Affine Decompositions of Parametric Stochastic Processes · PDF fileAffine Decompositions of...

16
Bernhard Wieland | February 15, 2012 | Wien Vienna Conference on Mathematical Modelling Affine Decompositions of Parametric Stochastic Processes for Application within Reduced Basis Methods

Transcript of Affine Decompositions of Parametric Stochastic Processes · PDF fileAffine Decompositions of...

Page 1: Affine Decompositions of Parametric Stochastic Processes · PDF fileAffine Decompositions of Parametric Stochastic Processes ... Page 2 Konstanz jFebruary 15, 2012 Bernhard Wieland

Bernhard Wieland | February 15, 2012 | WienVienna Conference on Mathematical Modelling

Affine Decompositions ofParametric Stochastic Processesfor Application within Reduced Basis Methods

Page 2: Affine Decompositions of Parametric Stochastic Processes · PDF fileAffine Decompositions of Parametric Stochastic Processes ... Page 2 Konstanz jFebruary 15, 2012 Bernhard Wieland

Page 2 Konstanz | February 15, 2012 | Bernhard Wieland

Introduction & Problem Description

EIM: empirical interpolation method

POIM: proper orthogonal (emp.) interpolation method

LSEIM: least square empirical interpolation method

Page 3: Affine Decompositions of Parametric Stochastic Processes · PDF fileAffine Decompositions of Parametric Stochastic Processes ... Page 2 Konstanz jFebruary 15, 2012 Bernhard Wieland

Page 3 Konstanz | February 15, 2012 | Bernhard Wieland Introduction & Problem Description

Introduction

DefinitionsI µ ∈ P deterministic parameterI ω ∈ Ω stochastic event, (Ω,F ,P) probability spaceI D spatial domainI X appropriate function space

Stochastic ProcessI parameter dependent spatial stochastic process

c : D × (P × Ω)→ R, (x ;µ, ω) 7→ c(x ;µ, ω)

I For each (µ, ω) ∈ P × Ω, we obtain a trajectory

c(µ, ω) ∈ X

Page 4: Affine Decompositions of Parametric Stochastic Processes · PDF fileAffine Decompositions of Parametric Stochastic Processes ... Page 2 Konstanz jFebruary 15, 2012 Bernhard Wieland

Page 4 Konstanz | February 15, 2012 | Bernhard Wieland Introduction & Problem Description

Problem Description

OperatorI L(c(µ, ω)) spatial differential operatorI L linear w.r.t. trajectories c(µ, ω), i.e. L

(c1 + λc2

)= L(c1) + λL(c2)

PDEI Find solutions u(µ, ω) ∈ X (D) such that

L(c(µ, ω)

)[u(µ, ω)] = 0

RBM ApproachWe need affine decompositions of L into

I terms only (µ, ω)-dependentI terms only x -dependent

⇔ affine decomposition of c(µ, ω)

Page 5: Affine Decompositions of Parametric Stochastic Processes · PDF fileAffine Decompositions of Parametric Stochastic Processes ... Page 2 Konstanz jFebruary 15, 2012 Bernhard Wieland

Page 5 Konstanz | February 15, 2012 | Bernhard Wieland Introduction & Problem Description

Example: Smoothed Wiener Process

Wiener Process

I W (0;ω) = 0I W (x ;ω)−W (y ;ω) ∼ N(0, x − y)

I Karhunen-Loève expansion is known for fixed interval [a,b]

I slow error decay: O(1/M)

Smoothed Wiener ProcessI parameter dependent Gaussian filter, µ ∈ [10−3,10−1]

F (x , y ;µ) =1√2πµ

exp(−1

2(x − y)2

µ2

)I smoothed wiener process c : [0,1]→ R

c(x ;µ, ω) =

∫ x+δ

x−δF (x , y ;µ)W (y ;ω)dy

Page 6: Affine Decompositions of Parametric Stochastic Processes · PDF fileAffine Decompositions of Parametric Stochastic Processes ... Page 2 Konstanz jFebruary 15, 2012 Bernhard Wieland

Page 6 Konstanz | February 15, 2012 | Bernhard Wieland Introduction & Problem Description

Example: Smoothed Wiener Process

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−1.5

−1

−0.5

0

0.5

1

1.5

Location x

4 Random Samples for different Parameters µ

µ = 0.0010

µ = 0.0046

µ = 0.0215

µ = 0.1000

Page 7: Affine Decompositions of Parametric Stochastic Processes · PDF fileAffine Decompositions of Parametric Stochastic Processes ... Page 2 Konstanz jFebruary 15, 2012 Bernhard Wieland

Page 7 Konstanz | February 15, 2012 | Bernhard Wieland EIM: empirical interpolation method

EIM: empirical interpolation method

offlinefor m = 1 to M

(µ, ω) = arg maxµ,ω

∥∥c(µ, ω)− cEIMm (µ, ω)

∥∥∞

rm = c(µ, ω)− cEIMm (µ, ω)

tm = arg maxx|rm(x)|

Qm = Qm−1, rm/rm(tm)end

Output:I Interpolation Points:

t = (t1, ..., tM)

I Basis Q =(q1, ...,qM) s.t.qm(tm) = 1qm(tn) = 0 for n < m

I Matrix B ∈ RM×M

Bnm = qm(tn)B lower triangular

online For new parameter (µ, ω)

I evaluate c(µ, ω) = c(t ;µ, ω)

I solve B · θ(µ, ω) = c(µ, ω)

I return θ(µ, ω)

evaluate cEIMM (µ, ω) :=

∑Mm=1 θm(µ, ω)qm(x)

Complexity:I O(M)

I O(M2)

I O(MN )

Page 8: Affine Decompositions of Parametric Stochastic Processes · PDF fileAffine Decompositions of Parametric Stochastic Processes ... Page 2 Konstanz jFebruary 15, 2012 Bernhard Wieland

Page 8 Konstanz | February 15, 2012 | Bernhard Wieland EIM: empirical interpolation method

» average L2-error over training set

0 50 100 150 200 250

10−2

10−1

100

Number M of basis functions

MeanL

2-erroroftrainingset

EIMPOD

Figure: 3000 Samples for 30 values of µ, Discretization N = 400

Page 9: Affine Decompositions of Parametric Stochastic Processes · PDF fileAffine Decompositions of Parametric Stochastic Processes ... Page 2 Konstanz jFebruary 15, 2012 Bernhard Wieland

Page 9 Konstanz | February 15, 2012 | Bernhard Wieland POIM: proper orthogonal (emp.) interpolation method

POIM: proper orthogonal (emp.) interpolation method

Problem of EIM

Algorithm based on L∞ error⇒ selects rather fluctuating snapshots⇒ basis is not smooth⇒ “singularity” as interpolation point⇒ bad error decay rate

Idea

Use POD modes as basis⇒ “optimal” L2-basis⇒ leading basis functions are smooth⇒ similar to Discrete EIM [Chaturantabut, Sorensen 2009]

Page 10: Affine Decompositions of Parametric Stochastic Processes · PDF fileAffine Decompositions of Parametric Stochastic Processes ... Page 2 Konstanz jFebruary 15, 2012 Bernhard Wieland

Page 10 Konstanz | February 15, 2012 | Bernhard Wieland POIM: proper orthogonal (emp.) interpolation method

POIM: proper orthogonal (emp.) interpolation method

Differences to EIM

offlinefor m = 1 to M

c ← mth POD moderm = c − cEIM

m

tm = arg maxx|rm(x)|

Qm = Qm−1, rm/rm(tm)end

I Interpolation Points:t = (t1, ..., tM)

I Basis Q =(q1, ...,qM) s.t.qm(tm) = 1qm(tn) = 0 for n < m

I Matrix B ∈ RM×M

Bnm = qm(tn)B lower triangular

online For new parameter (µ, ω)

I evaluate c(µ, ω) = c(t ;µ, ω)

I solve B · θ(µ, ω) = c(µ, ω)

I return θ(µ, ω)

Complexity:I O(M)

I O(M2)

However: we can show that cPOIMM (µ, ω) = cDEIM

M (µ, ω)

Page 11: Affine Decompositions of Parametric Stochastic Processes · PDF fileAffine Decompositions of Parametric Stochastic Processes ... Page 2 Konstanz jFebruary 15, 2012 Bernhard Wieland

Page 11 Konstanz | February 15, 2012 | Bernhard Wieland POIM: proper orthogonal (emp.) interpolation method

POIM: proper orthogonal (emp.) interpolation method

Differences to EIM / Additional differences to DEIM

offlinefor m = 1 to M

c ← mth POD moderm = c − cEIM

m

tm = arg maxx|rm(x)|

Qm = Qm−1, cend

I Interpolation Points:t = (t1, ..., tM)

I Basis Q =(q1, ...,qM) s.t.qm(tm) 6= 1qm(tn) 6= 0 for n < m

I Matrix B ∈ RM×M

Bnm = qm(tn)B full

online For new parameter (µ, ω)

I evaluate c(µ, ω) = c(t ;µ, ω)

I solve B · θ(µ, ω) = c(µ, ω)

I return θ(µ, ω)

Complexity:I O(M)

I O(M3)

However: we can show that cPOIMM (µ, ω) = cDEIM

M (µ, ω)

Page 12: Affine Decompositions of Parametric Stochastic Processes · PDF fileAffine Decompositions of Parametric Stochastic Processes ... Page 2 Konstanz jFebruary 15, 2012 Bernhard Wieland

Page 12 Konstanz | February 15, 2012 | Bernhard Wieland POIM: proper orthogonal (emp.) interpolation method

» average L2-error over training set

0 50 100 150 200 250

10−2

10−1

100

Number M of basis functions

MeanL

2-erroroftrainingset

EIMPOIMDEIMPOD

Figure: 3000 Samples for 30 values of µ, Discretization N = 400

Page 13: Affine Decompositions of Parametric Stochastic Processes · PDF fileAffine Decompositions of Parametric Stochastic Processes ... Page 2 Konstanz jFebruary 15, 2012 Bernhard Wieland

Page 13 Konstanz | February 15, 2012 | Bernhard Wieland LSEIM: least square empirical interpolation method

LSEIM: least square empirical interpolation method

Problem of POIM

Optimal Basis, but still slow error decay⇒ coefficients θ are not sufficiently exact

Idea

Use more than one interpolation point per basis⇒ matrix B will be non-quadratic⇒ matrix B will be non-triangular⇒ solve least square problems for θ

Page 14: Affine Decompositions of Parametric Stochastic Processes · PDF fileAffine Decompositions of Parametric Stochastic Processes ... Page 2 Konstanz jFebruary 15, 2012 Bernhard Wieland

Page 14 Konstanz | February 15, 2012 | Bernhard Wieland LSEIM: least square empirical interpolation method

LSEIM: least square empirical interpolation methodDifferences to EIM/POIM

offlinefor m = 1 to M

c ← mth POD moderm = c − cLSEIM

m

t2m−1 = arg minx rm(x)t2m = arg maxx rm(x)

Qm = Qm−1, rm/maxx|rm(x)|)

end

I Interpolation Points:t = (t1, ..., t2M)

I Basis Q =(q1, ...,qM)qm(tm) = 1qm(tn) 6= 0

I Matrix B ∈ R2M×M

Bnm = qm(tn)B full

online For new parameter (µ, ω)

I do once QR-decomposition of BI evaluate c(µ, ω) = c(t ;µ, ω)

I solve ‖B · θ(µ, ω)− c(µ, ω)‖22 → min

I return θ(µ, ω)

Complexity:I O(M3)

I O(2M)

I O(2M2)

Page 15: Affine Decompositions of Parametric Stochastic Processes · PDF fileAffine Decompositions of Parametric Stochastic Processes ... Page 2 Konstanz jFebruary 15, 2012 Bernhard Wieland

Page 15 Konstanz | February 15, 2012 | Bernhard Wieland LSEIM: least square empirical interpolation method

» average L2-error over training set

0 50 100 150 200 250

10−2

10−1

100

Number M of basis functions

MeanL

2-erroroftrainingset

EIMPOIMDEIMLSEIMPOD

Figure: 3000 Samples for 30 values of µ, Discretization N = 400

Page 16: Affine Decompositions of Parametric Stochastic Processes · PDF fileAffine Decompositions of Parametric Stochastic Processes ... Page 2 Konstanz jFebruary 15, 2012 Bernhard Wieland

Bernhard Wieland | February 15, 2012 | WienVienna Conference on Mathematical Modelling

Affine Decompositions ofParametric Stochastic Processesfor Application within Reduced Basis Methods

Conclusions

+ POIM = DEIM+ we can decompose noisy data+ LSEIM close to L2-“optimal”– more interpolation points– little more effort

Questions... ?