pulley

    y

    z

    x

    Relative flow measurement setup

    TU Delft V3 kite

    Oehler & Schmehl. "Aerodynamic characterization of a soft kite by in situ flow measurement". Wind Energy Science, 2019

    http://doi.org/10.5194/wes-4-1-2019

  • 85

    g

    Effect of power

    ● Changes chordwise force distribution

    ● Powering up the wing makes wing pitch backwards

    depowered

    powered

    Oehler & Schmehl. "Aerodynamic characterization of a soft kite by in situ flow measurement". Wind Energy Science, 2019

    http://doi.org/10.5194/wes-4-1-2019

  • 86

    Effect of power

    ● Wing flattens● Force increase also by area

    increase

    powered

    depowered

    Oehler & Schmehl. "Aerodynamic characterization of a soft kite by in situ flow measurement". Wind Energy Science, 2019

    http://doi.org/10.5194/wes-4-1-2019

  • 87

    Aerodynamics

  • 88

    Aerodynamics

  • 89

    Aerodynamics

  • Fluid-Structure Interaction simulation of a ram air wing section

  • Finite element model of a LEI kite

    https://www.youtube.com/watch?v=-D2wGbwT9Ws

  • Aeroelastic bending and torsion of a half wing supported by a bridle line

    Wijnja, Schmehl, De Breuker, Jensen and Vander Lind: "Aeroelastic Analysis of a Large Airborne Wind Turbine". Journal of Guidance, Control and Dynamics, 2018

    http://doi.org/10.2514/1.G001663

  • Aeroelastic model of an AWT and the tensile support system connecting it to the ground

    Wijnja, Schmehl, De Breuker, Jensen and Vander Lind: "Aeroelastic Analysis of a Large Airborne Wind Turbine". Journal of Guidance, Control and Dynamics, 2018

    http://doi.org/10.2514/1.G001663

  • Bridle line forces in a swept wing

    Candade, Ranneberg & Schmehl. "Structural Analysis and Optimization of a Tethered Swept Wing for Airborne Wind Energy Generation". Wind Energy, 2020

    http://doi.org/10.1002/we.2469

  • 95

    Rapp, Schmehl, Oland, Haas. "Cascaded Pumping Cycle Control for Rigid Wing Airborne Wind Energy Systems". AIAA Journal of Guidance, Control and Dynamics, 2019

    http://doi.org/10.2514/1.G004246

  • 96

    Rapp, Schmehl, Oland, Haas. "Cascaded Pumping Cycle Control for Rigid Wing Airborne Wind Energy Systems". AIAA Journal of Guidance, Control and Dynamics, 2019

    http://doi.org/10.2514/1.G004246https://youtu.be/XlCDNnALGGI

  • 97

    Kite park layout

    row

    wind

    colu

    mn

    wind

    colum

    n

    row

    Faggiani & Schmehl. “Design and Economics of a Pumping Kite Wind Park". In: Schmehl (ed.) "Airborne Wind Energy - Advances in Technology Development and Research", Springer, 2018

    http://doi.org/10.1007/978-981-10-1947-0_16

  • 98

    Kite park power output

     

     

    1 kite

    4 x 4 kites

    8 x 8 kites

    -500

    0

    500

    1000

    1500

    2000

    6004002000 800 1000Time [s]

    Pow

    er [k

    W]

    Faggiani & Schmehl. “Design and Economics of a Pumping Kite Wind Park". In: Schmehl (ed.) "Airborne Wind Energy - Advances in Technology Development and Research", Springer, 2018

    http://doi.org/10.1007/978-981-10-1947-0_16

  • 99

    Safety & reliability

  • 400 m

    70 m

    2 m

    20 m

    Ground station

    300 m

    Safety zone

    Ground station

    50 m

    Danger zone

    65 m

    Operational zoneOperational zone

    Flight zone

    Danger zone

    50 m

    KITEPOWERairbor ne wind energy

    KITEPOWERair bor ne wind ener gy

    Salma, Friedl & Schmehl: "Improving Reliability and Safety of Airborne Wind Energy Systems", Wind Energy, 2019

    http://doi.org/10.1002/we.2433

  • (C) (A)

    (B)

    (D)

    (E)

    2012/08/02 Salma, Friedl & Schmehl: "Improving Reliability and Safety of Airborne Wind Energy Systems", Wind Energy, 2019

    http://doi.org/10.1002/we.2433

  • 102

    Kite park power output

  • 103

    Development as an industry

    • Many bottom-up initiatives, e.g. by students and PhD researchers, only later picked up by academic staff

    • Initially driven by research on control & optimization • Full automation, reliability and materials are critical

    technical challenges• Developed in parallel to conventional wind energy• Since a few years also the wind energy community

    shows interest

  • 104

    Infrastructure

    • EU-H2020 doctoral school AWESCO (2015-2018)• Industry association “Airborne Wind Europe”• EAWE Technical Committee “Airborne Wind Energy”

  • 105

    • Marie Skłodowska-Curie Initial Training Network● 4 work packages focussing on scientific challenges:

    – Modelling and Simulation (WP lead: TUD)– System Design and Optimisation (WP lead: ALU-FR)– Sensors and Estimation (WP lead: Xsens)– Control Systems (WP lead: TUM)

    Airborne Wind EnergySystem Modelling, Control & Optimisation

  • 106

    ● 14 PhD projects, all contributing to relevant questions of industry

    ● 4 PhD projects supervised by TU Delft

    ● 10 EU-funded partners

    ● 2 CH-funded partners

    ● 3.4 M€ total budget

    Airborne Wind EnergySystem Modelling, Control & Optimisation

  • 107

  • 109

    FP7● HAWE - FP7-ENERGY● Highwind - ERC

    Horizon 2020● AWESCO - European Training Network● AMPYXAP3 - SME Instrument Phase I & II ● REACH - Fast Track to Innovation Pilot

    Impact of EU funding

  • 110

    Horizon 2020● NEXTWIND - SME Instrument Phase I & II● AWESOME - SME Instrument Phase I & II● SKYPULL - SME Instrument Phase I● TWINGTEC - SME Instrument Phase I● TWINGPOWER - Eurostars

    Impact of EU funding

  • 111

    AWEC 2015 in Delft

  • AWEC 2019, 15-16 October, Glasgow, United KingdomBook of Abstracts, edited by Roland Schmehl, Oliver Tulloch, 164 pages.ISBN 978-94-6366-213-0doi:10.4233/uuid:57fd203c-e069-11e9-9fcb-441ea15f7c9cshortdoi:10/dcjm

    AWEC 2017, 5-6 October, Freiburg, GermanyBook of Abstracts, edited by Moritz Diehl, Rachel Leuthold, Roland Schmehl, 188 pages.ISBN 978-94-6186-846-6doi:10.4233/uuid:4c361ef1-d2d2-4d14-9868-16541f60edc7shortdoi:10/cd54

    AWEC 2015, 15-16 June, Delft, The NetherlandsBook of Abstracts, edited by Roland Schmehl, 123 pages.ISBN 978-94-6186-486-4doi:10.4233/uuid:6e92b8d7-9e88-4143-a281-08f94770c59fshortdoi:10/bjhs

    AWEC 2013, 10-11 September, Berlin, GermanyBook of Abstracts, edited by Guido Lütsch, Christian Hiemenz, Roald Koch, 77 pages.ISBN 978-94-6186-848-0doi:10.4233/uuid:f91af52c-4e76-4cf5-917a-129455b3fca9shortdoi:10/c5j3

    AWEC 2011, 24-25 May, Leuven, BelgiumBook of Abstracts, edited by Jacqueline De Bruyn, Moritz Diehl, Reinhart Paelinck, Richard Ruiterkamp, 73 pages.ISBN 978-94-6018-370-6doi:10.4233/uuid:54a23dff-74f9-4007-b1d6-e92e0c458491shortdoi:10/czgh

    http://doi.org/10.4233/uuid:57fd203c-e069-11e9-9fcb-441ea15f7c9chttp://doi.org/10/dcjmhttp://doi.org/10.4233/uuid:4c361ef1-d2d2-4d14-9868-16541f60edc7http://doi.org/10/cd54http://doi.org/10.4233/uuid:6e92b8d7-9e88-4143-a281-08f94770c59fhttp://doi.org/10/bjhshttp://doi.or/10.4233/uuid:f91af52c-4e76-4cf5-917a-129455b3fca9http://doi.org/10/c5j3http://doi.org/10.4233/uuid:54a23dff-74f9-4007-b1d6-e92e0c458491http://doi.org/10/czgh

  • [email protected] twitter.com/kite_power awesco.eu

    Questions?

    mailto:[email protected]://twitter.com/kite_powerhttp://awesco.eu/