Advances in multi-pixel Geiger mode APDs (Silicon...

36
INSTR-08, Novosibirsk, 3.03.2008 Y. Musienko ([email protected]) 1 Advances in multi-pixel Geiger mode APDs (Silicon Photomultipliers). Yuri Musienko Northeastern University, Boston & INR, Moscow

Transcript of Advances in multi-pixel Geiger mode APDs (Silicon...

Page 1: Advances in multi-pixel Geiger mode APDs (Silicon ...instr08.inp.nsk.su/reports/Musienko.pdfINSTR-08, Novosibirsk, 3.03.2008 Y. Musienko (Iouri.Musienko@cern.ch) 3 APD’s operated

INSTR-08, Novosibirsk, 3.03.2008 Y. Musienko ([email protected]) 1

Advances in multi-pixel Geiger mode

APDs (Silicon Photomultipliers).

Yuri Musienko

Northeastern University, Boston

&

INR, Moscow

Page 2: Advances in multi-pixel Geiger mode APDs (Silicon ...instr08.inp.nsk.su/reports/Musienko.pdfINSTR-08, Novosibirsk, 3.03.2008 Y. Musienko (Iouri.Musienko@cern.ch) 3 APD’s operated

INSTR-08, Novosibirsk, 3.03.2008 Y. Musienko ([email protected]) 2

Outline

• SiPM: principle of operation

• SiPM parameters, important for HEP

applications

• New developments

• Radiation hardness

• Summary

Page 3: Advances in multi-pixel Geiger mode APDs (Silicon ...instr08.inp.nsk.su/reports/Musienko.pdfINSTR-08, Novosibirsk, 3.03.2008 Y. Musienko (Iouri.Musienko@cern.ch) 3 APD’s operated

INSTR-08, Novosibirsk, 3.03.2008 Y. Musienko ([email protected]) 3

APD’s operated in Geiger mode

High gain operate APDs over breakdown Geiger mode APDs

Single pixel Geiger mode APD’s developed long time ago

( see for example: R.Haitz et al, J.Appl.Phys. (1963-1965))

Planar APD structure Passive quenching circuit

• Single pixel devices are not capable of operating in multi-photon mode

• Sensitive area is limited by dark count and dead time (few mm2 Geiger mode APD can

operate only at low temperature, needs “active quenching”)

Solution: Multipixel Geiger mode APD (MPGM APD)

Page 4: Advances in multi-pixel Geiger mode APDs (Silicon ...instr08.inp.nsk.su/reports/Musienko.pdfINSTR-08, Novosibirsk, 3.03.2008 Y. Musienko (Iouri.Musienko@cern.ch) 3 APD’s operated

INSTR-08, Novosibirsk, 3.03.2008 Y. Musienko ([email protected]) 4

First design (MRS APD, 1989) Few % photon detection efficiency for red light was measured with 0.5x0.5 mm2 APD. Good pixel-to-pixel uniformity. Small geometrical efficiency. Very low QE for green and blue light.

LED pulse spectrum(A. Akindinov et al., NIM387 (1997) 231)

The very first metall-resitor-smiconductor APD (MRS APD) proposed

by A. Gasanov, V. Golovin, Z. Sadygov, N. Yusipov (Russian patent

#1702881, from 10/11/1989 ). APDs up to 5x5 mm2 were produced by

MELZ factory (Moscow).

Page 5: Advances in multi-pixel Geiger mode APDs (Silicon ...instr08.inp.nsk.su/reports/Musienko.pdfINSTR-08, Novosibirsk, 3.03.2008 Y. Musienko (Iouri.Musienko@cern.ch) 3 APD’s operated

INSTR-08, Novosibirsk, 3.03.2008 Y. Musienko ([email protected]) 5

Developers and producersSince 1989 many GM APD structures were developed by

different developers:

• CPTA/Photnique (Moscow/Geneva)

• Zecotek (Singapur)

• MEPhI/Pulsar (Moscow)

• Hamamatsu Photonics (Hamamatsu, Japan)

• SensL (Cork, Ireland)

• RMD (Boston)

• MPI Semiconductor Laboratory (Munich, Germany)

• FBK-irst (Trento, Italy)

• ……

Every producer invented their own name for this device:

MRS APD, MAPD, SiPM, SSPM, SPM, G-APD …

Page 6: Advances in multi-pixel Geiger mode APDs (Silicon ...instr08.inp.nsk.su/reports/Musienko.pdfINSTR-08, Novosibirsk, 3.03.2008 Y. Musienko (Iouri.Musienko@cern.ch) 3 APD’s operated

INSTR-08, Novosibirsk, 3.03.2008 Y. Musienko ([email protected]) 6

Structure and principles of

operation

Picture from talk of E. Grigoriev at Como 2001

• Geiger avalanche is quenched by an individual pixel resistor (from 100kΩ to several MΩ).

• It contains 100 20 000 pixels/mm2 , made on common substrate and connected together

• Each pixel works as a binary device

• MGAPD is pixellated silicon avalanche photodiode operated in Geiger mode (~10-20% over breakdown voltage)

• For small light pulses (Ng<<Npixels) device as a whole works as an analog detector

Page 7: Advances in multi-pixel Geiger mode APDs (Silicon ...instr08.inp.nsk.su/reports/Musienko.pdfINSTR-08, Novosibirsk, 3.03.2008 Y. Musienko (Iouri.Musienko@cern.ch) 3 APD’s operated

INSTR-08, Novosibirsk, 3.03.2008 Y. Musienko ([email protected]) 7

SiPMs pixel-to-pixel uniformity

Green-red light sensitive APD, low amplitude

light signals, U=43V, T=-28 C

0

500

1000

1500

2000

0 500 1000 1500 2000

ADC ch#

Co

un

ts

MPGM APDs/SiPMs have very good pixel-to-pixel signal uniformity. Pedestal is

well separated from the signal produced by single fired pixel Q1 .

Page 8: Advances in multi-pixel Geiger mode APDs (Silicon ...instr08.inp.nsk.su/reports/Musienko.pdfINSTR-08, Novosibirsk, 3.03.2008 Y. Musienko (Iouri.Musienko@cern.ch) 3 APD’s operated

INSTR-08, Novosibirsk, 3.03.2008 Y. Musienko ([email protected]) 8

Parameter definition: Gain

Each pixel works as a digital device – 1,2,3... photons produce the same

signal Q1=Cpixel*(V-Vb) (or Single Pixel Charge).

Multi-pixel structure works as a linear device, as soon as Npe=Ng*QE<<N0

, N0 – is a total number of pixels/device

Measured charge :

Qoutput=Npe*Gain ,

It was found by many groups that : Gain ≠ Q1 ,

More than 1 pixel is fired by one primary photoelectron!

Gain=Q1*np ,

where np is average number of pixels fired by one primary photoelectron.

There are 2 reasons for this discrepancy:

- optical cross-talk between pixels

- after-pulsing (one pixel can be fired more than 1 time during light flesh)

Page 9: Advances in multi-pixel Geiger mode APDs (Silicon ...instr08.inp.nsk.su/reports/Musienko.pdfINSTR-08, Novosibirsk, 3.03.2008 Y. Musienko (Iouri.Musienko@cern.ch) 3 APD’s operated

INSTR-08, Novosibirsk, 3.03.2008 Y. Musienko ([email protected]) 9

Gain and Single Pixel Charge

)(1 Bpix VVCQ

fired

pixelsNQM 1

Page 10: Advances in multi-pixel Geiger mode APDs (Silicon ...instr08.inp.nsk.su/reports/Musienko.pdfINSTR-08, Novosibirsk, 3.03.2008 Y. Musienko (Iouri.Musienko@cern.ch) 3 APD’s operated

INSTR-08, Novosibirsk, 3.03.2008 Y. Musienko ([email protected]) 10

Photon detection efficiency

Photon detection efficiency (PDE) is the probability to detect single photon when threshold is < Q1 .

It depends on the pixel active area quantum efficiency (QE), geometric factor and probability of

primary photoelectron to trigger the pixel breakdown Pb (depends on the V-Vb !!, Vb – is a breakdown

voltage) .

PDE (l, U,T) = QE(l)*Gf*Pb(U,T)

0

5

10

15

50 55 60 65

PD

E(5

15

nm

) [%

]

Bias [V]

MEPhI/PULSAR APD

T= 22 C

T=-28 C

MEPhI/PULSAR APD, U=57.5 V, T=-28C

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 200 400 600 800 1000ADC, ch.

Co

un

tsTo determine <Npe> in light pulse one can use well known property of the Poisson distribution :

<Npe> = - ln(P(0))

Average number of photons <Ng> in LED pulse can be measured using calibrated photo-sensor . Then:

PDE(l) = <Npe>/ <Ng>

Page 11: Advances in multi-pixel Geiger mode APDs (Silicon ...instr08.inp.nsk.su/reports/Musienko.pdfINSTR-08, Novosibirsk, 3.03.2008 Y. Musienko (Iouri.Musienko@cern.ch) 3 APD’s operated

INSTR-08, Novosibirsk, 3.03.2008 Y. Musienko ([email protected]) 11

Breakdown initiation probability

Because of the higher ionization coefficient, the electron triggering probability

is always higher than that of holes

Ionization coefficients for electrons and

holes in silicon

Page 12: Advances in multi-pixel Geiger mode APDs (Silicon ...instr08.inp.nsk.su/reports/Musienko.pdfINSTR-08, Novosibirsk, 3.03.2008 Y. Musienko (Iouri.Musienko@cern.ch) 3 APD’s operated

INSTR-08, Novosibirsk, 3.03.2008 Y. Musienko ([email protected]) 12

Geometric factor

Page 13: Advances in multi-pixel Geiger mode APDs (Silicon ...instr08.inp.nsk.su/reports/Musienko.pdfINSTR-08, Novosibirsk, 3.03.2008 Y. Musienko (Iouri.Musienko@cern.ch) 3 APD’s operated

INSTR-08, Novosibirsk, 3.03.2008 Y. Musienko ([email protected]) 13

Structure for green/red light

B. Dolgoshein et. al., “An advanced study of

silicon photomultiplier”, ICFA-2001

MEPhI/PULSAR APD, T=22C, U=59 V

0

2

4

6

8

10

12

400 450 500 550 600 650 700 750 800

Wavelength [nm]

PD

E [

%]

(Y. Musienko, Beaune-05)

0

10

20

30

40

50

60

350 400 450 500 550 600 650 700 750 800

PD

E [

%]

Wavelength [nm]

T=22 CCPTA/Photonique APD

(Y. Musienko, PD-07, Kobe)

Absorption length for light in silicon

Page 14: Advances in multi-pixel Geiger mode APDs (Silicon ...instr08.inp.nsk.su/reports/Musienko.pdfINSTR-08, Novosibirsk, 3.03.2008 Y. Musienko (Iouri.Musienko@cern.ch) 3 APD’s operated

INSTR-08, Novosibirsk, 3.03.2008 Y. Musienko ([email protected]) 14

Improved blue sensitivity

Shallow-Junction SiPM

13

14

15

16

17

18

19

20

0 0.2 0.4 0.6 0.8 1 1.2 1.4

depth (um)

Do

pin

g c

on

c. (1

0^

) [1

/cm

^3

]

0E+00

1E+05

2E+05

3E+05

4E+05

5E+05

6E+05

7E+05

E f

ield

(V

/cm

)

Doping

Field

n+ p

(G. Pauletta: PD07, Kobe, Japan)0.00E+00

2.00E+00

4.00E+00

6.00E+00

8.00E+00

1.00E+01

1.20E+01

1.40E+01

1.60E+01

350 400 450 500 550 600 650 700 750 800

Wavelength (nm)

PD

E (

%)

36V

36.5V

37V

37.5V

38V

DV=2V

2.5V

3.5V3V

4V

To improve sensitivity for blue/UV light structure with shallow junction (~100 nm) was produced

Page 15: Advances in multi-pixel Geiger mode APDs (Silicon ...instr08.inp.nsk.su/reports/Musienko.pdfINSTR-08, Novosibirsk, 3.03.2008 Y. Musienko (Iouri.Musienko@cern.ch) 3 APD’s operated

INSTR-08, Novosibirsk, 3.03.2008 Y. Musienko ([email protected]) 15

Blue sensitive G-APD

p+

p--epi

n++-subst.

K.Yamamoto, PD-07, Kobe

(optical crosstalk and after-pulses were not

taken into account)

0

5

10

15

20

25

30

35

350 400 450 500 550 600 650 700 750 800

PD

E [

%]

Wavelength [nm]

T=22 C HPK S10362-11-050C

(Y. Musienko, PD-07, Kobe)

Measured using t technique described in

NIMA 567 (2006) 57

Another solution: “reversed” APD structure. In “reversed”

structure electrons initiate the avalanche breakdown

Page 16: Advances in multi-pixel Geiger mode APDs (Silicon ...instr08.inp.nsk.su/reports/Musienko.pdfINSTR-08, Novosibirsk, 3.03.2008 Y. Musienko (Iouri.Musienko@cern.ch) 3 APD’s operated

INSTR-08, Novosibirsk, 3.03.2008 Y. Musienko ([email protected]) 16

Optical cross-talk

Hot-carrier luminescence:

105 carriers produces ~3 photons with

an wavelength less than 1 mm

Increases with the gain !

Solution: optically separate pixels with grooves

Optical cross-talk causes adjacent pixels to be fired increases gain

fluctuations increases noise and excess noise factor !

Page 17: Advances in multi-pixel Geiger mode APDs (Silicon ...instr08.inp.nsk.su/reports/Musienko.pdfINSTR-08, Novosibirsk, 3.03.2008 Y. Musienko (Iouri.Musienko@cern.ch) 3 APD’s operated

INSTR-08, Novosibirsk, 3.03.2008 Y. Musienko ([email protected]) 17

Single electron spectrum

SES CPTA APD, U=42 V, T=-28 C

1

10

100

1000

10000

200 300 400 500 600 700

ADC ch.

Co

un

ts

When V-Vb>>1 V typical single pixel signal resolution is better than 10%

(FWHM)). However an optical cross-talk results in more than one pixel fired by

single photoelectron. This results in deterioration of SiPM SES and …

SES MEPhI/PULSAR APD, U=57.5V, T=-28 C

1

10

100

1000

10000

0 100 200 300 400 500

ADC ch.

Co

un

ts

Page 18: Advances in multi-pixel Geiger mode APDs (Silicon ...instr08.inp.nsk.su/reports/Musienko.pdfINSTR-08, Novosibirsk, 3.03.2008 Y. Musienko (Iouri.Musienko@cern.ch) 3 APD’s operated

INSTR-08, Novosibirsk, 3.03.2008 Y. Musienko ([email protected]) 18

Excess Noise Factor

MEPhI/PULSAR APD

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3Single Pixel Charge*106

Nu

mb

er

of

fire

d

pix

els

T= 22 C

T=-28 C

2

2

1M

F M

… and in an increase of the SiPM excess noise factor

Page 19: Advances in multi-pixel Geiger mode APDs (Silicon ...instr08.inp.nsk.su/reports/Musienko.pdfINSTR-08, Novosibirsk, 3.03.2008 Y. Musienko (Iouri.Musienko@cern.ch) 3 APD’s operated

INSTR-08, Novosibirsk, 3.03.2008 Y. Musienko ([email protected]) 19

The dark rate of the SiPM for different gains in

dependence on the level of the threshold

0 2 4 6 8 10 12 14 1610

-1

100

101

102

103

104

105

106

dark

rate

, H

z

Threshold, pixels

gain 7*105

gain 1*106

gain 1.3*106

Optical cross-talk increases

the dark count at high

electronics thresholds

(E.Popova, CALICE meeting)

Page 20: Advances in multi-pixel Geiger mode APDs (Silicon ...instr08.inp.nsk.su/reports/Musienko.pdfINSTR-08, Novosibirsk, 3.03.2008 Y. Musienko (Iouri.Musienko@cern.ch) 3 APD’s operated

INSTR-08, Novosibirsk, 3.03.2008 Y. Musienko ([email protected]) 20

Gain is voltage and temperature

dependent

MEPhI/PULSAR APD

0

2

4

6

8

50 55 60 65Bias [V]

Gain

*106

T= 22 C

T=-28 C

MEPhI/PULSAR APD

0

0.5

1

1.5

2

2.5

3

50 55 60 65Bias [V]

Sin

gle

Pix

el

Ch

arg

e*1

06 T= 22 C

T=-28 C

MEPhI/PULSAR APD

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3Single Pixel Charge*106

Nu

mb

er o

f fi

red

pix

els

T= 22 C

T=-28 C

SiPM gain and PDE are temperature dependent

Page 21: Advances in multi-pixel Geiger mode APDs (Silicon ...instr08.inp.nsk.su/reports/Musienko.pdfINSTR-08, Novosibirsk, 3.03.2008 Y. Musienko (Iouri.Musienko@cern.ch) 3 APD’s operated

INSTR-08, Novosibirsk, 3.03.2008 Y. Musienko ([email protected]) 21

Response temperature

sensitivityCPTA APD

0

50

100

150

200

250

300

350

400

30 32 34 36 38 40 42 44

Bias [V]

Sig

na

l a

mp

litu

de

[A

DC

ch

.]

T=-25 C

T= 22 C

Hamamatsu MPPC

0

20

40

60

80

100

120

140

160

180

200

66.5 67 67.5 68 68.5 69 69.5 70 70.5 71

Bias [V]

Am

plitu

de [

AD

C c

h.]

T=-25 C

T= 22 C

CPTA/Photnique:

dVB/dT=-20 mV/C

Hamamatsu:

dVB/dT=-50 mV/C

LED signal was measured in dependence on bias at 2

temperatures. During low temperature measurements

(T=-25 C) G-APDs were placed inside commercial

freezer (LED was kept at room temperature)

Page 22: Advances in multi-pixel Geiger mode APDs (Silicon ...instr08.inp.nsk.su/reports/Musienko.pdfINSTR-08, Novosibirsk, 3.03.2008 Y. Musienko (Iouri.Musienko@cern.ch) 3 APD’s operated

INSTR-08, Novosibirsk, 3.03.2008 Y. Musienko ([email protected]) 22

Temperature coefficient

CPTA APD

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

34 35 36 37 38 39 40 41 42 43

Bias [V]

-1/A

*dA

/dT

[%

]

S10362-11-050C HPK MPPC

0

2

4

6

8

10

12

14

16

69 69.2 69.4 69.6 69.8 70 70.2 70.4 70.6

Bias [V]

-1/A

*dA

/dT

[%

]

kT=dA/dT*1/A, [%/C]

Page 23: Advances in multi-pixel Geiger mode APDs (Silicon ...instr08.inp.nsk.su/reports/Musienko.pdfINSTR-08, Novosibirsk, 3.03.2008 Y. Musienko (Iouri.Musienko@cern.ch) 3 APD’s operated

INSTR-08, Novosibirsk, 3.03.2008 Y. Musienko ([email protected]) 23

Optical cross-talk reduction

To reduce optical cross-talk CPTA was the first to introduce trenches separating the neighbouring pixels (E. Grigoriev Como 2001)

Page 24: Advances in multi-pixel Geiger mode APDs (Silicon ...instr08.inp.nsk.su/reports/Musienko.pdfINSTR-08, Novosibirsk, 3.03.2008 Y. Musienko (Iouri.Musienko@cern.ch) 3 APD’s operated

INSTR-08, Novosibirsk, 3.03.2008 Y. Musienko ([email protected]) 24

SiPMs with reduced optical

cross-talkSiPM with trenchesSiPM without trenches

MEPhI/PULSAR APD

0

0.5

1

1.5

2

2.5

50 55 60 65Bias [V]

Exce

ss N

oise

Fac

tor T= 22 C

T=-28 C

CPTA APD

0.9

0.95

1

1.05

1.1

1.15

1.2

30 32 34 36 38 40 42 44

Bias [V]

F

Page 25: Advances in multi-pixel Geiger mode APDs (Silicon ...instr08.inp.nsk.su/reports/Musienko.pdfINSTR-08, Novosibirsk, 3.03.2008 Y. Musienko (Iouri.Musienko@cern.ch) 3 APD’s operated

INSTR-08, Novosibirsk, 3.03.2008 Y. Musienko ([email protected]) 25

The dark rate of the SiPM trenches in

dependence on the discriminator threshold

0.1

1

10

100

1000

10000

0 1 2 3

Dark

Co

un

t [k

Hz]

Threshold [fired pixels]

36V

33 V

CPTA/Photonique SSPM with trenches

Page 26: Advances in multi-pixel Geiger mode APDs (Silicon ...instr08.inp.nsk.su/reports/Musienko.pdfINSTR-08, Novosibirsk, 3.03.2008 Y. Musienko (Iouri.Musienko@cern.ch) 3 APD’s operated

INSTR-08, Novosibirsk, 3.03.2008 Y. Musienko ([email protected]) 26

SiPM timing

Measured with MEPhI/Pulsar

SiPM using single photons (B.

Dolgoshein, Beaune-02)

SiPMs have excellent timing properties

Measured with 100 mm SPAD

using single photons

Page 27: Advances in multi-pixel Geiger mode APDs (Silicon ...instr08.inp.nsk.su/reports/Musienko.pdfINSTR-08, Novosibirsk, 3.03.2008 Y. Musienko (Iouri.Musienko@cern.ch) 3 APD’s operated

INSTR-08, Novosibirsk, 3.03.2008 Y. Musienko ([email protected]) 27

Linearity

(B. Dolgoshein, TRD05, Bari)

This equation is correct for

light pulses which are shorter

than pixel recovery time , and

for an “ideal” SiPM (no cross-

talk and no after-pulsing)

Linearity of SiPM is determined by its total number of pixels

In the case of uniform illumination:

Page 28: Advances in multi-pixel Geiger mode APDs (Silicon ...instr08.inp.nsk.su/reports/Musienko.pdfINSTR-08, Novosibirsk, 3.03.2008 Y. Musienko (Iouri.Musienko@cern.ch) 3 APD’s operated

INSTR-08, Novosibirsk, 3.03.2008 Y. Musienko ([email protected]) 28

Micro-pixel APDs with large

dynamic range

Z. Sadygov, Beaune-05

M.Golubeva et.al. LONGITUDINALLY SEGMENTED

LEAD/SCINTILLATOR HADRON CALORIMETER WITH

MICROPIXEL APD READOUT (this conference)

Micro-well structure with multiplication

regions located in front of wells at 2-3 mm

depth was developed by Z. Sadygov.

MAPDs with 10 000 – 15 000 pixels/mm2

were produced. Such devices are good for

calorimetry applications.

Page 29: Advances in multi-pixel Geiger mode APDs (Silicon ...instr08.inp.nsk.su/reports/Musienko.pdfINSTR-08, Novosibirsk, 3.03.2008 Y. Musienko (Iouri.Musienko@cern.ch) 3 APD’s operated

INSTR-08, Novosibirsk, 3.03.2008 Y. Musienko ([email protected]) 29

After-pulsing

Solution: “cleaner” technology or longer pixel recovery time

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

-1.0E-08 1.0E-08 3.0E-08 5.0E-08 7.0E-08

Time (s)

Vo

lta

ge

(V

)

Events with after-pulse measured on a

single micropixel.

y = 0.0067x2 - 0.4218x + 6.639

y = 0.0068x2 - 0.4259x + 6.705

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

31 32 33 34 35 36

Voltage (V)

Afte

rpu

lse

/pu

lse

Tint = 60ns

Tint = 100ns

After-pulse probability vs bias

C. Piemonte: June 13th, 2007, Perugia

Page 30: Advances in multi-pixel Geiger mode APDs (Silicon ...instr08.inp.nsk.su/reports/Musienko.pdfINSTR-08, Novosibirsk, 3.03.2008 Y. Musienko (Iouri.Musienko@cern.ch) 3 APD’s operated

INSTR-08, Novosibirsk, 3.03.2008 Y. Musienko ([email protected]) 30

Large area SiPMs

1x1mm 2x2mm 3x3mm (3600 cells) 4x4mm (6400 cells)

FBK-irst SiPMs, C. Piemonte: June 13th, 2007, Perugia

SiPMs with up to 3x3 mm2 area produced by many companies: Hamamatsu,

CPTA/Photonique, Pulsar, Zecotek, SensL, FBK-irst

Page 31: Advances in multi-pixel Geiger mode APDs (Silicon ...instr08.inp.nsk.su/reports/Musienko.pdfINSTR-08, Novosibirsk, 3.03.2008 Y. Musienko (Iouri.Musienko@cern.ch) 3 APD’s operated

INSTR-08, Novosibirsk, 3.03.2008 Y. Musienko ([email protected]) 31

Radiation hardness studies

Motivation: SiPMs will be used in HEP experiments

Radiation may cause:

• Fatal SiPM damage (SiPM can’t be used after certain

absorbed dose)

• Dark current and dark count increase (silicon …)

• Change of the gain and PDE vs. voltage dependence

(SiPM blocking effects due to high induced dark carriers

generation-recombination rate)

• Breakdown voltage change

Page 32: Advances in multi-pixel Geiger mode APDs (Silicon ...instr08.inp.nsk.su/reports/Musienko.pdfINSTR-08, Novosibirsk, 3.03.2008 Y. Musienko (Iouri.Musienko@cern.ch) 3 APD’s operated

INSTR-08, Novosibirsk, 3.03.2008 Y. Musienko ([email protected]) 32

Radiation damage of MPPCs using

gammas from Co60

Matsubara, PD-07, Kobe

Infrared emission (similar

effects were seen with

irradiated “linear” APDs

Page 33: Advances in multi-pixel Geiger mode APDs (Silicon ...instr08.inp.nsk.su/reports/Musienko.pdfINSTR-08, Novosibirsk, 3.03.2008 Y. Musienko (Iouri.Musienko@cern.ch) 3 APD’s operated

INSTR-08, Novosibirsk, 3.03.2008 Y. Musienko ([email protected]) 33

Radiation damage of SiPMs using protons

200 MeV protons, M.Danilov

arXiv:0704.3514v1

Protons like 1 MeV neutrons produce

defects inside silicon.

Increase of the dark current:

Id~a*F*V*M*k,

a – dark current damage constant [A/cm];

F – particle flux [1/cm2];

V – silicon active volume [cm3]

M – SiPM gain

k – NIEL coefficient

Page 34: Advances in multi-pixel Geiger mode APDs (Silicon ...instr08.inp.nsk.su/reports/Musienko.pdfINSTR-08, Novosibirsk, 3.03.2008 Y. Musienko (Iouri.Musienko@cern.ch) 3 APD’s operated

INSTR-08, Novosibirsk, 3.03.2008 Y. Musienko ([email protected]) 34

Irradiation studies at PSI (82 MeV protons)

• 23 SiPMs from 4 different producers irradiated at PSI last week

• 1*1010 400 MeV/c (82 MeV kinetic energy) protons/cm2 in 4 steps

•NIEL factor is ~2 times of 1 MeV neutrons, Total flux: 1*1010 protons/cm2, equivalent to ~2*1010 1 MeV neutrons/cm2

Gain, PDE, Id, Dark count vs. voltage were measured before irradiation

0

2

4

6

8

10

12

0 1 2 3 4 5

Dar

k C

urr

en

t [m

kA]

Irradiation #

"HPK_1mm_#535" (U=69.5V)

"HPK_1mm_#535"(U=70.1V)

"HPK_1mm_#535"(U=70.7V)

CPTA#3

0

5

10

15

20

25

30

30.5 31 31.5 32 32.5 33 33.5 34 34.5

Bias [V]

PD

E(5

15n

m)

[%]

before irr.

after irr.

FBK_K1

0

5

10

15

20

25

30

31 31.5 32 32.5 33 33.5 34 34.5

Bias [V]

PD

E(5

15n

m)

[%]

before irr.

after irr.

Hamamatsu #534

0

5

10

15

20

25

30

69 69.2 69.4 69.6 69.8 70 70.2

Bias [V]

PD

E(5

15

nm

) [%

]

before irr.

after irr.

Actve area of SiPMs ~1 mm2

Page 35: Advances in multi-pixel Geiger mode APDs (Silicon ...instr08.inp.nsk.su/reports/Musienko.pdfINSTR-08, Novosibirsk, 3.03.2008 Y. Musienko (Iouri.Musienko@cern.ch) 3 APD’s operated

INSTR-08, Novosibirsk, 3.03.2008 Y. Musienko ([email protected]) 35

Dark Count vs. bias 2 month after irradiationHamamatsu #534

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

69 69.2 69.4 69.6 69.8 70 70.2

Bias [V]

Da

rk C

ou

nt

[kH

z] before irr.

after irr.

FBK_K1

0

5000

10000

15000

20000

25000

30000

35000

40000

31 31.5 32 32.5 33 33.5 34 34.5

Bias [V]

Da

rk C

ou

nt

[kH

z]

before irr.

after irr.

CPTA#3

0

5000

10000

15000

20000

25000

30000

35000

40000

30.5 31 31.5 32 32.5 33 33.5 34 34.5

Bias [V]

Dark

Co

un

t [k

Hz]

before irr.

after irr.

Dark count increase

0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25 30

PDE(515nm)

Da

rk C

ou

nt/

PD

E(5

15n

m) CPTA#3

FBK_K1

Hamamatsu #534

0

5

10

15

20

25

0 10 20 30Eff

ec

tive

Th

ick

nes

s [

mm

]

PDE(515nm)

Effective thickness (aSi= 4*10-17 A/cm)

CPTA#3

FBK_K1

Hamamatsu #534

Page 36: Advances in multi-pixel Geiger mode APDs (Silicon ...instr08.inp.nsk.su/reports/Musienko.pdfINSTR-08, Novosibirsk, 3.03.2008 Y. Musienko (Iouri.Musienko@cern.ch) 3 APD’s operated

INSTR-08, Novosibirsk, 3.03.2008 Y. Musienko ([email protected]) 36

Summary

Significant progress in development of SiPMs during recent 2-3 years:

• High PDE~30-40% for blue-green light (CPTA/Photonique, Hamamatsu)

• Reduction of dark count at room temperature (~100-300 kHz, Hamamastu)

• Low cross-talk (<5-10%, CPTA/Photonique, FBK)

• Low temperature coefficient (~0.3%/C, CPTA/Photonique)

• Fast timing (~50 ps (RMS) for single photons)

• Large dynamic range (10 000 – 15 000 pixels/mm2, Dubna/Zecotek)

• Large area (3x3 mm2, CPTA/Photonique, Hamamatsu, FBK, SensL,

Dubna/Zecotek…)

All this (together with understanding of radiation hardness issues) makes

these devices excellent candidates for application in HEP experiments

(see presentations of T.Ijima, P.Krizhan, A.Reshetin, D.Renker,

V.Rusinov, S.Schuwalow, Yu.Kudenko , A.Ivashkin…)